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ABSTRACT

Ferromagnetic Shape Memory Alloys (FSMAs) in the nickel manganese gallium system have been shown to
exhibit large magnetically induced strains of up to 9.5% due to magnetically driven twin variant reorientation.
In order for this strain to be reversible, however, an external restoring stress or magnetic field needs to be
applied orthogonal to the field and hence the implementation of Ni-Mn-Ga in applications involves the use of
electromagnets, which tend to be heavy, bulky and narrowband. In previous work at The Ohio State University
a sample of Ni50Mn28.7Ga21.3 has been shown to exhibit reversible compressive strains of -4200 microstrain
along its [001] direction when a magnetic field is applied along this same direction and no externally applied
restoring force is present. This reversible strain is possible because of an internal stress field associated with
pinning sites induced during manufacture of the crystal. This paper analyzes the switching between two variant
orientations in the presence of magnetic fields (Zeeman energy) and pinning sites (pinning energy) through
the formulation of a Gibbs energy functional for the crystal lattice. Minimization of the Gibbs free energy
yields a strain kernel which represents the predicted behavior of an idealized 2-dimensional homogeneous single
crystal with a single twin boundary and pinning site. While adequate, the kernel has limitations because it
does not account for the following: (a) Ni-Mn-Ga consists of a large number of twin variants and boundaries,
(b) the strength of the pinning sites may vary, and (c) the local and applied magnetic field will differ due to
neighbor-to-neighbor interactions. These limiting factors are addressed in this paper by considering stochastic
homogenization. Stochastic distributions are used on the interaction field and on the pinning site strength,
yielding a phenomenological model for the bulk strain behavior of Ni50Mn28.7Ga21.3. The model quantifies
both the hysteresis and saturation of the strain. Constrained optimization is used to determine the necessary
parameters and an error analysis is performed to assess the accuracy of the model for various loading conditions.

Keywords: Ferromagnetic Shape Memory Alloys, Homogenized model, Collinear Field-Stress, Solenoid actuator

1. INTRODUCTION

Large magnetic field-induced strains as large as 9.5% have been observed in nickel manganese gallium (Ni-Mn-Ga)
martensites exposed to magnetic fields of 400 kA/m.1–3 Due to the field activation, the frequency response of
Ni-Mn-Ga alloys can be higher than that exhibited through thermal activation in shape memory alloys.4 These
properties are significant for actuator and sensor applications in which large deformations and broad frequency
bandwidths are required.

As is the case with shape memory materials, the large deformations exhibited by Ni-Mn-Ga alloys originate in
the pseudoelasticity associated with the reorientation of martensitic twin variants under the action of magnetic
fields. Unlike nickel titanium and other shape memory materials, in which the ability to do work stems from
thermomechanical transformation between the martensite and austenite phases, the main actuation mechanism
in Ni-Mn-Ga is the twin variant reorientation which takes place in the low temperature martensite phase and
is driven by magnetic fields or mechanical stresses. Since in Ni-Mn-Ga magnetic fields and compressive stresses
applied collinearly favor the same variant, an external force must be applied orthogonal to the applied field
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Figure 1. Diagram of field and stress orientations in
an electromagnet.

Ni-Mn-Ga
Sample

Figure 2. Solenoid Ni-Mn-Ga transducer for use in
dynamic actuator and sensor applications.

to restore the twin variants and thus obtain bidirectional deformations. In applications, this is often done by
placing a rectangular sample in an electromagnet with the magnetic field applied along the [110] crystallographic
direction of the parent phase and a bias compressive stress applied along the [001] direction.5 This configuration
is shown in Figure 1.

In a previous study, Malla et al.6 have established that large reversible strains of −0.41% are possible in
Ni50Mn28.7Ga21.3 exposed to alternating magnetic fields along the [001] direction of the parent austenite phase
with no external restoring force.6, 7 This unexpected result suggests the presence of pinning sites or point defects
in the alloy which act as localized energy potentials that oppose twin boundary motion and provide an otherwise
nonexisting restoring force when the magnetic field is removed. The presence of pinning sites also explains the
reduced deformations relative to alloys capable of over 6% strain, in which twin boundary motion is largely
unimpeded. Richard et al.8 have shown that Ni-Mn-Ga alloys are extremely susceptible to impurities. Large,
incoherent sulfide and tantalum inclusions have been observed as well as titanium precipitaties. It was concluded
that for the large, high energy inclusions observed, dislocations would have to loop around the impurities in order
for twin boundary motion to occur. Since the observed Ti precipitates are much smaller, it was argued that the
mechanism of dislocation motion in the presence of Ti precipitates is most likely cutting through the particles,
as opposed to looping. By cutting, the twin boundaries form two new interfaces which provide a low-energy path
for dislocation movement as compared to looping around the particles. It was estimated that the small Ti-rich
precipitates have a strength of approximately 0.53 Ku, thus acting as pinning sites which could be overcome by
the application of sufficiently large magnetic fields. These small precipitates do not seem to impact the magnetic
field induced strain (MFIS) of the alloys studied as strains of 6% were observed.

This paper is focused on the development and implementation of a homogenized thermodynamic model for
twin boundary reorientation in the presence of pinning sites. As established by Malla et al.,6 low-energy pinning
sites do not contribute to the mechanism for reversible MFIS in the alloy investigated; during the first few field
cycles after manufacture of the alloy, the twin boundaries have passed through these sites and permanently
attached themselves to the higher-energy sites. Hence, the model is constructed on the assumption that twin
boundaries are normally pinned to point defects whose energy is greater than the anisotropy energy. The model
provides an additional component to the current description of the strain mechanism in Ni-Mn-Ga and lays the
groundwork for future work on implementation and control of solenoid Ni-Mn-Ga transducers like that shown in
Figure 2. Because solenoid transducers can be designed around a closed magnetic circuit, they can potentially
offer higher efficiency and enhanced frequency bandwidth relative to their electromagnet counterparts. These
enhanced properties can possibly offset the reduced deformations produced by the Ni-Mn-Ga element in this
configuration.
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2. STRAIN MECHANISMS

The strain mechanism for Ni-Mn-Ga is well established.9–11 As Ni-Mn-Ga cools from the high temperature
austenite phase to the low temperature martensite phase, a self-accommodating twinned structure results due
to the minimization of the strain energy generated from the mismatch between the cubic and tetragonal lattices.
A simplified two-dimensional representation of this twinned structure is shown in Figure 3. At zero field the
material consists of two perpendicular variants which are separated by a twin boundary as illustrated in panel
(a). Each variant consists of several distinct magnetic domains which are divided by 180◦ walls. The magnetic
domain volume fraction is denoted a. At small fields H, all of the magnetization vectors remain aligned with
the magnetically easy, short c-axis of each variant and the magnetic domains disappear as shown in panel (b).
Since we are interested in the behaviors at medium to large fields, a = 1 is assumed.

Let us consider the case, as in Ni50Mn28.7Ga21.3, in which the twin boundaries are pinned to inclusions -
modeled as springs and represented by black dots in Figure 3 - which have energies larger in magnitude than
the anisotropy energy of the sample. Alloys in the Ni-Mn-Ga system have large magnetic anisotropy energies
compared to the energy necessary to reorient the unit cells at the twin boundary. Thus, as the magnetization
vectors attempt to align with the applied magnetic field, the unit cells along the twin boundary will switch
orientation such that their c-axis is more closely aligned with the field. This results in the growth of favorable
variants at the expense of unfavorable ones through twin boundary motion and the overall axial contraction of
the bulk sample, as depicted in panel (c). The field does not provide enough energy to overcome the energy
barrier provided by the pinning sites, however. Instead, the twin boundaries loop around the pinning sites and
as they do work against the pinning energy, energy is dissipated. Saturation is achieved when the field energy is
large enough to overcome the anisotropy energy and the magnetic moments align with the field without changing
the orientation of the crystal, as shown in panel (d). When the field is removed (panel (e)) the anisotropy energy
returns the magnetic moments to the easy c-axis of the crystal and the pinning site energy provides a restoring
mechanism for the twin boundary, returning the sample to its original length and magnetization. This pinning
site theory provides an explanation for the smaller magnitude of strain possible from this sample and for the
reversibility of the strain when the magnetic field is cycled.
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Figure 3. Strain mechanism for Ni-Mn-Ga driven by a collinear stress and field pair in the presence of pinning sites.
(a) No field applied. (b) - (d) Sample contraction due to increasing field. (e) Return to original length when the field is
removed.

3. MODEL

The strain produced by Ni-Mn-Ga driven by collinear magnetic fields and stresses is quantified in two steps. In
the first, a thermodynamic approach is formulated which builds on a previous model for FSMAs proposed by
Kiefer and Lagoudas12 for conventional perpendicular magnetic fields and stresses. An additional term due to
internal orthogonal stresses is included in the Gibbs energy function which quantifies the restoring force found in
our experiments.7 The model quantifies the strain generated by single crystalline two-variant systems in which
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the pinning density and magnetic field are homogeneous throughout. These conditions prove too limiting in real
engineered materials. In the second step of model development, these limitations are addressed by considering
a homogenization procedure first proposed by Smith13 whereby the pinning strength and local magnetic fields
are stochastically distributed. This yields a formulation which characterizes the evolution of volume fractions in
Ni-Mn-Ga alloys driven by collinear magnetic fields and stresses in the presence of internal restoring forces.

Free Energy Formulation

For simplicity, we assume that the structure comprises two variant orientations described by the two-dimensional
representation shown in Figure 4. Variant 2 is that which is favored by an axially applied field in the y-direction
and has a volume fraction of x. Variant 1 is the transverse variant with magnetization vectors oriented orthogonal
to the applied field and a volume fraction of (1 − x).

The material described in Figure 4 can be treated as a mixture of variants. Making the assumption that the
system is isothermal and that the magnetic fields are large, the energy for this system is can be written as

G(σ,H, T ) = (1 − x)Gv1 + xGv2 + Gb (1)

where Gvi is the energy of the i-th variant and is given by

Gvi(σ,H, T = const) = ψvi − 1
2ρ

σ · Sviσ − µ0

ρ
Mvi · H (2)

where for the i-th variant, ψvi is the Helmholtz energy, σ is the externally applied stress, Svi is the mechanical
compliance, Mvi is the magnetization, H is the applied field, ρ is the density, and µ0 is the permeability of free
space.

The energy of the twin boundary stems from two sources. The first is the energy necessary to rotate a unit
cell, which can be expressed as work done to overcome a force. The second is the energy of the pinning sites,
which can be modeled as that of a mechanical spring. Thus the boundary energy term has the form

Gb =
{

c1x + k1x
2 ẋ > 0

c2x + k2x
2 ẋ < 0 (3)

where k is the effective spring constant of the pinning sites, c is the energy associated with cell reorientation and
the two branches of the function occur because the behavior of the material is not the same when the field is
increasing and variant 1 is growing as it is when the field is decreasing and variant 1 is shrinking.

Energy minimization, which is discussed in detail by Kiefer and Lagoudas,12 and Faidley et al.7, 14 are then
used to derive a simplified kernel model for the volume fraction as axial magnetic fields and external loads are
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Figure 4. Two-dimensional variants: notation and orientation.
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applied:

x =

⎧⎨
⎩

1
2ρk1

(εsσy + 1
2∆Syy σ2

y + µ0MsHy − ρc1 − Y x)
xs

1
2ρk2

(εsσy + 1
2∆Syy σ2

y + µ0MsHy − ρc2 + Y x)
(4)

for the respective cases {Ḣ > 0 and x < xs}, {x > xs} and {Ḣ < 0 and x < xs}. Where Ms is the saturation
magnetization, εs is the saturation strain, ∆Syy is the difference in the compliance of the two variants, and Y x

is the force necessary of the onset of variant reorientation. The strain is related to the volume fraction by

ε = xεth, (5)

with εth the maximum theoretical strain which would occur if a single boundary swept through the entire
material, thus producing a change in x from 0 to 1. Hence, for the case where the twin boundaries are restrained
by pinning sites, x will be limited to a much smaller range. Parameters that need to be identified in this model
include k1, k2, εs, ∆Syy, Ms, c1, c2, and Y x.

Stochastic Homogenization

Relation (4) provides a model for the strain generated by single crystal Ni-Mn-Ga with its twin boundaries
partially restrained by pinning sites, exposed to collinear magnetic fields and external stresses. The limitations
of the model and a sensitivity analysis relating model accuracy with parameter selection were discussed by
Faidley et al.7 The most critical sources of error in this model include:

(i) The sample is assumed to consist of only two variants with a single boundary. In reality, however,
Ni-Mn-Ga has many twin variants though only two distinct orientations. This implies that a sample will
have numerous twin boundaries and thus numerous pinning sites.

(ii) The pinning sites are assumed to be homogeneously distributed throughout the material and every
pinning site has the same energy. As discussed by Marioni,15 in a physical material the pinning energies
vary over a large range which translates into a variation of the slopes k1 and k2. The energy of each site
depends on how it interacts with the surrounding microstructure. Furthermore, the strength of each site
may depend on the direction of motion of the twin boundary, effectively providing a source of anisotropy.

(iii) The field is assumed to be uniform throughout the sample. However, due to short-range interactions
the magnetic field in Ni-Mn-Ga can be considered to behave locally in a fashion similar to the Weiss mean
field.16 Thus, the magnitude of the field at a given point in the material is not equal to the applied field
but rather, is given by an effective field which is dependent on the applied field and the magnetization,
He = H + Hi = H + αM . The mean field constant α varies from point to point in the material due to
differences in the lattice structure.

Limiting factors (i)-(iii) are addressed in this paper by considering stochastic homogenization in the sense
of Smith.13 The strain model for ferromagnetic shape memory materials presented in this article builds on
the Smith model for hysteresis of ferroic materials but differs from it in the following aspects. (i) Kernel (4),
which characterizes the martensitic volume fraction, was developed by considering the reorientation of twin
variants in martensitic structures and therefore reflects energy functionals which are different from those found
in polarization models. While certain commonality can be established between the proposed model and previous
polarization models—e.g., in regard to double-well energy potentials—the difference between kernels is rooted
in the physical differences between MFIS and magnetostriction, which were outlined by O’Handley.9 (ii) In
this paper the stochastic homogenization is performed relative to the interaction field Hi and the pinning energy
k2. This implies that suitable distributions to accommodate these effects can potentially be different than those
employed for interaction and coercive fields by Smith.17 Notwithstanding, for the sake of simplicity, in this
paper we attempt to exploit certain commonalities between the phenomenological behaviors observed in both
models. Namely, for the interaction field we consider a normal distribution centered at Hi = 0, as in the Smith
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model, and for the pinning sites we consider a log-normal distribution similar to that employed in17 for coercive
fields.

The model thus has the form

[x(H,σ)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Hi)ν2(k2) [x(H + Hi;σ, k2)] (t)dHidk2 (6)

where ν1 and ν2 are appropriately chosen distributions and x̄ is given by expression (4). Since the Weiss
interaction field is known to have both positive and negative values, one possible distribution is

ν1(Hi) = c1e
−H2

i /(2b2) (7)

which is a normal distribution centered at Hi = 0. The pinning site energies were incorporated into the energy
equations as effective mechanical springs. Thus, the values for k2 will never be negative. To meet this criterion
the distribution over k2 is chosen to be log-normal and is given by

ν2(k2) = c2e
−(ln(k2/k2)/2c)2

. (8)

4. EXPERIMENTS

A single crystal alloy with composition Ni50Mn28.7Ga21.3 was tested for strain response under a [001] sinusoidal
magnetic field with an amplitude of 700 kA/m and collinear compressive stresses of 0.0125 MPa, 0.13 MPa,
0.27 MPa, and 0.41 MPa. The single crystal ingot, prepared by the Bridgman method at Ames Laboratory,
was oriented along the [001] direction and a 0.248 in (0.630 cm) diameter, 0.883 in (2.243 cm) long rod was cut
from the ingot using electrical discharge machining (EDM). The experiments were conducted with a collinear
magnetic field-stress pair in the solenoid transducer shown in Figure 5, which consists of a water-cooled solenoid,
pickup coil, and magnetic steel components integrated to form a closed magnetic circuit. The solenoid consists
of 1350 turns of AWG 15 magnet wire and has a field rating of 167 Oe/A. Interspersed within the solenoid lies a
0.25 in-diameter copper coil which provides temperature control within ±1 oF by means of water flow at a rate
of up to 6.35 L/min. The solenoid is driven by two Techron 7790 4 kW amplifiers arranged in series with an
overall voltage gain of 60 and a maximum output current of 56 A at the nominal solenoid resistance of 3.7 Ω.
The magnetic induction is measured with a pickup coil made from AWG 33 insulated copper wire wound in two
layers around an aluminum spool. The strain is measured by means of a Lucas Shaevitz MHR-025 linear variable
differential transducer (LVDT) attached to the pushrod. Several Omega thermocouples are used to monitor the
system temperature through a 10-channel Omega signal conditioner. The system is controlled by a DataPhysics
data acquisition system interfaced through a PC.

Figure 5. Cross-section of the solenoid transducer
employed in this study.
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Figure 6. Data points used for identification of model
parameters.
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5. MODEL IMPLEMENTATION

The homogenized strain relation (6) was approximated through a composite four-point Gauss-Legendre quadra-
ture routine over twenty six intervals in both Hi and k2. Parameters ∆Syy, Ms and Y ξ were obtained from
published data.12 As shown in Figure 6, three data points provide the following information: (i) field H1 at
the strain turn around point, (ii) strain ε2 at the cross over point, (iii) field H3 at the onset of saturation, and
(iv) saturation strain for each loading case, εs(σp). Values and expressions for the various model parameters
are given in Table 1. Coefficients c1 and c2 in equation (4) were determined from experimental data following
techniques used by Kiefer and Lagoudas.12 Distribution parameters k2, b, and c and kernel parameter n were
determined through constrained optimization to minimize the total difference between the time trace strain data
and the output of the model for each of the loading conditions.

Table 1. Values for model coefficients.

Change in mechanical compliance between variants ∆Syy = 0
Saturation magnetization Ms = 622 kA/m
Onset of variant reorientation Y x = 0.2 × 106 N/m2

Theoretical maximum strain εth = -60,000 × 10−6

Density ρ = 1
Cell reorientation energy, variant 1 c1 = εs(σp)σp + 1

2
∆Syyσ2

p + µ0MsH1 − Y x J/m3

Cell reorientation energy, variant 2 c2 = εs(σp)σp + 1
2
∆Syyσ2

p + Y x − 2k2
ε2(σp)

εth
J/m3

First turnaround point H1 = 10,750 A/m
Coercive field distribution Hi,max = 350 kA/m, Hi,min = 0

Pinning energy distribution k2,max = 2.7 × 106, k2,min = 2 × 105, k2 = 1.23 × 106

Standard deviations b = c = 1 × 106
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Figure 7. Comparison of model results and experimental data for the σ = −0.0125 MPa loading condition using various
implementation methods: (a) using full distribution, (b) using method (i), (c) using method (ii), and (d) using method
(iii).

Proc. of SPIE Vol. 6170  617019-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



As an example, a calculated strain versus magnetic field curve is compared to data for the σ = −0.0125 MPa
loading condition in Figure 7(a). The calculated curve shows a non-physical blocky tip due to the inclusion of
kernels which fall into non-physical ranges of k1 and Hi. Figure 8 shows an example of a standard kernel given by
relation (4). In the range of parameters where a large k1 is combined with a large Hi, non-physical kernels with
a discontinuity at the maximum field will result. Three methods are considered for addressing this anomalous
behavior:

1. Discard the kernels that yield non-physical results among the set of kernels found through constrained
optimization and the full distributions (7)-(8), and calculate relation (6) based on the reduced set.

2. Truncate the distributions (7)-(8) such that the range of pinning energies and interaction fields that yield
non-physical behaviors are discarded, identify new parameters through constrained optimization, and cal-
culate relation (6) based on the truncated distributions.

3. Impose the restriction directly on the bounds employed in the constrained optimization algorithms, such
that all the resulting kernels are forced to yield physical results.

The results obtained with these three methods for the σ = −0.0125 MPa loading condition are shown in
Figure 7(b)-(d), while the associated model errors are quantified in Table 2. All three methods yield results
without the non-physical discontinuity at maximum field. As expected, the error is greatest for the first method
where the non-physical kernels are ignored without recalculating the parameters. The lowest error is achieved
using method 3, in which the constrained optimization routine includes the inequality

1
2ρk1,max

(
εsσy +

1
2
∆Syyσ2

y + µ0Ms(Hmax − Hi,max) − ρc1 − Y x

)
≥ p

εs

εth
(9)

which is derived from expression (4) and places limits on the distribution coefficients and therefore the shape
of the distributions. Parameter p is introduced to control the percentage of the kernels that are allowed to be
non-physical and thus define both the range of allowable distribution shapes and how much of each distribution
is truncated. The maximum values for k1 and Hi are found from expressions (7) and (8),

Hi,max =
√
−2(b)2 ln(.01) (10)

k1,max = nk2e
2c
√

− ln(.01). (11)

Testing shows that p = 0.1 achieves a suitable balance between allowable shape of the distributions and the
truncation of those distributions which best minimizes the error. An example of the truncated distributions that
result from this kernel reduction scheme are shown in Figure 9. Method 3 with p = 0.1 is used in the following
section to study the error for all four loading conditions.

6. RESULTS

Constrained optimization was used to determine the parameters for each of the four loading cases based on the
minimization of the total sum of the error between the modeled and measured time traces of the strain. These
parameters, shown in Table 3, were found to be within 10% of those necessary to minimize the mean error in

Table 2. Error associated with each of the methods used to eliminate the discontinuity at maximum field.
Original Method (i) Method (ii) Method (iii)

w/ p = 0.1

Σe 42,382 130,000 71,818 69,960
〈e〉 52.324 160.64 88.665 86.371

〈e〉 /εs(%) 1.3 3.9 2.2 2.1
max(e) 334.15 447.56 361.75 379.94
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Table 3. Constrained optimization results for parameters under various loads.

σ = −0.0125 MPa σ = −0.13 MPa σ = −0.27 MPa σ = −0.41 MPa Overall Optimal

n 1.165 1.1417 1.0894 1.0287 1.1207

k 1.0306 × 106 0.70091 × 106 0.87182 × 106 1.3363 × 106 0.75325 × 106

c 0.80761 1 1 0.99856 0.99901

b 0.010001 × 104 0.012166 × 104 0.01 × 104 0.01 × 104 0.010304 × 104
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Figure 10. Constrained optimization fits to data for various loads: (a) σy = −0.0125 MPa, (b) σy = −0.13 MPa, (c)
σy = −0.27 MPa, (d) σy = −0.41 MPa.
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Figure 11. Overall optimized simulation of strain compared to data for various loads: (a) σy = −0.0125 MPa, (b)
σy = −0.13 MPa, (c) σy = −0.27 MPa, (d) σy = −0.41 MPa.

all but two cases. A comparison of the data and the model for each of these loading cases is shown in Figure 10
where it is observed that the simulation closely predicts the data in all cases.

The last column in Table 3 represents the set of parameters found by minimization of the sum of the error
across all four loading cases. A comparison between the data and the model results generated with these
parameters is shown in Figure 11. Even though these simulations are generated from parameters optimized for
overall reduction of error, the predictions are remarkably similar to those obtained using parameters optimized
for individual cases in Figure 10. This is an indication that there are multiple minima in the four parameter
optimization problem and hence various sets of parameters may produce similarly low values of the error. Figure
11 shows that the optimized parameters allow good correlation with data for the lower three load conditions
but the model looses accuracy at the higher load case. This is because the error increase is much steeper for
overestimation than for underestimation.

A quantitative look at the error calculations for the constrained optimization for various loading conditions
is provided in Table 4. The error measurements calculated include the sum of the error which was the basis for
the constrained optimization, the mean of the error, the percent error of the mean with respect to the maximum
strain, and the maximum error. The error was calculated as the absolute value of the difference between the
data and model at each point. The diagonal of Table 4 indicates the smallest error for all loading values and
represents the cases in which the parameters were optimized for the same loading case as that being simulated,
which corresponds to the plots shown in Figure 10. The off-diagonal values indicate the error for the cases in
which the model parameters were optimized for a load other than the one used in the model. The errors are
much larger below the diagonal where parameters for a higher load are used to simulate a lower load than above
the diagonal where the reverse is true.

The rightmost column of Table 4 presents the sum of the errors for all four loading conditions for each set
of parameters. For all four individually optimized cases the sums of the errors show only an 8% deviation. The
bottom row of the table shows the model error when the set of parameters that minimizes the overall error is
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Table 4. Error comparison for parameters determined for various loading conditions.
Parameter Set Loading Conditions, σy Total

σp -0.0125 MPa -0.13 MPa -0.27 MPa -0.41 MPa

-0.0125 MPa
Σe 69,960 40,393 35,767 37,644 183,764
〈e〉 86.371 49.868 44.157 46.474

〈e〉 /εs(%) 2.1315 2.3049 2.4111 2.9475
max(e) 379.94 320.68 222.52 164.08

-0.13 MPa
Σe 81,910 35,180 31,667 36,508 185,265
〈e〉 101.12 43.432 39.095 45.072

〈e〉 /εs(%) 2.4957 2.0035 2.1312 2.8564
max(e) 272.85 319.42 233.88 175.12

-0.27 MPa
Σe 81,136 39,571 29,586 31,938 182,231
〈e〉 101.17 48.853 36.526 39.430

〈e〉 /εs(%) 2.4724 2.2569 1.9908 2.4976
max(e) 344.17 312.7 225.73 225.73

-0.41 MPa
Σe 83,168 51,065 37,442 26,615 198,290
〈e〉 102.68 63.043 46.224 32.858

〈e〉 /εs(%) 2.5351 2.9196 2.5252 2.0802
max(e) 455.00 406.91 251.42 189.65

Optimized
Σe 64,106 37,297 30,965 31,454 163,822
〈e〉 79.143 46.045 38.228 38.832

〈e〉 /εs(%) 1.9516 2.1255 2.0838 2.4590
max(e) 324.36 317.76 231.11 171.67

used. This total is 12.5% lower than the average sum for the individually optimized cases. In addition, the sum
of the error for each loading condition using these overall optimized parameters is within 20% of the minimum
sum of the error found for the individually optimized parameters. The maximum is 18% for the σy = −0.41 MPa
loading condition which corresponds to the observation made earlier with regard to the decrease in accuracy of the
simulations shown in Figure 11 for the higher loading condition. The small differences between the simulations
using the four-case optimization parameters and those using the individually optimized parameters highlights
the ability of the homogenized model to quantify—from a single set of parameters—the strain produced by Ni-
Mn-Ga for various loading conditions. With mean errors of under 3%, this modeling technique shows promise
for design and control applications involving solenoid-based Ni-Mn-Ga actuators.

7. CONCLUDING REMARKS

This paper presents a model for the strain produced by Ni-Mn-Ga alloys subjected to magnetic fields and
stresses aligned along the [001] axis of the parent austenitic phase. This is an unusual configuration which
was implemented in this paper through a solenoid transducer featuring a closed magnetic circuit. Due to the
reduced demagnetization effects and reduced eddy current losses of this architecture relative to electromagnet
designs, it can potentially lead to faster and more energy efficient Ni-Mn-Ga actuators and sensors. The paper
provides a thermodynamic framework which quantifies reversible and irreversible processes associated with the
rotation of twin variants. The switching between two variant orientations in the presence of magnetic fields
(Zeeman energy) and pinning sites (pinning energy) is formulated through a Gibbs energy functional which is
accurate for defect-free single crystal materials. Assumptions at this stage include that the alloy consists of
only two variants with pinning sites and magnetic fields homogeneously distributed throughout the material.
The presence of local interaction fields, and inhomogeneous pinning sites in real Ni-Mn-Ga alloys is addressed
through a stochastic homogenization procedure. Attributes of the model are illustrated through comparison of
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model results with experimental measurements collected from a Ni50Mn28.7Ga21.3 sample. Use of a constrained
optimization technique indicates the ability of the model to accurately simulate the strain output to within a
mean error of 3% for compressive loading between 0–0.41 MPa.
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