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ABSTRACT: This article presents a new modeling approach for the memory-dependent hys-
teresis phenomenon in a broad class of smart structures and systems. We propose a recursive
formulation to relate the minor hysteresis trajectories to their surrounding loops. More spe-
cifically, each internal (minor) trajectory targets its previous turning point and converges to its
neighboring loop with a tunable exponential rate. By applying the ‘curve alignment’ and the
‘wiping out’ properties at the turning points, we present a new strategy within the context of a
memory-based hysteresis modeling framework. A Galfenol-driven micropositioning actuator
and a piezoelectrically driven nanopositioning stage are used to experimentally validate the
model. Galfenol exhibits large butterfly-type nonlinearity with a small hysteresis effect, while
the piezoelectric actuator exhibits wide hysteresis loops. The model is able to precisely predict
the major and minor hysteresis loops in both the Galfenol and piezoelectric actuators,
and is expected to be effectively and conveniently applicable to general systems exhibiting
memory-dependent hysteresis.
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INTRODUCTION

S
OLID-STATE smart actuators such as piezoelectric,
magnetostrictive, electrostrictive, and shape

memory alloy actuators are extensively utilized in
many industrial and research-oriented devices. Their
unique feature of offering ultra-accurate motions
ranging from nanometer to millimeter enables many
advantageous processes such as imaging, metrology,
manipulation, manufacturing, and surgery. Hence,
there is an increasing demand for the precise implemen-
tation of such devices in various state-of-the-art
applications.
While these actuators deform at extremely small

scales, their precision is limited by intrinsic nonlineari-
ties such as hysteresis and creep. Hysteresis is an
input/output multi-loop phenomenon with the presence
of non-local memories (Krasnosel’skii and Pokrovskii,
1989; Bashash and Jalili, 2006). Future values of the
output depend not only on the instantaneous value
of the input but also on the material’s history, especially
the extremum points. If hysteresis is not carefully taken
into account, large positioning errors occur which

degrade the accuracy of the process. Hence, there is a
need for accurate modeling of hysteresis in order to
design efficient controllers.

There is a wide range of modeling frameworks
for hysteresis in the literature. The most widely used
classical models include the Preisach formulation
(Ping and Musa, 1997; Tan and Baras, 2004) and its sub-
class the Prandtl-Ishlinskii operators (Kuhnen
and Janocha, 2001; Bashash and Jalili, 2007c), the
Duhem model (Stepanenko and Su, 1998), and the
Maxwell slip model (Goldfarb and Celanovic, 1997).
Because most of these conventional methods have
rigid mathematical structures they tend to be complex
to implement and to lack accuracy in practice.
Moreover, they require a large number of parameters
to accurately describe the experimental data. Hence,
the system identification of such models is a significant
issue in applications.

Several modeling approaches have been recently
developed to provide better insight into the underlying
physics of the hysteresis phenomenon using an energy-
based approach (Smith et al., 2003a,b, 2006; Smith,
2005), and to improve the accuracy and the computa-
tional efficiency of modeling through a new memory-
based paradigm (Bashash and Jalili, 2006, 2007a,
2008). The latter framework employs a set of intelli-
gent hysteresis properties obtained from experimental
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observations on piezoelectric actuators, and develops a
set of mathematical logics to describe these observa-
tions. These properties include ‘targeting the turning
points,’ ‘curve alignment,’ and ‘wiping out’ effects at
the turning points. The improvement of the proposed
model over the classical methods has been shown in
(Bashash and Jalili, 2008) for piezoelectric actuators.
However, for different hysteretic systems such as mag-
netostrictive actuators, where the nonlinearities are
significant, inaccuracies are expected. This is due to
the mathematical structure of these models which
uses a mapping strategy to form the internal (minor)
hysteresis loops from the reference (major) curves.
Since the mapping strategy only satisfies the initial
and final point matching conditions for hysteresis seg-
ments, it does not necessarily force the inner loops to
stay within the surrounding loops. Hence, when a
system suffers from complex nonlinearities such as a
butterfly-type response, significant modeling error may
arise by the internal trajectories temporarily crossing
the outer loops.
In order to generalize the present framework to a

broader class of hysteretic systems, a more comprehen-
sive model needs to be developed. This model must not
only satisfy the initial and final point matching condition,
but also generate the internal trajectories point by point
to keep them bounded by their outer loops. To this end,
we propose a recursive memory-based modeling
approach that accurately describes various hysteretic
systems. The logic of this strategy is based on an expo-
nential convergence of the inner trajectories to their outer
curves when targeting the previous turning points. The
locations of the outer hysteresis loops are calculated
recursively for every inner trajectory until arrival at the
corresponding ascending or descending reference curve.
Although the number of calculations increases compared
to previously developed mapping-based strategies, the
number of memory units remains the same. More impor-
tantly, the model is accurate for a broad range of systems,
as long as the reference curves are accurately approxi-
mated with appropriate functions.
To demonstrate the effectiveness of the proposed

strategy, we consider two solid-state smart actuators, a
Galfenol-driven micropositioning actuator which exihi-
bits butterfly-type hysteresis loops with large nonlinea-
rities and a piezoelectric nanopositioning actuator which
exhibits wide hysteresis loops and an underlying
response which is nearly linear. In our investigation of
these systems, hysteresis reference curves are approxi-
mated by polynomial functions, and the model para-
meters are identified to match experimental data.
Results demonstrate accurate description of both
minor and major hysteresis loops using the proposed
recursive memory-based modeling framework for both
the Galfenol and the piezoelectric actuator which have
different hysteretic behaviors.

REVIEW OF MEMORY-BASED HYSTERESIS

MODELING

A set of memory-based properties has been intro-
duced in (Bashash and Jalili, 2006, 2007a, 2008) for
accurate prediction of multiple-path hysteresis loops in
piezoelectric materials. These properties, so-called ‘tar-
geting the turning points,’ ‘curve alignment,’ and ‘wiping
out’ effects at the turning points, pertain to trajectories
with constant-rate quasi-static inputs, where the effects
of system dynamics (e.g., inertia and damping) are neg-
ligible. In high-frequency operation, the hysteresis
model can be integrated with actuator dynamics for
effective positioning and control (Bashash and Jalili
2007b,c). In addition to the memory-based properties
of hysteresis, which are used for the prediction of
inner loops, reference curves play an important role in
the modeling accuracy.

A hysteresis trajectory starts moving on the ascending
reference curve, as schematically depicted in Figure 1.
This curve can be approximated by a monotonically
increasing continuous function. If the direction of
the input changes when it reaches the maximum input
threshold value, the trajectory breaks its path and moves
downward on the descending reference curve, which can
be approximated by another monotonically increasing
continuous function. All the descending trajectories
originating from the ascending reference curve converge
to a single point called the lower convergence point
(Figure 1).

Prediction of hysteresis response is performed by
tracking a set of target points recorded from the past
hysteresis trajectory. For the first ascending curve, the
upper threshold point is the target point. If the input
direction changes, the lower convergence point
becomes the target for the first descending trajectory.
For subsequent trajectories, the target points are the
internal turning points at which the direction of input
has changed. Consider for example a hysteresis trajec-
tory which starts on the ascending reference curve as
shown in Figure 2. The input direction changes at

Input

O
ut

pu
t

–20 –10 0 10 20 30 40 50 60 70 80

12

10

8

6

4

2

0

–2
Lower converging point

Descending reference
curve

Ascending reference
curve

Upper threshold point

Figure 1. Reference hysteresis curves.
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Point #2, and the trajectory targets the lower conver-
gence point. The direction of input changes again at
Point #3, and the trajectory targets the previous turn-
ing point, i.e., Point #2.
After reaching an internal turning point, the trajec-

tory slightly bends and aligns to the previously broken
curve associated with that turning point. This prop-
erty, named curve alignment, enables precise tracking
of the internal ascending or descending turning points,
and is necessary for the prediction of multi-loop hys-
teresis response. A number of memory units are
required to record the location of the target points
and the internal turning points. In Figure 2, the tra-
jectory that originats from Point #3 breaks its path
after arriving at Point #2, and aligns to Curve 1-2
(the curve that connects Point #1 to Point #2); then
it continues on Curve 1-2 towards its new target point,
which is the upper threshold point. The dashed lines
marked as ‘non-aligned trajectory’ demonstrate the
divergence of hysteresis trajectory from its correct
path, if the curve-alignment property is not applied
at the turning point.
After reaching an internal turning point, the most

recent closed loop associated with that turning point is
no longer useful for the prediction of the subsequent
hysteresis response. Therefore, the occupied memory
units for that loop can be cleared. In other words, the
memory units are wiped out when an internal hysteresis
loop is closed. This property enables the use of a small
number of memory units for predicting hysteresis loops
with a large number of input variations and turning
points.
Linear and nonlinear mapping strategies have been

proposed in earlier formulations of the memory-based
hysteresis modeling framework (Bashash and Jalili,
2006, 2008). Although these strategies are effective
when the nonlinearities are small compared to the hys-
teresis looping effect (e.g., in piezoelectric actuators,)
they lose accuracy when large nonlinearities are present
as in magnetostrictive actuators. New strategies are

required for precise modeling of hysteresis loops with
large nonlinearities. In the next section, a novel recursive
approach is proposed for generalizing the memory-
based hysteresis modeling framework for a broad class
of hysteretic systems.

RECURSIVE MEMORY-BASED HYSTERESIS

MODELING

In this section we propose a new approach for
modeling hysteresis in smart materials and systems.
We use a set of mathematical laws to adjust the con-
vergence rate of internal hysteresis trajectories to their
surrounding loops when they move toward target
points. As shown in Figure 2, when a trajectory departs
from a turning point, it gradually converges to its outer
trajectory until they meet at the target point. We
propose a recursive memory-based approach, to precisely
model multiple loop hysteresis trajectories by
controlling the convergence rate of internal hysteresis
trajectories to their outer curves through a tunable
exponential relation.

Figure 3 demonstrates a minor hysteresis loop (Ln,
where L stands for ‘‘Loop’’ and the index n represents
the loop number) inside of which another loop (Lnþ1) is
being formed. The objective is to derive a mathematical
expression for Lnþ1 based on its surrounding loop, Ln,
such that it converges to Ln as the input increases. For
the (nþ 1)-th ascending curve fAnþ1ðvÞ, starting from the
n-th lower turning point vLn ,x

L
n

� �
and targeting the n-th

upper turning point vUn ,x
U
n

� �
,

f Anþ1ðvÞ ¼ f An ðvÞ þ�f Anþ1ðvÞ, ð1Þ

where �f Anþ1ðvÞ is the distance of the (nþ 1)-th
ascending trajectory from its previous ascending curve.
Assuming exponential convergence, this distance can be
expressed as

�f Anþ1ðvÞ ¼ �nþ1 ekðv
U
n �vÞ � 1

� �
, ð2Þ

where k is a tunable constant parameter shaping the
hysteresis curve and anþ1 is a loop-varying parameter
calculated by substituting the initial point vLn , x

L
n

� �
into

Equations (1) and (2):

�nþ1 ¼
xLn � f An vLn

� �
ekðv

U
n �v

L
n Þ � 1

: ð3Þ

Figure 4 demonstrates the exponential convergence
of �f Anþ1ðvÞ to zero as the input increases from the
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lower turning point vLn to the upper target point, vUn .
Different values of k can result in different convergence
rates.
Substituting Equation (3) into Equations (1) and (2),

the following expression is obtained for the ascending
hysteresis trajectory between the n-th upper and lower
turning points:

f Anþ1ðvÞ ¼ f An ðvÞ þ xLn � f An vLn
� �� � ekðv

U
n �vÞ � 1

ekðv
U
n �v

L
n Þ � 1

( )
: ð4Þ

It is clear that both initial and target points are
satisfied in Equation (4), i.e., f Anþ1ðv

L
n Þ ¼ xLn and

f Anþ1 vUn
� �
¼ f An vUn

� �
¼ xUn . This is a recursive expression

for f Anþ1ðvÞ due to the presence of f An ðvÞ on the right
side of the equation. Hence, to calculate each point of
the hysteresis trajectory, all of the previous curves
must be recursively calculated until reaching the cor-
responding reference curve. Since all the turning
points are recorded in the memory unit, previous
curves can be calculated from the turning points

which have not been wiped out yet. Figure 5 depicts
a multi-loop hysteresis trajectory and highlights
the points needed for calculation of the present
point. A lower triangular matrix with its dimension
being equal to the number of inner loops must be
formed in every simulation step. These points can be
calculated from Equation (4) if all of the turning
points in the history of the response have been
recorded. As the number of minor loops increases,
more computations must be performed to predict the
hysteresis trajectories. Moreover, the precision of the
model depends on the accuracy of the reference
curves, which shape the entire hysteresis loops.
Sufficiently high-order polynomials or exponential
functions can ensure accurate approximation of refer-
ence curves in various hysteretic systems.

Once the hysteresis path from a turning to a target
point is determined, it can be generalized for the predic-
tion of a full hysteresis trajectory which may pass
through all of the target points. A full ascending
hysteresis path, starting from the n-th lower turning
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point and passing through all the target points until the
upper threshold point is given by:

xA
n0
ðvÞ ¼ f Anþ1ðvÞH v,vLn ,v

U
n

� �
þ
Xn
i¼1

f Ai ðvÞH v,vUi ,v
U
i�1

� �� �

¼ f An ðvÞ þ xLn � f An vLn
� �� � ekðv

U
n �vÞ � 1

ekðv
U
n �v

L
n Þ � 1

( )" #

�H v,vLn ,v
U
n

� �
þ
Xn
i¼1

f Ai�1ðvÞ þ xLi�1 � f Ai�1 vLi�1
� �� ��

�
ekðv

U
i�1
�vÞ � 1

ekðv
U
i�1
�vL

i�1
Þ � 1

( )
H v,vUi ,v

U
i�1

� �#
; ð5Þ

where xAn0ðvÞ denotes the predicted multiple-
segment hysteresis path, f A0 ðvÞ represents the ascending
reference curve, vU0 ,x

U
0

� �
is the upper threshold point,

and H represents the bilateral unit Heaviside function,

Hðx, a, bÞ ¼
1 a � x � b
0 x4 b or x5 a

�
: ð6Þ

Similarly, one can obtain the full-path prediction of
the (nþ 1)-th descending trajectory passing through all

the target points until arriving at the lower threshold
point,

xD
ðnþ1Þ0
ðvÞ ¼ f Dnþ1ðvÞH v,vLn ,v

U
nþ1

� �
þ
Xn
i¼1

f Ai ðvÞH v,vLi�1,v
L
i

� �� �

¼ f Dn ðvÞ þ xUnþ1� f Dn vUnþ1
� �� � ekðv

L
n�vÞ � 1

ekðv
L
n�v

U
nþ1
Þ � 1

( )" #

�H v,vLn ,v
U
nþ1

� �
þ
Xn
i¼1

f Di�1ðvÞ þ xUi � f Di�1 vUi
� �� ��

�
ekðv

L
i�1
�vÞ � 1

ekðv
L
i�1
�vU

i
Þ � 1

( )
H v,vLi�1,v

L
i

� �#
:

ð7Þ

Here we carry out a simulation to demonstrate the
configuration of hysteresis loops obtained from the
proposed framework. In the simulation, the reference
curves are polynomials, and the multiple-peak input
signal requires five memory units. Figure 6 demonstrates
the response for different values of shaping parameter k.
As k increases, inner loops converge faster to their
surrounding loops resulting in wider hysteresis
loops. Moreover, by different selection of k for the
ascending and the descending curves, one can build
an asymmetric hysteresis model (Figure 6(d)), which
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may be desirable in practice. For a real system the
parameter k cannot be larger than a limit that yields
non-monotone curves similar to those presented in
Figures 6(c) and (d).

EXPERIMENTAL ANALYSIS AND VALIDATION

In this section we investigate two hysteretic systems
for experimental validation of the proposed framework:
a Galfenol-driven micropositioning actuator and a
piezoelectric nanopositioning stage. Galfenol exhibits
large butterfly-type nonlinearity with little hysteresis,
whereas in the piezoelectric stage hysteresis dominates
the nonlinearity. Hence, the ability of the proposed
framework to model a range of nonlinear and hysteretic
systems is well examined.

Galfenol-driven Micropositioning Actuator

Magnetostriction (magnetically induced strain) and its
complementary effect, stress-induced magnetization,
originate from the coupling between inter-atomic spac-
ing and magnetic moment orientation (DeSimone and
James, 2002). Magnetostriction is thus a material prop-
erty, which does not degrade with time or repetition of
thermo-magneto-mechanical cycles. Magnetostrictive
materials have facilitated dynamic actuators and sensors
with robust operation, unlike ferroelectric materials, and
broad frequency bandwidth, unlike shape memory
materials.
Magnetostrictive Galfenol possesses key additional

advantages; unlike most active materials, Galfenol
is malleable and machinable (Kellogg et al., 2004)
and can be safely operated under simultaneous tension,
compression, bending, and shock loads. As a conse-
quence of the unique combination of metallurgical and
mechanical properties of Galfenol, this material can
enable smart load-carrying Galfenol devices and struc-
tures with innovative 3D geometries manufactured by
welding, extrusion, rolling, deposition, or machining.
Furthermore, the unprecedented control of anisotropies
through manufacturing and post-processing methods
made possible with Galfenol (Wun-Fogle et al., 2005)
can lead to innovative devices with fully coupled 3D
functionality (Wun-Fogle et al., 2006). Despite these
advantages, Galfenol does exhibit magnetic saturation,
magnetic hysteresis and magnetomechanical nonlineari-
ties, and accurate models describing the effect of
magnetic field on strain are necessary for device design
and control.
An experimental setup comprising a Galfenol-driven

micropositioning actuator is shown in Figure 7. A unim-
orph beam consisting of a Galfenol laminate bonded to
a brass laminate was placed in a magnetic circuit com-
posed of steel flux paths driven by a copper coil. The
Galfenol is research grade Fe81.6Ga18.4, which has been

stress-annealed in order to pre-align magnetic domains
perpendicular to the length of the beam thereby provid-
ing optimal magnetostriction (�200 ppm) along the
beam length. When the coil is energized, a magnetic
field causes the Galfenol to elongate while the brass
laminate causes it to bend by restricting its elongation
along the contact face. The coil is driven by an AE
Techron LVC 5050 linear amplifier operated in voltage
control mode. Current measurements are provided by
the amplifier at a gain of 20A/V and displacements
are measured by a linear variable differential trans-
former (LVDT) instrument. The LVDT instrument
comprises a Lucas Schaevitz MHR025 sensor and
ATA-101 amplifier. A SignalCalc ACE dynamic signal
analyzer from Data Physics Corporation simultaneously
controls the drive coil amplifier and acquires the dis-
placement and current measurements.

Major and nested minor loop tests were conducted
using ramp inputs with a rate of 6V/s and sampling
frequency of 40Hz. Closure of the minor loops suggests
that dynamic effects are negligible for this rate of input.
Figure 8 depicts the response of the actuator to the input
current signal with a triangular profile. As seen in
Figures 8(b) and (c), the response is nonlinear with a
butterfly-shaped configuration and the looping effect
due to magnetic hysteresis. From Figure 8(c), which
shows the hysteresis loops between the applied current
and the displacement, two important characteristics are
observed, which will be considered in the model: (i) the

LVDT

Galfenol

Magnetic
flux path Drive coil

Figure 7. Experimental setup for a Galfenol-driven micropositioning
actuator.
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hysteresis loops are symmetric with respect to the vertical
axis, and (ii) the center of the loops is located at the
origin. Therefore, the butterfly configuration can be
reduced to a single-sided hysteresis configuration with-
out the loss of generality and for the sake of simplicity.
Prior to applying the memory-based hysteresis model

to this system, we assess the performance of a more con-
venient average model. In the average model, a tenth-
order polynomial is averagely fitted to the ascending and
descending reference curves (Figure 9(a)), resulting in an
anhysteretic, non-linear model. Figure 9(b) depicts per-
formance of the average model, where a large error is
present because of neglecting the hysteresis effect.
In our application of the proposed memory-based

hysteresis modeling framework, the ascending and des-
cending curves are individually approximated through
two tenth-order polynomials. Then, the convergence

rates for the ascending and descending trajectories are
separately identified through a single-parameter tuning
procedure. Results are depicted in Figure 10. The model
is able to precisely capture both major (Figure 10(a))
and minor (Figure 10(c) and (d)) hysteresis loops, with
a small error trajectory (Figure 10(b)), having 0.84%
maximum and 0.22% RMS values.

Piezoelectrically driven Nanopositioning Actuator

Piezoelectric actuators are well known for offering
ultrafast and precise motions up to several hundreds of
microns with sub-nanometer resolution. They are widely
used in scanning probe microscopy for molecular and
atomic scale imaging and manipulation (Curtis et al.,
1997; Gonda et al., 1999), micro-robotics and microsur-
gery (Hesselbach et al., 1998; Akahori et al., 2005)
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photonics (Aoshima et al., 1992), and several other
applications. However, similar to other smart materials,
they exhibit a hysteretic response which highly degrades
their performance.

Here we consider a Physik Instrumente P-733.2CL
double-axis parallel piezo-flexure stage with high-resolu-
tion capacitive position sensors for another experimental
validation of the proposed hysteresis modeling strategy
(Figure 11). In our investigation, experimental data
interfacing is accomplished with a Physik Instrumente
E-500 chassis for the PZT amplifier and position servo-
controller along with a DS1103 dSPACE� data acquisi-
tion and controller board, and the motions of the stage
are measured by two built-in capacitive sensors with
sub-nanometer resolution.

Figure 12 shows the experimental results. A triangular
input voltage is applied to one of the stage axes
(Figure 12(a)), and its response is captured by the cor-
responding position sensor (Figure 12(b)). The resultant
hysteresis loops depicted in Figure 12(c) are wider

Figure 11. Physik Instrumente P-733.2CL double-axis piezo-flexural
nanopositioning actuator.
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compared to those of the Galfenol actuator; however,
their average can be approximated by a much lower
order polynomial. Figure 12(d) demonstrates that a
linear average model has a poor performance due to
hysteresis. Hence, the need for a precise hysteresis
model is clear for acquiring accurate positioning.
We adopt third-order polynomials to describe the

ascending and the descending reference curve in
application of the proposed recursive memory-based
hysteresis model to the nanopositioning stage. The
convergence rates for the ascending and the descending
trajectories are separately identified through trial and
error, and results are depicted in Figure 13. Achieving
a small error trajectory with 0.45% maximum and
0.13% RMS values, the proposed hysteresis modeling
approach demonstrates an effective implementation in
piezoelectric-driven systems.

CONCLUSIONS

In this paper we proposed a recursive mathematical
formulation for the memory-based hysteresis phenome-
non observed in a broad class of smart structures and
systems. For experimental validation, we investigated
two different systems: a Galfenol-driven microposition-
ing actuator with small hysteresis but large butterfly-
type nonlinearity, and a piezoelectric nanopositioning
stage with small nonlinearity and large hysteresis. Our
investigation demonstrated that significant improve-
ments can be achieved in modeling accuracy by using
this new hysteresis modeling strategy. The model pre-
cisely describes both major and minor hysteresis loops.
Unlike previously developed memory-based hysteresis
models, which are only applicable to piezoelectric
actuators, the proposed strategy can be applied to a

broader class of hysteretic systems with various
nonlinearities.
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