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ABSTRACT

This paper presents a model for NiMnGa transducers driven with collinear magnetic fields and stresses. Prior
work by the authors demonstrates the existence of reversible strains under the application of collinear mag-
netic fields and stresses oriented along the [001] crystallographic axis of a cylindrical rod of single-crystal
Ni50Mn28.7Ga21.3. Internal bias stresses from pinning sites in the material are believed to provide the restor-
ing force which allows for the reversibility of the strain. A constitutive model to describe the motion of twin
boundaries in the presence of energetically strong pinning sites is presented. The effective pinning strength is
represented by an internal bias stress oriented transversely. Stochastic homogenization is then used to account
for variability in the bias stresses throughout the material and inhomogeneity in the interaction field intensity.
The internal rod dynamics are modeled through force balancing with boundary conditions dictated by the con-
structive details of the transducer and mechanical load. The model is formulated in variational form, resulting
in a second-order temporal system with magnetic field induced strain as the driving mechanism. Model result
for unloaded conditions is compared with experimental measurements.

Keywords: Ferromagnetic shape memory alloys, Ni-Mn-Ga, magnetic transducers

1. INTRODUCTION

Much attention has been given to the development and understanding of ferromagnetic shape memory alloys
(FSMAs) in the nickel manganese gallium (NiMnGa) system. Large bidirectional strains of up to 10% are pro-
duced in these alloys by twin boundary motion as martensite variants rotate to align respectively parallel or
perpendicular to applied magnetic fields or stresses. Compared with other smart materials, for example piezoce-
ramics and magnetostrictive materials, NiMnGa can potentially achieve both high bandwidth and large strains
in response to magnetic fields. Piezoceramic and magnetostrictive materials have high response frequencies, but
they can produce only small strains on the order of 10−3. Shape memory alloys can produce very large strains
in excess of 8% in tension, but at the expense of slow response due to the restriction of thermal conduction.

In the Heusler alloy Ni2MnGa, cooling below the characteristic martensite start temperature Ms produces
a cubic to tetragonal transformation and a corresponding twin-variant structure. Over a certain compositional
range, a typical martensite microstructure consists of a mixture of three variants, each with tetragonal lattice
c×c×a (c/a=0.94), in which adjacent variants are separated by a boundary known as a twin plane. Large
magnetic field-induced strain (MFIS) results from the reorientation of favorable martensite variants through the
motion of twin boundaries. Either magnetic fields or stresses can be used to transform the material to a single
variant. Since both magnetic fields and compressive stresses favor alignment of the short c-axis of the tetragonal
unit cell, in actuator applications a fixed stress oriented perpendicular to the drive field is usually applied to
restore the twin variants and obtain reversible MFIS when the drive field is cycled. This is implemented by
placing a rectangular alloy in an electromagnet with the drive field applied along the [110] direction and the load
axis oriented along the [001] direction - both directions relative to the parent austenite phase.

We have established1 that large reversible strains of −0.41% are possible in single crystal Ni50Mn28.7Ga21.3

exposed to alternating magnetic fields along the [001] direction of the parent austenite phase and no external
restoring force. This result is significant because it enables a new class of solenoid-based NiMnGa transducers like
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that shown in Fig. 1b. This transducer architecture includes a path for flux return and is thus significantly more
compact, lightweight and energy efficient than conventional electromagnet devices (Fig. 1a). It is emphasized
that the underlying behavior cannot be explained by existing models for martensitic variant reorientation based
on the competing effects of the stress energy and Zeeman energy as the latter attempts to overcome the twin
boundary energy. This points to the existence of bias or residual stresses built in the alloy during the crystal
growth. The bias stresses are attributed to high-strength pinning sites or point defects in the alloy which act as
localized energy potentials that oppose twin boundary motion and provide an otherwise nonexisting restoring
force when the magnetic field is removed. The presence of pinning sites also explains the reduced deformations
relative to alloys capable of over 6% strain, in which twin boundary is largely unimpeded. Further experimental
details can be found in Malla et al.1

The effective design and control of solenoid-based NiMnGa transducers requires understanding of the mecha-
nisms that govern field-induced strains and quantification of the relationship between applied fields, strains and
stresses in the transducer. A previous thermodynamic constitutive model1–3 for NiMnGa driven by a collinear
field and stress without external restoring forces characterizes the MFIS in the presence of pinning sites. The
model employs a Gibbs energy function and corresponding energy minimization procedure to quantify twin
boundary motion in the presence of an orthogonal pair formed by a uniaxial magnetic field and internal bias
stresses associated with pinning sites. The model is formulated by considering the Zeeman, elastic and pinning
energies. This approach constitutes an extension of work by Kiefer and Lagoudas4 and Hirsinger and Lexcel-
lent.5 Although the constitutive model quantifies the local average strain for single crystal materials, it does
not account for the variability in the density and strength of the pinning sites throughout the material. This
variability is addressed in this paper by considering stochastic homogenization techniques that are constructed
on the assumption that local Weiss-type interaction fields and pinning energies are manifestations of underlying
distributions. This approach has been developed by Smith et al.6–9 for ferroelectric materials, ferromagnetic
materials and shape memory alloys.

In this paper, the constitutive model is modified to include an additional stress field associated with internal
bias stresses oriented radially in a cylindrical NiMnGa sample. While the resulting formulation characterizes
the MFIS, it does not account for the material dynamics as a NiMnGa driver element vibrates and does work
against an external mechanical load. As a first step to that end, a dynamic transducer model is formulated
by considering a NiMnGa sample connected to a spring mass damper. Force balancing yields a PDE system
which is expressed in weak or variational form and subsequently solved through a Galerkin discretization in
space followed by a finite-dimensional approximation of the resulting second-order temporal system. Input to
the system is the force produced by MFIS, and output is the deflection at the end of the NiMnGa sample. The
validity of the resulting transducer model is illustrated through comparison with experimental data.
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Figure 1. (a) Conventional electromagnet apparatus. (b) Solenoid transducer design and corresponding collinear field-
stress drive configuration.
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2. THEORY

2.1. Strain mechanism

The pinning sites that enable bidirectional MFIS without the need for external restoring forces in the marten-
site are assumed in this paper to manifest as residual stresses oriented in the radial direction of a cylindrical
Ni50Mn28.7Ga21.3 sample. A recent study10 has shown that Ni-Mn-Ga alloys are extremely susceptible to impu-
rities; sulfide and tantalum inclusions, and titanium-rich precipitates have been observed. It was assumed that
for the large, incoherent S and Ta inclusions observed, dislocations would have to loop around the impurities in
order for twin boundary motion to occur. Since the observed Ti precipitates are much smaller than the S and
Ta inclusions, it was argued that the mechanism of dislocation motion in the presence of Ti precipitates is most
likely cutting through the particles, as opposed to looping. By cutting, the dislocations form two new interfaces
which provide a low-energy path for dislocation movement as compared to looping around the particles. It was
estimated that the small Ti-rich precipitates have a strength of approximately 0.53 Ku, thus acting as pinning
sites which could be overcome by the application of sufficiently large magnetic fields. These small precipitates
do not seem to impact the MFIS of the alloys studied as strains of 6% were observed.

In this context, low-energy pinning sites are assumed to not contribute to the mechanism for reversible MFIS
in the alloy investigated; during the first few field cycles after manufacture of the alloy, the twin boundaries
have unattached from these sites and permanently attached to higher-energy sites. Hence, the twin boundaries
are normally pinned to point defects whose energy is greater than the anisotropy energy (Fig. 2). When a
small magnetic field is applied along the [001] direction, the twin boundaries attempt to displace according to
the standard mechanisms for twin variant reorientation, but the Zeeman energy that drives the motion of the
twin boundaries is insufficient to completely overcome the energy potential of the pinning sites. Instead, the
twin boundaries loop around the impurities and as they do work against the pinning sites, energy is dissipated.
Saturation is achieved when the Zeeman energy is large enough to overcome the anisotropy energy and the
magnetic moments become aligned with the field without changing the orientation of the crystal. When the
field is removed, the anisotropy energy returns the magnetic moments to the easy c-axis of the crystal and the
pinning site energy provides a restoring mechanism for the twin boundaries, returning the sample to its original
length and magnetization value. The pinning energy can thus be interpreted as an internal bias stress σx oriented
perpendicular to the [001] direction, as shown in Fig. 2. Due to the competing effect of the internal bias stress
and the external magnetic field, excessive pinning energy would render the alloy inactive as the available Zeeman
pressure would be insufficient to drive the motion of twin boundaries away from the pinning sites. This theory
provides an explanation not only for the reversibility of the strain in the absence of an externally applied stress
or field, but also the smaller magnitude of strain generated from the sample investigated.

2.2. Constitutive model

To model the behavior discussed in the previous section, the pinning site energy is incorporated in this paper by
assuming that pinning sites create an effective bias stress σx oriented along the radial direction of the rod. While
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Figure 2. Strain mechanism for FSMA under collinear stress and magnetic field.
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Faidley et al.3 employed a thermodynamic framework which is similar to the one presented here, they modeled
the pinning sites as springs whose potential energy follows a quadratic law on the volume fraction. This energy
was shown to have a form similar to the hardening function employed by Kiefer and Lagoudas4 on the basis of
shape memory arguments. The structure is represented by the simplified two-variant system shown in Fig. 3.
The energy for this system is given by

G(σ,H, T ) = (1 − ξ)GV 1 + ξGV 2 (1)

where GV i is the energy of the i-th variant. Variant 1 is the transverse variant with the easy magnetization
direction perpendicular to the field and a volume fraction of (1 − ξ); variant 2 is that which is favored by the
applied field and has a volume fraction of ξ.

In order to determine GV i, two assumptions are made: (i) the system is isothermal and (ii) the fields are
large enough to ensure that the effects of the magnetic domains can be ignored. The energy of each variant can
be written as

GV i(σ,H, T = const) = ψV i − 1
2ρ

σ : SV iσ − µ0

ρ
MV i · H (2)

where ψ is the Helmholtz energy, σ is the applied stress, S is the mechanical compliance, M is the magnetization,
H is the applied field, ρ is the density, and µ0 is the permeability of free space. The component σx in σ matrix
is considered as a linear function of volume fraction ξ, σx = kξ.

Substitution of (2) into (1) gives the energy for the system:

G(σ,H, T = const) = ψV 1 − 1
2ρ
SV1

yyσ
2
y − ξ

µ0

ρ
MsH −

{
b1ξ + a1ξ

2 ξ̇ > 0
b2ξ + a2ξ

2 ξ̇ < 0
(3)

where a = 1
2ρk

2SV1
11 and b = 1

ρkS
V1
12 . The two variants are assumed to have the same compliance; ∆ψ = 0 is also

zero since the Helmholtz energies of the two variants are identical. The free energy expression can be used to
obtain various thermodynamic quantities. In this case, the volume fraction is quantified by combining relation
(3) with the Clausius-Duhem version of the second law of thermodynamics4

πξ = εsσy − ρ
∂G

∂ξ
(4)

where πξ = ±Y ξ is the condition for the onset of twin variant motion and εs is the saturation strain. This yields
an expression for the detwinning force

±Y ξ = εsσy + µ0MsHy + ρ

{
b1 + 2a1ξ ξ̇ > 0
b2 + 2a2ξ ξ̇ < 0

. (5)
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Figure 3. Two-dimensional variants: notation and orientation.
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Equation (5) can be solved for the volume fraction

ξ =

{
1

2ρa1
(−εsσy − µ0MsHy + ρb1 + Y ξ) ξ̇ > 0

1
2ρa2

(−εsσy − µ0MsHy + ρb2 − Y ξ) ξ̇ < 0
. (6)

2.3. Stochastic homogenization

Equation (6) provides a model for the strain generated by single crystal NiMnGa when exposed to collinear
magnetic fields and external stresses. The accuracy of this model is limited due to the following factors: (i) The
sample is assumed to consist of only two variants with a single boundary. In reality, however, Ni-Mn-Ga has
many twin variants though only two distinct orientations. This implies that a sample will have numerous twin
boundaries and thus numerous pinning sites. (ii) The pinning sites and effective bias stress are assumed to be
homogeneously distributed throughout the material and every pinning site is assumed to have the same energy.
As discussed by Marioni,11 in a physical material the pinning energies vary over a large range which translates
into a variation of σx. (iii) The magnetic field is assumed to be uniform throughout the sample. However,
due to short-range interactions the magnetic field in Ni-Mn-Ga can be considered to behave locally in a fashion
similar to the Weiss mean field.12 Thus, the magnitude of the field at a given point in the material is not equal
to the applied field but rather, is given by an effective field which is dependent on the applied field and the
magnetization, He = H +Hi = H + αM . The mean field constant α varies from point to point in the material
due to differences in the lattice structure.

The above limitations are addressed by considering stochastic homogenization as proposed by Smith.7 This
approach has been proven effective in the modeling of hysteresis and constitutive nonlinearities in ferroelectric
compounds, ferromagnetic materials, and shape memory alloys. For implementation, the bias stress and the
interaction field are treated as statistical distributions, which results in a macroscopic model for the volume
fraction of the form

[ξ(H,σ)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Hi)ν2(a2)

[
ξ(H +Hi, σ, a2)

]
(t)dHida2 (7)

where ν1 and ν2 respectively denote the probability distribution functions for (Hi) and (a2), and ξ̄ is given by
(6). Since the interaction field can be both positive and negative, a normal distribution centered at will be an
appropriate choice

ν1(Hi) = c1e
−H2

i /(2b2) (8)

Since a2 has to be non-negative, a lognormal distribution is considered

ν2(a2) = c2e
−(ln(a2/a2)/2c)2 . (9)

The strain is related to the volume fraction by
ε = ξεth, (10)

with εth the maximum theoretical strain which would occur if a single boundary swept through the entire
material, thus producing a change in ξ from 0 to 1. Hence, for the case where the twin boundaries are restrained
by pinning sites, ξ will be limited to a much smaller range.

3. TRANSDUCER MODEL

3.1. Variational form

A one-dimensional representation of the transducer is shown in Fig. 4. The NiMnGa rod is assumed to be
homogeneous with length l, cross-section area A and longitudinal coordinate x. The density, Young’s modulus
and Kelvin-Voigt damping coefficient are respectively denoted by ρ, E and c. The end at x = 0 is considered
fixed and the other end is connected to a mass ml, a spring with stiffness kl and a damper with coefficient cl.
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Figure 4. (a) Representation of a NiMnGa transducer; (b) infinitesimal element considered for force analysis.

To quantify the dynamics of the rod, we consider an infinitesimal element [x, x+∆x] as depicted in Fig. 4(b).
The stress at a point σ(x, t) is given by:

σ(t, x) = E
∂u

∂x
(t, x) + c

∂2u

∂x∂t
(t, x) − Eε(t, x) (11)

where ε is the MFIS described by relation (6). When integrated across the rod, this yields the inplane resultant

N(t, x) =
∫

A

σ dA = σ(t, x)A = EA
∂u

∂x
(t, x) + cA

∂2u

∂x∂t
(t, x) − EAε(t, x). (12)

The balance of forces for the element can be expressed as

N(t, x+ ∆x) −N(t, x) =
∫ x+∆x

x

ρA
∂2u

∂t2
(t, x) dx (13)

which yields
∂N

∂x
(t, x) = ρA

∂2u

∂2t
(t, x) (14)

as a strong form of the model for the internal rod dynamics.

To obtain appropriate boundary conditions, it is first noted that the end at x = 0 satisfies the condition
u(t, 0) = 0. At the end x = L, force balance yields the second boundary condition

N(t, L) = −klu(t, L) − cl
∂u

∂x
(t, L) −ml

∂2u

∂x2
(t, L).

Thus the boundary conditions can be summarized as
{
u(t, 0) = 0
N(t, L) = −klu(t, L) − cl

∂u
∂x (t, L) −ml

∂2u
∂x2 (t, L)

. (15)

The initial conditions are {
u(0, x) = 0
∂u
∂x (0, x) = 0

. (16)

The combination of (14)-(16) yields the strong form of the model. To find a solution to this system of equa-
tions, we consider the weak form of the model, which is developed either via integration by parts or Hamiltonian
energy principles. In weak form, displacements and tests functions are differentiated only once compared with
the second derivatives required in the strong form. This reduces the smoothness requirements on the finite
element basis when constructing an approximation method.

To construct a weak form of the model, we consider the state u in the state space X = L2(0, L), and the space
of test functions is taken to be V = H1

L(0, L) ≡ {
φ ∈ H1(0, L) | φ(0) = 0

}
.13 Multiplication by test functions

followed by integration over the length of the rod yields the weak form of the model. For all φ ∈ V
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∫ L

0

ρA
∂2u

∂t2
φdx = −

∫ L

0

[
EA

∂u

∂x
(t, x) + cA

∂2u

∂x∂t
−EAε(t, x)

]
∂φ

∂x
dx−

[
klu(t, L) + cl

∂u

∂t
(t, L) +ml

∂2u

∂t2

]
. (17)

3.2. Numerical approximation
To approximate a solution to relation (17), we consider a Galerkin discretization followed by a finite difference
approximation of the resulting temporal system. To this end, the interval [0, L] is partitioned in N subintervals
of stepsize h = L/N . The spatial basis is comprised of linear splines or “hat functions”,14 defined at points
xi = i h (i = 0, 1, . . . , N) as follows

φi(x) = 1
h

⎧⎨
⎩

(x− xi−1), xi−1 ≤ x < xi

(xi+1 − x), xi ≤ x < xi+1

0, otherwise

φ

x x

i

x

(x)

i-1 i i+1

i = 1, . . . , N − 1

φi(x) = 1
h

{
(x− xN−1), xN−1 ≤ x ≤ xN

0, otherwise.

x xN

φN(x)

N-1

The displacements u(t, x) are approximated using the expansion

uN (t, x) =
N∑

j=1

uj(t)φj(x), (18)

defined in the subspace HN = span{φj}N
j=1, which through the construction of the basis functions satisfies the

respective boundary conditions in the transducer.
The approximate solution (18) is substituted into (17), along with test functions φ equal to the basis functions,

to form a second-order temporal vector system

M �̈u(t) + C �̇u(t) +K �u(t) = �F [ε(t)], (19)

where �u(t) = [u1(t), . . . , uN (t)]T .
The mass, damping and stiffness matrices have the form

[M ]ij =

⎧⎪⎪⎨
⎪⎪⎩

∫ L

0

ρAφi φj dx , i �= n and j �= n∫ L

0

ρAφi φj dx+mL , i = n and j = n

[C]ij =

⎧⎪⎪⎨
⎪⎪⎩

∫ L

0

cD Aφ′i φ
′
j dx , i �= n and j �= n∫ L

0

cD Aφ′i φ
′
j dx+mL , i = n and j = n

[K]ij =

⎧⎪⎪⎨
⎪⎪⎩

∫ L

0

E Aφ′i φ
′
j dx , i �= n and j �= n∫ L

0

E Aφ′i φ
′
j dx+mL , i = n and j = n
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while the excitation vector is defined by

�Fi[ε(t)] =
∫ L

0

E Aε(t, x)φ′i(x) dx.

The second-order system (19) can be expressed as a first-order system of the form

�̇y(t) = P �y(t) + �B(t)
�y(0) = �y0, (20)

where �y(t) = [�u(t), �̇u(t)]T is the generalized solution, and

P =
[

0 I
−M−1K −M−1C

]
, �B(t) =

[
0

−M−1 �F (t)

]
.

The first-order system (20) must be discretized in time for numerical implementation. To this end, we consider
a standard trapezoidal discretization with step size ∆t and iterations

�yj+1 = P �yj + 1
2 B

[
�B(tj) + �B(tj+1)

]
�y0 = �y(0),

where tj = j∆t and �yj approximates �y(tj). The matrices

P =
[
I − ∆t

2
P

]−1

, B = ∆t
[
I − ∆t

2
P

]−1

need only be created once when numerically or experimentally implementing the method. The accuracy of the
solutions is O(h2, (∆t)2).

4. EXPERIMENTS AND RESULTS

To test the accuracy of the model, experiments were run on a cylindrical rod of Ni50Mn28.7Ga21.3. The NiMnGa
sample was actuated in a sinusoidal field of amplitude 700 kA/m and frequency 0.1 Hz. A water-cooled solenoid
as described by Malla et al.1 was employed. To minimize errors caused by the inhomogeneity of the magnetic field
inside the transducer, the sample was placed in the middle of the transducer; a pick-up coil was used to monitor
the magnetic flux density. The field induced strain was measured with a linear variable displacement transducer
(LVDT). The system temperature was monitored with three thermocouples to ensure that the temperature of
the rod was effectively controlled within ±1oF .

For this preliminary study, only the unloaded strain vs. field behavior was chosen to test the validity of the
material model. In order to determine the volume fraction in (6), parameters for the constitutive model such as
a1, a2, b1, b2, Y

ξ,Ms have to be identified. Among those parameters, Ms can be measured directly and Y ξ can
be obtained by the optimization process. The remaining parameters can be found by fitting to the hysteresis
curve in the unloaded case, which can be found from Fig. 5 and the equations in Table 1.1, 2

Parameters for the external system include the loading mass ml, which can be measured directly, external
spring stiffness kl, and damping coefficient cl; for the NiMnGa rod, parameters to be determined are the density
ρ, elastic modulus of the rod E and the Kevin-Voigt damping coefficient c. To simulate the actual experimental
conditions, the spring stiffness kl in the external system is set to zero in the model, while the damping coefficient cl
associated with the friction between the transducer push rod and bearing is obtained through fit to experimental
data. The elastic modulus and the Kevin-Voigt damping coefficient are found from dynamic measurements.15

Model results for the unloaded case being considered are shown in Fig 6.
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Figure 5. Data points for parameters identification.

Table 1. Model parameters identified from experimental data.

ε = ξεth
a1 = 1.5a2

a2 = µ0MsH3εth

2(εs−ε2)

b1 = εsσy + µ0MsH1 − Y ξ

b2 = εsσy + Y ξ − 2a2
ε2
εth

5. CONCLUDING REMARKS

This paper has presented a model for NiMnGa transducers driven with collinear magnetic fields and stresses. The
model is constructed in three steps. In the first, a constitutive material model for a NiMnGa rod is formulated
by minimization of the Gibbs energy of a simplified, two-variant martensitic system with its boundaries pinned.
The effective pinning strength is represented by an internal bias stress oriented transversely. In the second
step, stochastic homogenization is used to account for variability in the bias stresses throughout the material
and inhomogeneity in the interaction field intensity. For the third and last model step, a dynamic transducer
model is formulated. The internal rod dynamics are modeled through force balancing with boundary conditions
dictated by the constructive details of the transducer and mechanical load. Specifically, force balancing is used
to construct a PDE system which is expressed in weak or variational form and subsequently solved through
a Galerkin discretization in space followed by a finite-dimensional approximation of the resulting second-order
temporal system. Input to the system is the force produced by MFIS, and output is the deflection at the end of
the NiMnGa sample. Future work will be focused on the analytical characterization of various loading conditions.
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Figure 6. Comparison of model results and experimental data.
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