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ABSTRACT

The growing interest in ferromagnetic shape-memory Ni-Mn-Ga for implemen-

tation in actuator applications originates from the fact that this class of materials

exhibits large strains when driven by a magnetic field. Large bidirectional strains

up to a theoretical 6% are produced in these materials by twin boundary motion as

martensite variants rotate to align respectively parallel or perpendicular to applied

magnetic fields or stresses. These strains represent a significant improvement over

piezoelectric and magnetostrictive materials. This thesis reports on experimental

measurements conducted on Ni-Mn-Ga cylindrical rods subjected to uniaxial stresses

and uniaxial magnetic fields which were applied collinearly along the magnetic easy

axis direction of the rods. To this end, a test apparatus was developed which consists

of a water-cooled solenoid actuator and a loading fixture. Despite the lack of a read-

ily recognizable mechanism for reversible deformations, bidirectional strains as large

as 6400 ppm (0.64%) were observed, or three times the saturation magnetostriction

of Terfenol-D. The thesis presents room-temperature data on magnetization hystere-

sis, strain versus field and peak strain versus stress curves collected over a range of

stresses between 0-65 MPa. From the latter set of curves, blocking force values are

estimated as those for which the strain is 1% of the maximum strain (strain at zero-

load). Additionally, the strain behavior under cyclic compressive stress at different

DC field levels is explored from which the change in Young’s modulus of elasticity is

ii



discussed. A concise literature review is also included which discusses some models on

martensitic variant rearrangement and the the subsequent development of magneti-

zation and magneto-strain equations. The results illustrate the sensitivity of material

behavior with respect to composition at different driving conditions and offer insight

on the choice of material compositions at which maximum actuation performance is

achieved.
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CHAPTER 1

INTRODUCTION

1.1 Background

Extremely large magnetic field induced strain of 6% have been measured in ferro-

magnetic shape memory alloys (FSMA’s) in the nickel-manganese-gallium (Ni2MnGa)

system. Such strain represents an order of magnitude improvement over piezoelectric

materials (0.1%) and magnetostrictive materials such as Terfenol-D (0.24%), and is

the largest among all existing active materials. Despite their ferromagnetic properties,

the strain generated by FSMA’s does not originate from Joule magnetostriction, that

is magnetic moment rotation, but is due to the reorientation of martensitic variants.

Indeed, cooling below the characteristic martensite start temperature Ms produces a

cubic to tetragonal transformation and a corresponding twin-variant structure. Over

a certain compositional range, the martensite structure is tetragonal with c/a=0.94,

thus the theoretical relative strain obtained from this structure is approximately 6%.

The high temperature austenite Heusler phase exists over wide compositional ranges,

centered on Ni2MnGa, over which the magnetic properties and martensite transfor-

mation temperature vary continuously. Furthermore, depending on the composition,
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several different martensite structures have been reported. These variations in proper-

ties have been compiled onto the compositional map shown in Fig. 1.1,[10] which plots

saturation magnetization, Curie temperature and martensite start temperatures. It

has been speculated, based on a minimum saturation magnetization of 60 emu/g and

martensite transformation temperatures above 300K, that compositions within the

shaded region would exhibit the largest magnetic-field induced strains. Experimen-

tally, alloys lying just to the right and above the shaded region have been found to

exhibit the largest magnetic field-induced strains [10].

Figure 1.1: Compositional map for Ni-Mn-Ga ferromagnetic shape memory alloys,
taken from Jin et al.[10]. The square symbols show the compositions examined in
this thesis.

Either magnetic fields or stresses can be used to bias FSMA’s toward one marten-

site variant or the other, which results in twin boundary motion and ensuing defor-

mations as variants rotate to align respectively parallel or perpendicular to the field
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or stress direction. Bidirectional deformations are obtained through field or stress

rotation, or more typically, by driving these materials with an alternating uniaxial

magnetic field oriented orthogonal to a fixed uniaxial stress as shown in Fig. 1.2(a).

The significance of Ni2MnGa for actuator applications lies in its broader bandwidth

compared to conventional thermally activated shape memory materials. However,

the orthogonal drive configuration required for bidirectional actuation dictates the

use of electromagnets (“C” cores) for application of the magnetic field, thus leading

to designs which are bulky, heavy and narrow band.

In this investigation, the response of alloys whose compositions are lower in Ga

and higher in Mn than those believed to exhibit largest field-induced strains is experi-

mentally studied and analyzed. More importantly, in the experiments presented here,

a uniaxial stress and uniaxial magnetic field were applied collinearly along the mag-

netic easy axis direction of the samples, contrary to the conventional perpendicular

arrangement, as illustrated in Fig. 1.2(b). Despite the lack of a readily recognizable

mechanism for bidirectional twin boundary motion, reversible strains as large as 6380

ppm (0.64%) are demonstrated. These reversible field-induced strains are too large to

result from Joule magnetostriction (typically only 250 ppm for these alloys) nor can

they be explained by the existing martensite variant reorientation models. Further-

more, contrary to the conventional processing practice of material training through

field cycling and thermal treatments, these large strains were observed in samples

tested as cast. The significance of the experimental data presented in this paper is

that a collinear drive configuration facilitates the use of solenoids for field actuation,

as opposed to electromagnets as is conventionally the case (Fig. 1.2(a)). Solenoids
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present several advantages over electromagnets including significantly reduced size

and weight as well as broader frequency bandwidth.

(a) (b)

Figure 1.2: (a) Electromagnet-based drive configuration. (b) Solenoid-based drive
configuration employed in the thesis.

Despite the small changes in composition between the alloys investigated here and

those showing the largest magnetic field-induced strains, significant and profound dif-

ferences are apparent between the two. It has been recently reported that the room

temperature structure of the martensite phase at higher Mn content is orthorhombic

(c/a=1.1) rather than tetragonal [19]. A second and perhaps more significant property

of the samples investigated here is that the shape memory martensite transformation

temperatures are nearly coincident with the ferromagnetic ordering temperature, sug-

gesting a coupled magneto-structural transformation which may be responsible for the

observed reversible strains. Coupled transitions, known to exist in rare-earth-silicon-

germanium compounds [19], result in extraordinary magnetic responses including
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large magnetostriction, where application of a magnetic field drives the structural

change from a paramagnetic austenite phase to a ferromagnetic martensite phase.

This structural change is fully reversible when the magnetic field is removed.

In order to gain a fundamental understanding and ultimately develop constitutive

models of the magnetoelastic and thermoelastic behavior exhibited by these alloys,

the dependence of the magnetic and physical properties on the composition and struc-

tural characteristics of the shape memory transformation must be elucidated. This

investigation represents the first step toward that end. Attention is focused on the

strain and magnetization behavior of alloys with varying parent material composition

centered on Ni49.56Mn29.59Ga20.85 under quasistatic fields of amplitude 8.1 kOe (650

kA/m). The ability of these alloys to produce mechanical work is evaluated through

strain measurements at constant stress for a range of compressive stresses between

0-65 MPa, in which the upper limit is high enough to reduce the magnetic-induced

strain to 1% of the free (unloaded) magnetic-induced strain. Dynamic experimental

results presented in [5] involving broadband frequency response behavior in the dc-

20 kHz range and elastic moduli calculations from resonant response under various

bias fields, suggest the presence of a ∆E effect similar to that observed in Terfenol-D

when Ni-Mn-Ga alloys are driven by a collinear magnetic field-stress pair. Further-

more, stiffness calculations shown in [5] suggest that solenoid-driven Ni-Mn-Ga alloys

could exhibit significantly higher stiffness than those previously measured employing

conventional electromagnet tests (30 GPa versus 7 GPa.)
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1.2 Overview of Smart Materials

Active or “smart” materials constitute a class of materials that can react with a

change in dimensional, electrical, elastic, magnetic, thermal or rheological properties

to external stimuli such as heat, electric or magnetic field, stress and light. In most

operating regimes, smart materials have the ability to recover the original shape and

properties when the external driving input is removed which makes them suitable

candidates for use in actuator and sensor applications. Smart materials can be broadly

categorized into several classes based on the type of driving input and the phenomenon

by which the response is produced: piezoelectric, electrostrictive, magnetostrictive,

electrorheological and magnetorheological, shape memory, and ferromagnetic shape

memory.

Piezoelectric materials are one of the most popular active materials. These materi-

als produce mechanical strain (0.1%) [7] when voltage is applied across them (converse

effect) and produce electric charge with the application of an applied surface strain (di-

rect effect). This bidirectional energy transduction makes these materials attractive

for actuation as well as sensing. Electrostrictive materials are similar to piezoelectric

materials with slightly better strain capability but very sensitive to temperature. Un-

like piezoelectric materials in which the strain and polarization are linearly related,

electrostrictives generate strains which are proportional to the square of the polariza-

tion [2]. Electrorheological and magnetorheological fluids exhibit reversible changes

in rheological properties (apparent viscosity, plasticity and elasticity) when respec-

tively subjected to an electric or magnetic field. Upon application of either an electric

or magnetic field, the micron sized particles become polarized and align themselves

with the applied field resulting in a chain-like structure which limits the movement
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of the fluid. These fluids have been extensively used in damping applications, and

more recently, for actuation. Magnetostrictive materials generate strains as large as

0.24% [3] due to the alignment of magnetic domains along the direction of the applied

magnetic field. Because magnetostriction is a material property, it does not degrade

over time as can be the case with piezoelectric and electrostrictive materials which

tend to depolarize when exposed to cyclic stresses or temperature changes.

Because FSMA’s exhibit austenite-martensite phase transitions like shape mem-

ory alloys (SMA’s), a detailed description of SMA’s is provided next. A thorough

discussion of FSMA’s is provided in Section 1.4.

Shape memory alloys (SMA’s) produce large reversible strains when subjected to

heat and stress. These alloys can return to their original shape when the driving input

is removed, thus behaving as though there were a “memory” of their original state.

These materials undergo a phase transformation from a high temperature austenitic

state to a low temperature martensitic state with the application of stress at which

state the deformations occur. The materials then recover the original undeformed

shape through the application of heat. The mechanism by which these materials

strain is twin-boundary motion, as illustrated in Fig. 1.3.

The first discovery of shape memory effect was made in 1932 with gold-cadmium

alloys and later with copper-zinc (brass) alloys in 1938. The interest in shape memory

alloys increased tremendously after the discovery of a series of nickel titanium alloys

by researchers at the Naval Ordinance Laboratory. Nitinol (Nickel Titanium-Naval

OrdinanceLaboratory) is one of the first shape memory alloys subjected to commer-

cial applications. As aforementioned, heat and stress were subjected to bring out the
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Figure 1.3: Phase transformation schematic.

shape memory effect in Nitinol. However, the fact that heating is carried out inter-

nally (electrically) which poses the problem of finite time required for shape change

response, Nitinol could not find a wide use in applications demanding fast response

and efficient driving methods.

Figure 1.4: Typical loading and unloading behavior of superelastic NiTi.
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All shape memory alloys exhibit appreciable hysteresis when subjected to a com-

pressive stress or heat. There are four characteristic temperatures that play a role

in the explanation of the austenite-martensite phase transformation through applica-

tion of heat and thus, in the shape memory effect. These temperatures are illustrated

in Fig. 1.5 for a typical shape memory alloy. The figure shows the volume fraction

of martensite structure formed with the decrease in temperature. The austenite is

the high temperature phase and the martensite is the low temperature phase. Upon

heating the material in the martensite state, the austenite phase starts at As and is

completed at temperature Af . Similarly, cooling of the pure-austenite material leads

to the start Ms and subsequent completion of the transformation at temperature Mf .

It is noted that the transformation process exhibits significant hysteresis.

Figure 1.5: Phase transformation schematic showing the martensite volume fraction.

Fig. 1.6(a) shows the curve for strain produced against compressive stress for a

shape memory alloy below Mf , i.e., when the material is completely in the martensitic
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phase. There are two elastic regions, but a low elastic modulus region or a detwinning

region exists in between, where large strain is produced. In this region, the material

becomes very soft. The shape memory effect is concerned with the detwinning region

where large reversible strains are possible when a suitable stress-field pair is employed.

(a) (b)

Figure 1.6: (a) Stress vs strain behavior in the martensite phase, below Mf and (b)
stress vs strain behavior in the austenite phase, above Af .

The martensite state can also exist at a temperature beyond Af when enough

stress is applied. Fig. 1.6(b) shows the nature of the strain produced through the

application of compressive stress at a temperature above Af . It is seen that a region

of low modulus of elasticity exists, similar to the detwinning region in the martensite

phase stress-strain curve. This region is known as the stress-induced martensite

region, and in this region the material exhibits a martensitic behavior. This effect

facilitates the use of SMA wires in applications in which the wires deform when stress

is applied, that is they become soft in the stress induced martensite region, and spring
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back to the original shape when heated, in which the material returns to the stiff high

temperature austenite phase.

Figure 1.7: Comparison of the stress vs strain curve for the austenite and martensite
phases of a typical shape memory alloy.

1.3 Crystal Structure

Crystalline materials are made up of many atoms that are positioned in specific

arrays that define a unique crystal structure. The atomic arrays in crystals are de-

scribed with respect to a three dimensional net of straight lines the intersections of

which are points of a space lattice, i.e., a geometrical abstraction which is useful as a

reference in describing and correlating symmetry of physical crystals.

An important characteristic of a space lattice is that every point has identical

surroundings which means the grouping of lattice points about any given point is

identical to the grouping about any other point in the lattice. As illustrated in

11



Fig. 1.8 and Table 1.1, there are fourteen space lattices or fourteen different ways in

which points can be configured in space so that each point has identical surroundings.

The unit cell is used to specify a given arrangement of points in a space lattice with

a set of coordinate axes chosen to have an origin at one of the lattice points.

System Parameters Interaxial angles
Triclinic a 6= b 6= c α 6= β 6= γ
Monoclinic a 6= b 6= c α = γ = 90◦ 6= β
Orthorhombic a 6= b 6= c α = β = γ = 90◦

Tetragonal a = b 6= c α = β = γ = 90◦

Cubic a = b = c α = β = γ = 90◦

Hexagonal a = b 6= c α = β = 90◦, γ = 120◦
Rhombohedral a = b = c α = β = γ 6= 90◦

Table 1.1: The crystal systems [20].

The crystal system is defined using indices for planes and directions. Miller indices

are used to define planes and a specific method exists for obtaining such indices. In-

dices for planes are put in round brackets and a family of equivalent planes is denoted

by placing the indices within braces. For example, the set of cube faces can be rep-

resented as {100} which represents the family (100), (010), (001), (100), (010), (001),

in which the bar above an index number represents the negative sign. The direction

indices are denoted by placing them in square brackets and the family of such equiv-

alent directions is represented by putting the indices in carets. Fig. 1.9 summarizes

the steps to find the Miller indices for planes and the indices for directions.
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Figure 1.8: The fourteen Bravais lattices represented by their unit cells [20].
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Figure 1.9: Summary for finding the indices for lattice planes and directions [20].

1.3.1 Magnetic Anisotropy

Materials can be anisotropic with respect to their electrical, magnetic, ther-

mal, elastic or other properties, and most practical materials exhibit some degree

of anisotropy. Now we focus the attention on magnetic anisotropy as it plays a fun-

damental role in the explanation of FSMA behavior. Every space lattice has a set of

easy axes along which the magnetization is favored. This means that there are certain

directions in the space lattice that are defined with respect to some coordinate axis

origin, along which the magnetic domains become aligned when a magnetic field is ap-

plied. When a magnetic field is applied in a certain direction, the magnetic moments

align along the easy axes that are closest to the direction of the applied magnetic

field. The other directions along which the magnetic moments do not become aligned
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as easily are known as the hard axes. The magnetization reaches its saturation value

in a comparatively lower applied field along an easy axis as compared to the hard

axis. This type of preference for certain axes to get magnetized more easily than the

others is termed as the magnetic anisotropy which is equivalent to saying that the

material does not have the same magnetic properties in all the different directions.

From Fig. 1.10(a)-(b), it is seen that 〈111〉 and 〈100〉 respectively are easy axes

of magnetization of nickel and iron because the magnetization reaches the saturation

value at lower magnetic field values for these axes. The energy associated with the

magnetization along definite axes is known as the magnetic anisotropic energy. The

magnetic anisotropy energy can be expressed in terms of the anisotropic constant

K. A first approximation in writing the one-constant anisotropy equation for cubic

(a) (b)

Figure 1.10: (a) Magnetization curves for nickel along the three axes 〈100〉, 〈110〉,
〈111〉. (b) Magnetization curves for iron along the three axes 〈100〉, 〈110〉, 〈111〉.
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anisotropy can be expressed as

Ea = K1(cos2 θ1 cos2 θ2 + cos2 θ2 cos2 θ3 + cos3 θ3

where θ1, θ2, θ3 are the angles which the magnetization makes relative to the three

crystal axes.

1.4 Ferromagnetic Shape Memory Ni-Mn-Ga

The problem of slow thermally-induced phase transformation response exhibited

by the nickel-titanium alloys has been addressed with the discovery of ferromagnetic

shape memory alloys such as iron-palladium (Fe-Pd) and nickel-manganese-gallium

(Ni-Mn-Ga). These compounds exhibit large strains as large as 6% [15]when ac-

tivated by a magnetic field. The advantage of being driven by a magnetic field is

that the response time is substantially reduced, thus enabling higher bandwidths

than those possible through thermally-activated phase transformations. Ferromag-

netic shape memory alloys have the potential to deform in different modes depending

on the configuration of the magnetic field-stress pair. Although currently the empha-

sis is placed on the field-induced strain along the longitudinal axis of slender strips

or rods, Fig. 1.11 shows the different modes of material deformation that are possible

for these materials.

Ferromagnetic shape memory Ni2MnGa has a cubic Heusler structure in the high

temperature austenitic phase, as shown in Fig. 1.12(a). Upon cooling through the

the martensite start temperature Ms, this alloy undergoes a cubic-to-tetragonal shape

change as shown in Fig. 1.12(b). In Fig. 1.12, the Ga atoms are positioned at the

corners and at the center of each face of the cubic lattice, the Mn atoms are located
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Figure 1.11: Possible forms of FSMA deformation.

at the midpoint of each edge and the Ni atoms are present at the body center of

each of the four sub-cubic structures. At the martensite start temperature, the cubic

lattice structure of the austenite phase contracts along the [100] direction and expands

along the other two, as shown in Fig. 1.13. Cubic symmetry permits the formation

of three tetragonal variants depending on which axis contracts. A typical martensitic

microstructure consists of a mixture of these three variants in which two adjacent

variants meet at one of the two possible well-defined interfaces called twin planes.

While each of these variants has a unique orientation defined by its c-axis, which

is the axis of symmetry, the martensitic phase is essentially a polycrystalline state

composed of variable volume fractions of the three variants.

The ferromagnetic shape memory effect refers to either the reversible field-induced

austenite-martensite transformation (as observed in Nitinol), or the rearrangement

of martensitic variants by an applied field leading to an overall change of shape. As

mentioned in Section 1.2, the Ni-Mn-Ga shape memory alloys are driven by magnetic

fields at a martensitic state such that the latter phenomenon is favored. Each variant

has a strong uniaxial magnetic anisotropy in which the easy axis is aligned with the
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(a) (b)

Figure 1.12: (a) Cubic Heusler structure of Ni2MnGa in austenitic state and (b)
Tetragonal martensitic variant structure.

c-axis and the easy axes of the neighboring twin bands are nearly perpendicular to

each other. Therefore, an orthogonal magnetic field pair or an orthogonal magnetic

field-stress pair can be used to bias the material toward one or another martensitic

variant leading to large bidirectional deformations.

Fig. 1.14 shows the schematic of the field-induced rearrangement of the martensitic

variants due to the action of a magnetic field. Before the application of the field, the

variants have different magnetization directions perpendicular to one another. After

the application of the field, the variant with initial magnetization direction parallel to

the applied field direction grows at the expense of the other variant. This phenomenon

is further illustrated in Fig. 2.14. The bar on the left represents a sample in zero field

consisting entirely of single martensite twin variant (which may be formed through the

application of an orthogonal compressive stress), with magnetization axis along the
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Figure 1.13: Tetragonal variant structures and associated magnetizations.

short white line and described by the grey region. As a transverse magnetic field H1

is applied to the sample (middle), orthogonal twin variants with their magnetization

axis in a preferential direction to H1 start to appear, described by the dark colored

region. When the field is further increased to H2 (right), the preferentially oriented

twins (dark) continue to grow at the expense of other twin variants (grey), resulting

in an extension along the length of the material since the a > c .

1.5 Magnetism Fundamentals

The experimental setup and measurement techniques used in the course of the

research heavily rely on the fundamentals of magnetism and ferromagnetic materials.

The following sections will provide a basic review of the foundations of magnetism

with relevance to the idea developed in the thesis.
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Figure 1.14: Schematic showing the increase of the favorable variant due to applied
magnetic field.

Figure 1.15: Increase of the favorable variant due to applied magnetic field and the
change in the associated crystal orientation.
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1.5.1 Magnetic Field

A magnetic field is produced by an electrical charge in motion. For this reason,

current and magnetic field are closely related. The generation of a magnetic field

in a volume of space changes the energy in the volume giving rise to an energy

gradient which produces a force. The torque on a compass needle is one the most

familiar effects of the force due to a magnetic field. Magnetic field is also produced by

permanent magnets. The magnetic field produced by a permanent magnet is not due

to electrical current but due to the permanent magnetization caused by the orbital

motion and spin of the electrons in the magnet.

The magnetic field is a vector quantity which means it has a defined direction in

addition to a magnitude. The direction of the magnetic field is shown in Fig. 1.16 for

different wire arrangements and for a permanent magnet. The direction of a magnetic

field is customarily defined by the right hand rule in which the thumb indicates the

direction of current and the direction of the curl of the rest of the fingers gives the

direction of the magnetic field.

1.5.2 Magnetic Field Intensity

The Biot-Savart law makes it possible to calculate the magnetic field intensity at

a point generated by an electric field,

d ~H =
1

4πr2
id~l × ~u

where i is the current flowing in elemental length d~l of a conductor, r is the radial

distance, ~u is a unit vector along the radial direction towards the point where the

field intensity is being calculated and ~H is the contribution to the magnetic field at

a distance r to the current element i~l.
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Figure 1.16: Magnetic field lines in a (a) straight conductor (b) singular circular loop
(c) solenoid (d) permanent magnet [4].
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Figure 1.17: Magnetic field generated by a single circular coil showing the application
of the Biot-Savart law [4].

The Biot-Savart law or equivalently, the Ampère law can be used to calculate the

field intensities produced by coils in transducers as a part of a closed magnetic circuit.

Fig. 1.17 shows the application of the Bio-Savart law to calculate the field intensity

at a point on the axis of a circular current-carrying coil.

Magnetic field due to a thin solenoid of finite length

The magnetic field at a distance x from the center of a thin solenoid of finite

length L, number of windings N , diameter D and carrying a current i is given by

H =
Ni

L

[
(L+ 2x)

2 [D2 + (L+ 2x)2]1/2
+

(L− 2x)

2 [D2 + (L− 2x)2]1/2

]

At the center of the solenoid x=0 and hence,

H =
Ni

L

[
L

[L2 +D2]1/2

]
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For an infinitely long solenoid, L� D and [L2 +D2]
1/2

= L. So,

H =
Ni

L
= ni

The fields generated by solenoids are dipole fields.

Magnetic field due to a thick solenoid of finite length

Thick solenoid coils of short length and greater number of turns are used in ac-

tuators to produce high field strength. Thick solenoids are used in applications that

require higher field strength with lower current flowing through the coils. In the case

of thick solenoids, the inner and outer radii are distinct and , therefore, the calculation

of the magnetic field is not as straightforward as for thin ones.

If L be the length of the solenoid, r1 the radius of the inner windings and r2 the

radius of the outer windings, then two parameters α and β can be defined describing

the geometrical properties of the solenoid.

α =
r2
r1

(1.1)

β =
L

2r1
(1.2)

The field generated by such a thick solenoid is then a function of α, β and the

coil current i. The magnetic field intensity at the center of the solenoid was given by

Montgomery [14],

Ho = F (α, β)f(i, r1, r1) (1.3)

where F (α, β) and f(i, r1, r1) are known as the field factor and the current factor and

are given by

F (α, β) = β [arcsinh(α/β)− arcsinh(1/β)] (1.4)

f(i, r1, r1) =
Ni

L

r1
r2 − r1

(1.5)
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The expression for the magnetic field can also be written in a slightly different

but equivalent form as

Ho =
Ni

r1

F (α, β)

2β(α− 1)

All of the above equations for the magnetic field are very general and can be shown

to simplify to a more familiar expression in the limiting case r1=r2 when

Ho = Ni
1

(4r2 + L2)1/2

so that when L→0, Ho→Ni/2r and as L→∞, Ho→Ni/2L.

1.5.3 Magnetic Induction and Magnetic Flux

Magnetic induction or magnetic flux density ~B is a vector quantity that signifies

the response of a medium to the applied magnetic field ~H. All media respond to

a magnetic field with some induction. This response can be quantified with the

introduction of a quantity known as permeability µ which is dependant on the type

of medium. Hence, one of the most used relation in magnetism follows,

~B = µ ~H (1.6)

However, permeability is not a constant quantity in most ferromagnetic media

but a multi-valued entity dependant on the intensity of the field as well as on stress

and temperature regimes. Therefore, a similar quantity known as the differential

permeability is more often used for calculation purposes which is given by

µ
′
=
dB

dH
(1.7)

The permeability of any medium is expressed in terms of the permeability of free

space µo which has a value of 4π×10−7H/m. Hence, the relative permeability is given
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by

µr =
µ

µo

(1.8)

The magnetic flux density can also be defined as the magnetic flux ~φ passing

through a unit area of the medium and the magnetic flux crossing a differential area

can be defined by

~φ =
∫

S

~BdS

Since magnetic induction is also the flux density, it can be defined by the following

relation,

B =
φ

A
(1.9)

where A is the cross sectional area of the medium through which the magnetic flux

lines are passing.

1.5.4 Electromagnetic Induction

Electromagnetic induction is the phenomenon by which electromotive force is in-

duced when the magnetic flux linking an electrical circuit changes. Faraday and Lenz

were the early two investigators of this effect and there are two laws of electromagnetic

induction as a consequence of their work. Faraday showed that the voltage induced

in an electrical circuit is proportional to the rate of change of magnetic flux linking

the circuit. Lenz’s law states that the induced voltage is in a direction which opposes

the change of flux producing it.

The two fundamental laws of electromagnetic induction allow the calculation of

the magnetic induction in a medium. The induced e.m.f. due a changing flux in a

coil is given as

V = −N dφ

dt
(1.10)
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where N is the number of turns of the coil. From equations (1.9) and (1.10), the

following result follows

V = −NAdB
dt

which can be written to get the more useful relation

B = − 1

NA

∫
V dt (1.11)

This is the general equation used for measuring the magnetic flux density of a

medium due to the change in magnetic flux passing through it and forms the basis

for stationary sensing coil measurements for magnetic induction.

1.5.5 Magnetic Dipole and Magnetic Moment

In magnetism, magnetic dipole is equivalent to electric dipole in electricity. Mag-

netic dipole generates a magnetic dipole moment in a current loop of area A carrying

current i which is given by m = iA. The torque on a magnetic dipole of moment m

in a magnetic induction B is given by,

~τ = ~m× ~B

and in free space the above equation reduces to,

~τ = µo ~m× ~H

This means that the magnetic induction ~B tries to align the dipole so that the

magnetic moment ~m lies parallel to the induction or alternatively, it can be considered

that ~B tries to align the current loop so that the field produced by the current loop

is parallel to it. The energy of the dipole moment ~m in the presence of magnetic
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induction ~B assuming no frictional losses will be,

E = −~m · ~B

which gives the following result in free space

~τ = µo ~m× ~H

The magnetic dipole moment can be thought of as a moment created due to two

hypothetical magnetic poles of dipole strength p that are separated by a distance l

and is expressed as,

~m = pl

In the Sommerfeld convention, the pole strength is defined in terms of the magnetic

flux Φ emanating from a single magnetic pole and is given by p=Φ/µo.

1.5.6 Magnetization

The magnetization of a medium is defined as the magnetic moment developed per

unit volume. It is generated due to the resultant (uncompensated) spin and orbital

angular momentum of the electrons within the solid.

~M =
~m

V

Taking the simple case of a bar magnet with magnetic flux ~Φ at the center and,

dipole length l and cross sectional area A, the magnetic moment ~m is given by

~m=~Φl/µo. The magnetization can then be expressed in the form

~M =
~Φ

µoA

=
~B

µo

(1.12)
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The above relation is valid only in the case where there are no conventional electric

currents present to generate an external magnetic field and so ~B=µo
~M . It is seen that

the total magnetic induction is comprised of the contribution from the both magnetic

field ~H and magnetization ~M .

It is useful to define one more term known as the technical saturation magneti-

zation Ms and complete saturation magnetization Mo. If a material has n magnetic

dipoles per unit volume of magnetic moment m, then the magnetic moment per unit

volume of the material when all the moments are aligned parallel is termed the satu-

ration magnetization Mo which is equal to the product of n and m. There is a good

distinction between the technical saturation magnetization and the complete satura-

tion magnetization. In brief, it can be stated that technical saturation magnetization

is achieved when the material is converted to a single magnetic domain, however, at

higher magnetic fields, the magnetization increases gradually beyond the technical

saturation value which results due to the spontaneous magnetization within a single

domain and this is known as forced magnetization or complete magnetization.

1.5.7 Relation between B, H and M

The magnetic induction in a medium is due to the combined effect of the applied

magnetic field and magnetization and the relation is defined as a vector sum of these

as follows,

~B = µo( ~H + ~M) (1.13)

The above equation relating the three basic magnetic quantities is true under all

circumstances.
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1.5.8 Permeability and Susceptibility

The permeability of a medium signifies the magnitude of magnetic induction de-

veloped per unit magnetic field applied. The relation can be defined by,

µ =
B

H
(1.14)

which follows from equation 1.6.

The susceptibility is defined as the magnitude of magnetization generated per unit

magnetic field applied and is given by,

χ =
M

H
(1.15)

Like permeability µ, susceptibility χ is not a constant quantity since M is a non-

linear function of the field in most cases and the more useful quantity differential

susceptibility may be expressed as,

χ
′
=
dM

dH

From equations (1.8), (1.13) and (1.15), we arrive at the following relation between

susceptibility and relative permeability.

µr = χ+ 1

1.5.9 Piezomagnetic Coefficient

The piezomagnetic coefficient in shape memory alloys is equivalent to the piezo-

electric coefficient in piezoelectric materials. In piezoelectric materials, it quantifies

the magnitude of strain produced in a certain direction per unit electric field applied

in the same direction or in two other perpendicular directions when external stresses
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on the material are constant. The converse effect in piezoelectric materials is the

generation of strain due to the combined effect of external stress and electric field

and the direct effect is the generation of charge due to the same two inputs. The

converse and direct effects in piezoelectric materials can be represented by,

Si = (sij)ETj + (dim)TEm (1.16)

where Si is the total strain produced in direction i, (sij)E is the strain produced in

direction i due to stress in direction j at constant electric field, Tj is the applied stress

in direction j, (dim)T is the strain produced in direction i due to the electric field

applied in direction m and Em is the electric field applied in direction m.

Dm = (qmi)ETi + (εmk)TEk (1.17)

where Dm is the total charge produced in direction m, (qmi)E is the charge produced

in direction m due to stress in direction i at constant electric field, Ti is the applied

stress in direction i, (εmk)T is the charge produced in direction m due to the electric

field applied in direction k and Ek is the electric field applied in direction k.

In the case of shape memory alloys, there is no direct effect and only the converse

effect is present. The piezomagnetic coefficient (dim)T in shape memory effect can

be defined as the strain produced in direction i per unit magnetic field applied in

direction m at constant external stress. The total strain in shape memory alloys

subjected to a stress and magnetic field is expressed in the same way as that for

piezoelectric materials except that the magnetic field term replaces the electric field

term in equation (1.18). The total strain may be expressed as,

Si = (sij)ETj + (dim)THm (1.18)
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where Hm is the magnetic field intensity applied in direction m and (dim)T is the

associated piezomagnetic coefficient. The piezomagnetic coefficient is simply the slope

of the strain versus magnetic field curve and may have different values for increasing

and decreasing fields and can be mathematically expressed as,

dim =
∂ei

∂Hm

(1.19)

1.5.10 Magnetic Hysteresis and Anhysteretic Magnetization

Hysteresis is a non-linear property of magnetic materials and is the irreversibility

of a magnetic state of a material that is induced by an applied magnetic field so

that the material does not show the same behavior in a complete cycle of increasing

and decreasing fields. The result is a sigmoid shaped hysteresis loop that encloses

a certain area in the plot. The magnetic state of a magnetic material due to the

applied magnetic field is quantified by the magnitude of the magnetic induction in

the material. The magnetic induction value is not the same at the same magnetic

field for one complete cycle of increasing and decreasing fields. Fig. 1.18(a) shows the

magnetic hysteresis loop of a typical ferromagnetic material.

Different parameters are used to characterize hysteresis curves. The complete

saturation magnetization as mentioned in Section 1.5.6, Mo gives the upper limit to

the magnetization that can be achieved but at temperatures well below the Curie

temperature, the technical saturation can be used. When a previously unmagnetized

ferromagnetic material is subjected to a magnetic field, the magnetic induction in-

creases in a non-linear manner with the applied field. When the field is decreased, the

induction does not follow the same path that it had for the increasing field, the latter

value of induction being greater in magnitude for the same magnitude of the applied
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(a) (b)

Figure 1.18: (a) A typical hysteresis loop of a ferromagnetic material (b) Anhysteretic
magnetization curve [8].

field. This results in a hysteresis loop and the area enclosed by such a loop repre-

sents the energy loss due to the irreversible magnetic states induced in the material.

From the hysteresis curves of ferromagnetic materials, it is seen that there is always

a remanent induction Br that remains in the material even when the magnetic field

is completely removed. The remanent induction is of the same magnitude in both

increasing and decreasing fields. Using equation (1.13) for H=0,

Br = µoMr (1.20)

where Mr is the remanent magnetization.
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There is a distinction between the terms remanence and remanent induction or

magnetization. Remanence is the value of either the remaining induction or magne-

tization when the field has been removed after the magnetic material has been mag-

netized to saturation whereas remanent induction or magnetization is the remaining

induction or magnetization value when the field has been removed after magnetizing

to an arbitrary level. The remanence is , therefore, the upper limit for all remanent

inductions or magnetizations.

Material (µr)max Bs(T) Hc(A/m) WH(J/m3)
Purified iron 180000 2.15 4 30
Iron 5000 2.15 80 500
Iron(4%Si) 7000 1.97 40 350
45 Permalloy 25000 1.6 24 120
Hipernik 70000 1.6 4 22
78 Permalloy 100000 1.07 4 20
Permendur 5000 2.45 160 1200
2V Permendur 4500 2.4 160 600

Table 1.2: Magnetic properties of high-permeability ferromagnetic materials [8].

Another important parameter is the coercivity or the coercive field Hc which is the

reverse field that has to be applied to reduce the magnetization to zero and is strongly

dependant on the condition of the sample such as heat treatment or deformation.

Like remanence, there is a distinction between coercivity and coercive field. The

former is used to describe the magnetic field required to reduce the magnetization

to zero from saturation and the latter describes the magnetic field needed to reduce

the magnetization to zero from an arbitrary level. The coercivity becomes an upper

limit for all values of coercive fields. Table 1.2 shows some parameters that can be
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extracted from hysteresis loops of selected ferromagnetic materials where Bs and WH

are the saturation magnetic induction and hysteresis loss respectively.

The suitability of ferromagnetic materials for applications is determined princi-

pally from characteristics shown by their hysteresis loops. Hysteresis loops are care-

fully studied in the design of transformers and electromagnets. Broadly speaking,

there are two reasons for the generation of hysteresis. Imperfections in the form of

dislocations or impurity elements in a material cause an increase in energy loss during

magnetization process due to a kind of internal friction which gives rise to hysteresis.

Magneto-crystalline anisotropy is another mechanism that gives rise to hysteresis. In

anisotropic solids, certain crystallographic axes are favored by the magnetic moments

which prefer to align in these directions leading to a lower energy state. The magnetic

moments can be dislodged from their original direction by application of a magnetic

field which makes them jump to crystallographically equivalent axes that are closer

to the field direction and of lower energy. This results in discontinuous and irre-

versible rotation of the magnetic moments which leads to a kind of switching action.

If the hypothesis that hysteresis is caused by the imperfections is accepted then a

material without imperfections and dislocations would develop a magnetic induction

that would be a single valued function of the magnetic field and the magnetization

curve would be reversible as shown in Fig. 1.18(b). The FEMM3.2 software uses

anhysteretic magnetization data for finite element simulations.

1.5.11 Demagnetizing Field and Field Correction

The fact that the magnetization M and the magnetic field H point in opposite

directions inside a magnetized material of finite dimensions, due to the magnetic
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dipole moment, a demagnetizing field Hd may be defined whenever magnetic poles

are created in a material. The demagnetizing field may be detected during hysteresis

measurements on finite length samples when the applied field is reduced to zero but

the measured field is negative due to remanent magnetization.

Geometry Aspect ratio (l/d) Demagnetization factor (Nd)
Toroid - 0
Long cylinder - 0
Cylinder 20 0.00617
Cylinder 10 0.0172
Cylinder 8 0.02
Cylinder 5 0.04
Cylinder 1 0.27
Sphere - 0.333

Table 1.3: Demagnetization factors for various sample geometries [8].

Fig. 1.19 shows the demagnetization effects in a bar magnet. A point should be

made that the magnetic field and induction lines are identical outside the material

but inside they are quite different and even point in opposite directions. The demag-

netizing field depends only on the magnetization in the material(pole strength) and

the shape of the specimen (pole separation determined by sample geometry). The

following expression can be given for the demagnetizing field

Hd = NdM

where Nd is the demagnetization factor that is calculated solely from the sample

geometry and is a dimensionless quantity if M and H are measured in A/m.

The magnitude of internal magnetic field experienced by the specimen is always

less than the applied external field due to the demagnetization field that arises The
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Figure 1.19: Magnetic field H both inside and outside a bar magnet as shown in the
top and magnetic induction B both inside and outside a bar magnet [8].
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correction for the demagnetization field is achieved as follows,

Hin = Happ −NdM

1.5.12 Eddy Currents

Eddy currents are local currents generated due to any time varying flux in the core

of the material which also contribute to the non linearity of the B-H curve. Due to

the time varying flux in the material, a voltage is induced and resulting in a current

flow which is dependant on the resistivity of the material. Eddy currents dissipate

energy in the form of heat which results in an energy loss from the system.Eddy

currents are reduced by selecting high resistivity core materials or by laminating the

core, introducing tiny, discontinuous air gaps between core gaps. Eddy currents may

not be a pose a problem of energy loss for magnetostatic analysis but even for quite

low frequencies of varying flux, the effect may be significant.

1.5.13 Units in Magnetism

There are three different units currently used in magnetism and several other

which are derivatives of these three. The three units are the Gaussian or CGS system

and two MKS unit systems, the Sommerfield convention and the Kennelly convention.

The following table summarizes the units of the most common magnetic quantities.

Further, the following important conversion factors are always used with field and

induction calculations.

1 Oersted=(1000/4π) A/m =79.58 A/m

1 Gauss=10−4 Tesla

1 emu/cm3=1000 A/m
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Quantity Symbol SI SI EMU
(Sommerfield) (Kennelly) (Gaussian)

Field H A/m A/m oersteds
Induction B Tesla Tesla Gauss
Magnetization M A/m - emu/cc
of magnetization
Intensity I - Tesla -
Flux φ Weber Weber Maxwell
Moment m Am2 Weber meter emu
Pole strength p Am Weber emu/cm
Field equation - B = µo(H +M) B = µoH + I B = H + 4πM
Energy of moment - E = −µomH E = −mH E = mH
(in free space)
Torque on moment - τ = µom×H E = m×H E = m×H
(in free space)

Table 1.4: Principal unit systems currently used in magnetism [8].

1.5.14 Maxwell’s Equations

The differential forms of the laws of electromagnetics are known as Maxwell’s

equations (1831-1879). These laws are the consequences of the work of Gauss, Ampere

and Faraday. Maxwell’s own contribution lies in the concept of displacement currents

which can be realized in the high frequency domain of the electromagnetic wave

propagation in materials. Maxwell’s equations may be summarized as follows:

∇ · ~B = 0 (Conservation of flux)

∇ · ~D = q (Gauss law for electric flux)

∇× ~H = ~J +
∂ ~D

∂t
(Maxwell’s generalization of Ampère’s law)

∇× ~E = −∂
~B

∂t
(Faraday’s law of induction)
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where ~J is the surface current density and q is the charge density.

The first equation is the Gauss law for the conservation of magnetic flux and it

mathematically represents the fact that the magnetic flux lines always form a closed

loop. This fact can be readily observed when iron filings form a pattern around a

permanent magnet. The third equation takes a special form in magneto-solid me-

chanics problems which deal with low frequencies. The wavelength associated with

wave solutions in such problems is much longer. The displacement current term ∂D
∂t

is,

therefore, small for low frequencies and the Maxwell equation reduces to the steady

state Ampere’s circuital law (quasistatic approximation) , ∇ × ~H = ~J which in the

integral form may be expressed as

∮
∂Ω

~Hd~l = Ni (1.21)

where N is the number of current carrying conductors in the domain Ω with boundary

∂Ω, each carrying a current of i Amperes. In the case of a long thin solenoid, equation

(2.11) reduces to the simple form H = Ni/L.

The last equation of Maxwell is just a reinterpretation of Faraday’s law of elec-

tromagnetic induction and it signifies that the curl of the electric field is determined

by the rate of change of magnetic induction. The induced potential is said to oppose

the change in magnetic flux and hence, the negative sign. Maxwell’s last equation is

the same as equation (1.11).
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CHAPTER 2

REVIEW OF CONCEPTS DEVELOPED FOR
UNDERSTANDING THE NI-MN-GA MAGNETOSTRAIN

EFFECT

2.1 Introduction

This chapter presents a literature review of existing martensite reorientation mod-

els which are focused on the estimation of magnetization and strain in FSMA’s. A

brief outline was provided in Section 1.4 regarding the nucleation of variants and twin

boundary motion in the tetragonal martensitic structure. The review discussed in this

chapter concentrates on free energy expressions for magnetization and strain in ac-

cordance with the tetragonal martensitic structure. In the presence of external stress,

models have been extended to explain the orthogonal field-stress pair effect which is

different from the collinear field-stress drive configuration employed in the research

presented in this thesis. The measurements reported here have demonstrated field-

induced reversible strains as large as 6400 ppm (0.64%) despite the lack of a readily

recognizable mechanism for the observed effect. Some of the reviews presented in

this chapter provide a general overview of magneto-strain effects which help to draw

preliminary ideas on explaining the phenomena being measured. The more detailed
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magnetization and strain modeling aspects stem from the change in crystallographic

geometries and ensuing change in magnetic properties in presence of magnetic fields.

2.2 Martensite Reorientation Models

On nucleation of the martensitic region within the parent austenitic phase, the

strain can be compensated by slip or by formation of strained twin variants separated

by twin boundaries, because these mechanisms minimize the total strain energy be-

tween the martensitic region and the untransformed surroundings. Twin boundary

motion is thought to be an easier deformation mode than slip in ordered alloys since

slip involves breaking of more bonds.

The model proposed in [17] model takes into account both phase boundary mo-

tion and twin boundary motion. Nevertheless, the giant field-induced strains in the

martensitic state of Ni-Mn-Ga are associated with twin boundary motion driven by

the Zeeman energy difference ∆M·H, where ∆M is the magnetization differential

across the boundary and H is the magnetic field. The model therefore, includes

the effect of magnetic anisotropy within the martensitic twins and assumes that the

sample is planar and is composed of only two variants. The model considers three

regimes with respect to the strength of the magnetocrystalline anisotropy energy Ku

in the martensitic phase which are presented in terms of dimensionless field parame-

ters he=MsH/Ce20 and ha=MsH/2Ku. Here, Ms is the saturation magnetization, C

is the effective stiffness, H is the field and e0 is the transformation strain. The term

ha is the ratio of Zeeman energy to the crystal anisotropy energy. The three regimes

are ha� 1, ha� 1 and ha≈ 1. When ha� 1, the effect of the applied magnetic field

is to move the twin boundaries as opposed to the rotation of magnetization within
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(a) (b)

Figure 2.1: Mechanism for twin boundary motion and phase boundary motion when
the martensitic anisotropy is (a)weaker than the Zeeman energy and (b) stronger
than the Zeeman energy (austenite phase still has low anisotropy) [17].

the unfavorably oriented twins and the anisotropy of the variants remain unchanged.

The driving pressure for twin boundary motion is the free energy density difference

across the twin boundary. When ha� 1, magnetic saturation is easily achieved even

in weak fields due to the rotation of Ms and no strain due to twin boundary motion

is expected. If ha≈ 1 then the magnetization and strain depend on both he and ha.

For the strong anisotropy case ha� 1, the magnetic free energy density after

partial twin boundary motion is given by,

gmag = −MsH [f1 cos θ + f2 cos(θ + φ)] + A(φ/δ)2 (2.1)

where f1 and f2=1-f1 are the volume fractions of the two twin variants as shown in

Fig. 2.1. Here, A is the exchange stiffness constant and δ is the length over which

the magnetization rotates from one twin variant to the other and is the larger of the

domain wall thickness δdw or the twin boundary thickness δtb. Since achieving a single

variant state is rarely possible, the change in energy due to twin boundary motion

will not depend strongly on the exchange term and can thus be omitted. However,

an elastic energy term must be considered since twin boundary motion occurs at the
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expense of the elastic energy. Such term may have the form

gelastic =
1

2
Ce20(f

2
1 + f 2

2 + 2f1f2 cosφ) (2.2)

where C is the elastic stiffness constant against which the twin boundary motion

occurs and e0 is the strain associated with the transformation. Assuming an equal

volume fraction of the two types of variants before the twin boundary motion, f1

and f2 can be written as f1=1/2+δf and f2=1/2-δf where δf is the fraction of the

unfavorable variants that change into the favorable ones. Hence, δf=0 defines the

initial state and one of the minimum energy states. If a mechanical bias stress is

applied before the application of a magnetic field, f1 6= f2¬1/2 since the mechanical

bias stress would try to convert the variants into a single variant with the crystallo-

graphic easy axes oriented in the direction of the applied stress. The total magnetic

and elastic energy is given by combining equations (2.1) and (2.2),

gtotal = −MsH
[
(
1

2
+ δf) cos θ + (

1

2
− δf) cos(θ + φ)

]
+

1

2
Ce20

[
1

2
+ 2δf 2 + (

1

2
− 2δf 2) cosφ

]
. (2.3)

Equation (2.3) is then minimized to get the equilibrium fractional twin-boundary

displacement. The final equations developed for magnetization and strain are,

m =
M

Ms

=
1

2

(
u+ +

p2
−
v−
he

)

εx =
ex

e0
=

sinϕ

2v−
(v− − u−he)

εy =
ey

e0
=

1

2
(v+ + u−he) (2.4)

where u±=cos θ ± cos(θ + φ) and v±=1± cosφ. These equations show that the mag-

netization and field-induced strain are linear with H.
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In the case where ha≈ 1, Zeeman pressure is exerted on the twin boundaries before

the magnetization rotates into the direction of the applied field and at higher fields,

after significant rotation of the magnetization in the field direction has occurred, the

Zeeman pressure on the twin boundaries decreases to the value of the anisotropy

energy difference across the interface. For this case, the total free energy is given by,

gtotal = −(f1 + f2 cosψ)MsH +
1

2
Ce20(

1

2
+ 2δf 2) + f2Ku cos2 ψ (2.5)

where ψ is the angle between the magnetization of the unfavorably oriented vari-

ant and the applied field. Equation (2.5) includes the elastic energy and magnetic

anisotropy energy in the unfavorably oriented twin variant, in addition to the Zeeman

energy. Equation (2.5) is minimized with respect to δf and ψ and the equations for

magnetizationa and strain are given by,

m =
1

2

[
1 + ha + he(1− ha)

(
1− ha

2

)]

εx =
1

2

[
1− he

(
1− ha

2

)]

εy =
1

2

[
1 + he

(
1− ha

2

)]
(2.6)

Equation (2.6) infers linear behavior at weak fields and a negative curvature at

higher fields. A more general equation regarding the free energy for two variants was

given by O’Handley [18],

g = −MiH +Ku sin2 θi + σe+
1

2
Ce2 (2.7)

where i corresponds to either variant 1 or 2. Equation (2.7) is the same as relation

(2.5) except for the additional term due to the applied external stress that is orthog-

onal to the applied field direction. Minimization of the free energy with respect to
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the twin boundary displacement ∂f and the angle θ, yields the following expression

for the strain

e(H) = e0δf =
MsH(1− ha) +Kuh

2
a − σe0

Ce0
. (2.8)

Equation (2.8) shows that at small ha, the field-induced strain is positive linear in H

and can be shifted towards negative values by applied stresses. It is seen that greater

strain is achieved with lower effective stiffness and transformation strain.

Likhachev and Ullakko [13] have employed a thermodynamic consideration of

the mechanical and magnetic properties and the basic mechanical state equation

including magnetic field effect is directly derived from a general Maxwell relation.

They have shown that the magnetic field-induced deformation is directly related to

the strain dependance of magnetization. The basics of this derivation is presented

here in brief. The following state equations can be written as a representation of

both the mechanical and magnetic properties of such materials which comes from the

general thermodynamic principles,

σ = σ(ε, h) (2.9)

m = m(ε, h) (2.10)

where equation (2.9) reflects the mechanical properties through stress-strain equation

in presence of the magnetic field and equation (2.10) gives the magnetization value

as a function of the applied magnetic field and strain. ¿From Maxwell’s rule, the

dependency between the two state equations can be shown as,

∂

∂h
σ(ε, h) = − ∂

∂ε
m(ε, h) (2.11)

Integrating the above equation over the magnetic field from h = 0 at a fixed strain

gives an important representation of the mechanical state equation including magnetic
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field effects,

σ = σo −
∂

∂ε

∫ h

0
m(ε, h)dh (2.12)

Equation (2.12) represents the external stress as being balanced in equilibrium by the

pure mechanical stress σo=σ(ε,0) resulting from the mechanical deformation of the

material in absence of the magnetic field and the additional magnetic field-induced

stress. If the external stress is zero, then the magnetic field-induced strain or the

shape memory effect may be shown by,

σo(ε) =
∂

∂ε

∫ h

0
m(ε, h)dh (2.13)

The truncated Taylor’s series for equation (2.13) gives a linearized solution as follows,

εmsm(h) =

(
dσo

dε

)−1
∂

∂ε

∫ h

0
m(ε, h)dh (2.14)

Equation (2.14) can be used when ε is lesser than martensitic lattice tetragonal

distortion value εo=1-c/a. The martensite state of Ni2MnGa is thought to be a

variable volume fraction of tetragonal variants in absence of external applied stress.

When magnetic field is applied in a direction parallel to the easy axis of one of

the variants, the other two variants get magnetized along the hard axis, i.e not the

tetragonal easy axis of symmetry. A simple illustration is given in Fig. 2.2(a). The

variant with the easy axis parallel to the magnetic field is called the axial variant and

the two other variants are called transverse variants. The difference in magnetization

for the two types of variants is shown in Fig. 2.2(b) where a higher field value is

required for magnetization of the transverse variants.

The model developed by Likhachev and Ullakko treats the multi variant twinned

martensitic state as a composite material consisting of an easy magnetization area
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(a) (b)

Figure 2.2: (a) A simple three dimensional representation of the crystallographic
tetragonal variants in the martensitic phase and (b) magnetization along the axial
and transverse directions [13].

occupied by axial type twins and hard magnetization region comprising the trans-

verse twin variants. This is the fundamental concept behind the model developed

henceforth. If x is the total volume fraction of the axial variants and accordingly,

(1 − x) is the volume fraction of the transverse variants, the magnetization of the

material and the strain along the axial direction may be written as,

m(x, h) = xma(h) + (1− x)mt(h) (2.15)

ε = xε0
a + (1− x)ε0

t

=
3

2
ε0(x−

1

3
) (2.16)

where the suffix a and t refer to the axial and transverse variants. ε0
a=ε0 and ε0

t =-

(1/2)ε0 represent the relative tetragonal distortion of the martensite crystal lattice

along the tetragonal easy axis and the two transverse directions respectively. For
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the samples of Ni2MnGa (cubic phase: a=5.822A and tetragonal phase: a=b=5.90A,

c=5.44A) experimented by Likachev and Ullakko, ε0=5.4%. The magnetization can

be written as a function of the macroscopic strain as follows after eliminating the

volume fractions,

m(ε, h) =
{

1

3
ma(h) +

2

3
mt(h)

}
+

2

3

ε

ε0

{ma(h)−mt(h)} (2.17)

The second term on the right side of equation (2.17) gives the strain dependance of

magnetization. From equations (2.14) and (2.17), we arrive at the following equation

for the strain,

εmsm(h) =
2

3

(
ε0
dσo

dε

)−1

ε=0

∫ h

0
{ma(h)−mt(h)} dh (2.18)

From equation (2.18), it is seen that the strain is dependant both on the initial

slope of the stress-strain curve (obtained from the mechanical compression test in

absence of the magnetic field) and the magnetic anisotropy. It can be inferred that

in absence of magnetic anisotropy, the deformation effect would also vanish. From

Fig. 2.2(b), it is seen that saturation of magnetization is obtained at a field h=ht

above which ma(h)=mt(h)=msat. So, the value of strain corresponding to saturation

of magnetization can be expressed in the form,

εmsm
sat =

1

3

(
ε0
dσ0

dε

)−1

ε=0

(ht − ha)msat (2.19)

which follows from Equation 2.18. The maximum strain in the axial direction in

which the magnetic field is applied is given by,

εmax =
1

3

(
ε0
dσ0

dε

)−1

ε=0

htmsat (2.20)

Fig. 2.3(a) shows the plot for normalized strain ε/εmax against the normalized

magnetic field h/hmax for different values of the magnetic anisotropy constant k=ha/ht.
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(a) (b)

Figure 2.3: (a) Magnetic anisotropy effect on the strain versus magnetic field be-
havior based on the model predictions (b) Comparison between the model and the
experimental result for the magnetostrain effect [13].

It is seen that as k=1,i.e, the manetic anisotropy becomes weaker, the strain reduces

to zero. Similarly, k=0 implies that ha has a very low value as compared to ht so that

ma achieves the the saturation level msat immediately and remains at that constant

value during the magnetization process. This is a case of strong anisotropy due to the

greater difference between the magnetizations of the axial and transverse variants. A

point is made at this point that the linear field behavior predicted through some earlier

models [17] is directly connected with the assumption of complete saturation magneti-

zation of the axial type twin variants. However, in the model developed by Likhachev

and Ullakko, such an assumption is only valid in the limit h →0. Fig. 2.3(b) shows

the comparison of the magnetostrain effect between the experimental data obtained

by the authors and their model. At low fields h < ha, the magnetostrain predicted by

the model has a parabolic nature which resembles the experimental data. This type

of parabolic behavior at very low fields is not accounted for in O’Handley’s model.

50



A further development on this model was made by Likhachev and Ullakko [12]

where the twin boundary motion responsible for the large magnetostrain effects were

related with the magnetic driving force. O’Handley refers to this driving force as

the force due to Zeeman energy difference. From equation (2.20), it is seen that a

lower twinning stress value would enhance the field-induced strain of the material.

Likhachev and Ullakko observed that Ni-Mn-Ga samples with a very low compressive

twinning stress in the range of 2-3 MPa along the [100] axis that is required to

transform the multi variants into a single variant state, showed giant field-induced

strain. This implies that the samples have to be soft. The twinning stress value is

an important quantity that influences the capability of the magnetic driving force to

actuate twin boundary motion.

Figure 2.4: Magnetic anisotropy of Ni48Mn30Ga22 and field dependance of magneti-
zation free energies for easy and hard magnetization directions.
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The free energy curves for the axial and transverse variants are shown in Fig. 2.4.

The magnetization free energies as a function of the applied magnetic field can be

calculated as follows,

ga(h) = −
∫ h

0
ma(h)dh

gt(h) = −
∫ h

0
mt(h)dh (2.21)

The total magnetization free energy can be written in the same form as for strain

and magnetization based on the volume fraction of the martensite variants.

g(x, h) = xga(h) + (1− x)gt(h) (2.22)

It is seen that the magnetization free energy for the axial variants is less than that

for the transverse variants and since a minimum energy state is always preferred,

there must exist a force within the microstructure so that the axial variant grows at

the expense of the transverse variants. This is easily understood by substituting x=1

in equation (2.22). From the general thermodynamic rule, the magnetic driving force

moving twin boundaries along their normal directions is given by,

fmag(h) = −
[
∂

∂x
gmag(x, h)

]
h

= gt(h)− ga(h)

=
∫ h

0
(ma(h)−mt(h))dh (2.23)

Equation (2.23) implies that a non-zero magnetic driving force is possible due to

the uniaxial magnetic anisotropy of Ni-Mn-Ga and is quantified by the difference of

the magnetization free energies between the different twin variants. Fig. 2.5 shows the

schematic of the martensitic twinned microstructure with the white and and gray area

indicating the region of the axial and transverse variants respectively. The magnetic
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Figure 2.5: Two dimensional representation of two variant twin microstructure, easy
magnetization axes alignment and magnetic driving force responsible for twin bound-
ary motion in an applied magnetic field.

field is applied in the vertical direction. The magnetic driving force is responsible

for moving the twin boundaries in a direction normal to the boundaries reducing

the volume fraction of the transverse variants and at the same time increasing the

volume fraction of the axial variants. This is termed as the growing of the favorable

variant with the expense of the unfavorable ones. From equation (2.23) the maximum

magnetic driving force is achieved when h→∞ which is equal to the uniaxial magnetic

anisotropy Ku. So,

h→∞, fmag(h) −→ Ku =
∫ ∞

0
(ma(h)−mt(h))dh (2.24)

A maximum magnetic driving force value of 0.13 MPa was obtained at h > 0.8T

for Ni48Mn30Ga22. The normal mechanical driving force as a function of the applied

stress is given by,

fmech(σ̂) = ε̂0σ̂ = ε0(σxx − σyy) (2.25)
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where ε̂0 is the strain matrix associated with the twinning transformation between

two single variants of the martensitic phase. In the planar reference system as shown

in Fig. 2.5, it is represented by a diagonal matrix as follows:

 ε0 0 0
0 −ε0 0
0 0 0


where ε0=1-c/a is the twinning transformation value which can be estimated from the

martensitic phase lattice parameters. For the Ni-Mn-Ga sample tested, a=b=0.594

nm and c=0.562 nm which gives ε0=5.79%. Some universality rules have been opted

to calculate the macroscopic twinning strain as a function of the driving force. The

macroscopic strain is taken to be some universal function dependant only on the

driving force value irrespective of the physical source of the force. In the case of

planar twinning, both non-zero components of the strain may be written as a single

universal function that is dependant on the normal driving force as follows:

εyy = −εxx = ε′(f)

The mechanical and magnetic strains can then be represented as

εmec
yy (σ̂) = −εmec

xx (σ̂) = ε′(ε̂0σ̂) (2.26)

εmag
yy (σ̂) = −εmag

xx (σ̂) = ε′(gt(h)− ga(h)) (2.27)

In the case of uniaxial compressive stress (εxx=εzz=0, εyy=-ε) the mechanical and

magnetic strains will take equal values only if the corresponding mechanical and

magnetic driving forces are equal which results in,

σ = σmag(h) = ε−1
0 (gt(h)− ga(h)) = ε−1

0

∫ h

0
(ma(h)−mt(h))dh (2.28)
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and hence,

ε̂mag(h) = ε̂mec(σmag(h)) (2.29)

Equation (2.29) allows the calculations for the magnetic field-controlled strains using

the corresponding mechanical testing data. The deformation effect of the applied

magnetic field is equivalent to the uniaxial compressive stress applied and this equiv-

alent magnetic stress σmag(h) can be computed from equation (2.28). For the sample

of interest, the maximum magnetic equivalent stress that can be developed is about

2.25 MPa. This value can then be compared to the twinning stress from the me-

chanical compression test data which does not exceed 2.5 MPa. Since a maximum

compressive strain of 5.79% is achieved at this twinning stress, the magnetic stress

value is enough to achieve strains up to about 5%.

Simple Fermi-like distribution function given by equation (2.30) was used as an

appropriate fitting basis for the analytic interpolation of the mechanical testing re-

sults.

ε̂mec
± σ = ε0

{
1 + exp

(±σ0 − σ

∆σ

)}−1

(2.30)

where ± denotes the loading and unloading curves respectively, σ0 and ∆σ are the

characteristic stress parameters associated with the start (σs=σ0-2∆σ) and finish

(σf=σ0+2∆σ) twinning stress values.

Fig. 2.6(a) shows the results of equation (2.30) along with the fit from the exper-

imental data and Fig. 2.6(b) shows the magnetostrain effect. The strain correspond-

ing to each value of the applied magnetic field is obtained using equations (2.28) and

(2.29). The magnetic stress value is computed using the magnetization data for the

axial and transverse variants at each value of the applied magnetic field. As discussed
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(a) (b)

Figure 2.6: (a) Strain-stress behavior of Ni48Mn30Ga22 from model calculations and
experimental data (b) Magnetostrain effect from model calculations and experimental
data [12].

before, the magnetic equivalents stress produces the same amount of strain as the ap-

plied stress. The mechanical strains corresponding to the applied mechanical stress

would also correspond to the equivalent magnetic stress and hence to the respective

values of the applied magnetic field finally resulting in Fig. 2.6(b).

The discussion presented above does not take into account the reversibility of the

field-induced strain in the Ni-Mn-Ga shape memory alloys and the phenomenon of

field induced-strain was explained through the idea of equivalent magnetic stress that

is generated due to the applied magnetic field. It was observed that the material did

not show appreciable reversible strains for an applied cyclic magnetic field in absence

of an applied external stress. The large magnetostrains produced would not serve

much in technical applications if they are irreversible. Likhachev, Sozinov and Ullakko

[11] explored the possibility of reversible field-induced extensional strains through the

application of orthogonal magnetic field-stress pair. The total field-induced strain is

always the maximum in case of zero applied magnetic field but the magnitude of the
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reversible component of strain is always the highest at some optimal stress and not at

zero stress. The external stress is used for biasing the material toward a single variant

so that the easy tetragonal axis is parallel to the direction of the applied stress. In

the presence of an external stress, equation (2.29) takes the form,

ε̂mag(h) = ε̂mec(σd(h)) (2.31)

where σd(h)=σmag(h)-σ is the total driving stress and σ is the applied external com-

pressive stress. During extension, of the material, the external stress opposes the

equivalent magnetic stress. Fig. 2.7 shows the reversible field-induced strains in ab-

sence of an external stress and at 1.5 MPa. It is seen that the reversible component

of strain at 1.5 MPa is higher though the magnitude of the total strain is less than

that at zero field. An external stress of 1.37 MPa produces a maximum reversible

strain of 3.56% for the composition of the specimen used by the authors.

This model cannot explain the phenomenon observed in the dls samples subjected

to collinear field-stress pair in this thesis since the samples show maximum reversible

strain in the absence of external stress which decreases sharply with increasing stress.

Henry’s [6] results on field-induced strain in Ni49.8Mn28.5Ga21.7 obtained through or-

thogonal AC magnetic field actuation show the presence of an optimum external stress

at which maximum reversible strain is achieved. At a field of about 6.28 kOe (500

kA/m), a maximum extensional strain of 2.5% was obtained at 1.85 MPa and the

strain is largely blocked at 3.8 MPa.

2.3 Different Martensite Structures and Comparative strains

The explanation in the preceding paragraphs confirm a direct dependance of the

magnitude of field-induced strain on the mechanical compression test data. The
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Figure 2.7: Strain vs field curves predicted by the model [11].

amount of field-induced strain depends on the start (σs) and finish (σf ) twinning

stress from the mechanical compression test data. Based on this, three categories of

strain may be established with respect to ε0=1-c/a [22]:

1) Super-large strain effect(εmsm=ε0) if σmag > σf .

2) Large strain effect (εmsm < ε0) if σs < σmag < σf .

3) Very small strain (εmsm�ε0) if σs > σmag.

Up to now three different types of martensitic structures have been found in the Ni-

Mn-Ga shape memory alloys. They are the tetragonal five layered modulated (5M),

orthorhombic seven layered modulated (7M) and tetragonal nonlayerd (T) with the
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(a) (b)

(c)

Figure 2.8: Magnetization curves for different martensite phases: (a) Five layered
tetragonal phase (5M) (b) Non-layered tetragonal phase (T) (c) Seven layered or-
thorhombic phase (7M) [21].

lattice properties c/a <1, c/a >1 and a > b > c respectively. Fig. 2.8 shows the mag-

netization curves for the three types of martensite structures. In all the three cases,

it is seen that the shortest crystallographic axis is the easy axis of magnetization.

In the seven layered tetragonal structure, two anisotropy constants exist which can

be computed by calculating the area between the easiest axis of magnetization curve

and the two hard axes magnetization curves. The magnetic equivalent stress has a

maximum value of σmag=ε
−1
0 Ku and can never exceed this saturation value.

In the tetragonal 5M martensite, (σmag)max=2.6 MPa for an applied field of the

order 1.1T and from the mechanical compression tests, σf≤2.5 MPa. The stress
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due to the applied field is, therefore, completely capable of overcoming the maxi-

mum twinning stress and produce a super-large 5.8% magnetostrain effect. In the

orthorhombic 7M martensite, (σmag)max≈1.56 MPa which is in between σs=1.9 MPa

and σf=1.1 MPa and as a result only large strain of 9.5% is achieved [21]. Similarly,

in the tetragonal nonlayered phase, estimated (σmag)max=1.1 MPa is considerably low

compared to the twinning stress range of 12-20 MPa and a very small magnetostrain

effect of less than 0.02% is observed.
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CHAPTER 3

MATERIAL PREPARATION AND EXPERIMENTAL
FIXTURE

This investigation demonstrates for the first time the feasibility of obtaining large

bidirectional strains from Ni-Mn-Ga alloys driven under a collinear magnetic field-

stress pair, as opposed to the conventional perpendicular configuration. Existing

martensite reorientation models suggest that the collinear field-stress configuration

drives boundary motion in an irreversible fashion since tetragonal martensite has

the same easy magnetic and stress axes. While the exact nature of the phenom-

ena observed in this investigation is not completely understood, in order to gain a

fundamental understanding and ultimately be able to develop constitutive models

of the magnetoelastic and thermoelastic behavior exhibited by these alloys, the de-

pendence of the magnetic and physical properties on the composition and structural

characteristics of the ferromagnetic shape memory transformation must be elucidated.

The results presented here provide a first step toward that end by presenting room-

temperature magnetization and strain measurements for Ni-Mn-Ga alloys centered

on Ni49.56Mn29.59Ga20.85 under large quasistatic fields and varied compressive stresses.
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Samples for this investigation were prepared at the Materials Preparation Center

of the Ames Laboratory (DOE) in Ames, Iowa. Details regarding preparation proce-

dures and sample compositions are provided in Section 3.1. The implementation of

the collinear field-stress configuration was done by means of a test bed consisting of

water-cooled solenoid transducer and a compressive loading fixture. The remainder

of the chapter provides details on the construction and calibration of this test fix-

ture. Detailed drawings of the different transducer and fixture parts are provided in

Appendices A-C.

3.1 Sample Preparation and Properties

Six cylindrical samples of various parent phase compositions were tested. Each

sample was prepared as follows. Appropriate quantities of high purity nickel, man-

ganese and gallium were cleaned and arc melted several times under an argon atmo-

sphere. The buttons were remelted and the alloy drop cast into a chilled copper mold

to ensure compositional homogeneity throughout the ingot. The crystal was grown

from the as-cast ingot in an alumina Bridgman style crucible which was heated to

1350◦C under a pressure of 1.3×10−4 Pa to degas the crucible and charge. After

melting, the chamber was backfilled to a pressure of 2.76×105 Pa with high purity

argon to eliminate gas pockets and to minimize the amount of manganese evaporation

from the melt during the crystal growth. The ingot was held at 1350◦C for 1 hour to

allow thorough mixing before withdrawing the sample from the heat zone at a rate

of 5 mm/hr.

Cylindrical samples measuring 0.25” (6.35 mm) in diameter were extracted from

the crystal boule by electric discharge milling, and their composition measured along
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the longitudinal axis by energy dispersive microanalysis. Because the composition

is known to vary along the boule axis with Mn content increasing and Ga content

decreasing in the growth direction, the tested samples were taken from the top and

bottom of each boule for maximum compositional variation within each boule. Table

3.1 shows the compositions in percentage by atomic weight for the different samples

while Tables 3.2 and 3.3 show the characteristic temperatures for the tested samples.

Sample Mn Ni Ga e/a* Length (inches) Density (gm/cc)
dls-1-136-1 28.7 50.0 21.3 7.648 0.883 7.886
dls-1-125-4 30.60 48.10 21.30 7.951 1.025 7.44
dls-1-61-1 29.98 48.99 21.03 7.629 0.954 7.88
dls-1-42-1 30.40 49.54 20.06 7.684 0.840 8.15
dls-1-42-2 28.91 50.52 20.57 7.693 0.842 8.16
dls-1-42-3 28.97 50.20 20.84 7.673 0.851 8.07

*e/a =(7Mn+10Ni+3Ga)

Table 3.1: Compositions in percentage by atomic weight of nickel, manganese and
gallium for the six samples tested in the study.

3.2 Solenoid Transducer

The experimental data in this investigation was obtained from the test apparatus

shown in Fig. 3.1, which consists of a broadband solenoid-based transducer and a

fixture that provides static uniaxial stresses by means of dead weights. The transducer

houses one cylindrical sample of dimensions up to 0.5”-diameter by 4.5”-length and is

configured for d33 actuation mode with the longitudinal axis of the sample, magnetic

field, and uniaxial stress aligned collinearly.

63



Sample ID Rod no. As(1
a) Af (1) Ms(1) Mf (1)

dls-1-136 1,top 42 65.9 55.3 32.4
1,bottom 43.7 62.5 54.8 33.1

dls-1-125 4,top 33.1 87.7* 77.7 -
4,bottom 37.5 54.4 45.4 20.0

dls-1-61 1,top 49.5 64.1 54.2 43.0
1,bottom 43.0 69.8 61.0 40.7

dls-1-42 1,top 49.8 111.1* 106.7** 60.8
1,bottom + 100.2 90.0** 60.4

2,top + 113.6* 108.4 76.9
2,bottom 76.6++ 103.6 94.4 65.6

3,top 80.7++ 118.5 108.8 77.2
3,bottom + 104.4 95.6 73.6

Table 3.2: Characteristic temperatures in ◦C for the tested samples

Sample ID Rod no. As(2
b) Af (2) Ms(2) Mf (2) Tc Tc

(heating) (cooling)

dls-1-136 1,top - - - - 101.1 98.0
1,bottom - - - - 100.6 98.2

dls-1-125 4,top - - - - 87.7 87.0
4,bottom - - - - 96.9 94.6

dls-1-61 1,top - - - - 96.7 94.5
1,bottom - - - - 97.0 95.4

dls-1-42 1,top - - - - 111.1 106.7
1,bottom 52.7 + 4.7 -23.9 100.2 90.0

2,top 47.4 + -11.6 -49.5 120.2 114.9
2,bottom 49.2 67.0++ -4.6 -23.2 103.6 99.4

3,top 53.7 71.4++ -21.2 -51.2 124.6 119.5
3,bottom 48.4 + -4.5 -26.4 112.2 107.6

aHigh temperature martensite transformation, b Low temperature martensite
transformation, *Af=Tc, *Ms=Tc, +Af (2) and As(1) overlap, ++Af (2) and As(1)
overlap on one cycle only.

Table 3.3: Characteristic temperatures in ◦C for the tested samples.
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(a) (b)

Figure 3.1: (a) Fixture employed for testing Ni-Mn-Ga samples with a collinear mag-
neitc field-stress pair (b) Three dimensional sectioned view of the main transducer
showing the interior.

The transducer consists of several parts made from magnetic and non magnetic

materials for efficient flux flow. As illustrated in Figs. 3.1(b) and 3.2, the housing

comprises a cylindrical housing and top and bottom plates made from 1018 steel.

A 1018 magnetic steel base is screwed to the bottom plate and a bottom cap made

from stress proof 1144 steel is fixed to the magnetic steel base. A 6061 T6 hollow

aluminum spool and sensing solenoid sit inside a sample holder made of 304 stainless

steel. The sample holder has internal threads at the bottom and is screwed to the

65



external threads of the bottom cap. A linear motion bearing is press fit on the top of

the sample holder to support the motion of the pushrod with minimum friction and

for closing the magnetic circuit formed by the Ni-Mn-Ga sample, top and bottom

plates and caps and the transducer housing.

The drive fields are provided by a water-cooled solenoid consisting of AWG15

insulated copper wire wound in 28 layers with approximately 48 turns per layer. A

cooling/heating circuit of 0.25 in-diameter copper tube is interspersed within the

solenoid and high performance epoxy Epotek T7109 provides structural support to

the assembly. Water is circulated in the system at a rate and temperature regulated

by means of a water mixer. The temperature at different locations in the transducer

is monitored by Omega thermocouples connected to a 10-channel Omega signal con-

ditioner. For all of the tests, the sample temperature was maintained at 14◦C. The

solenoid is driven by two Techron 7790 amplifiers connected in series which produce

an overall voltage gain of 60 and maximum output current of 56 A at the rated coil

resistance of 3.7 Ω (11.6 kW). The magnetic induction is measured with a pickup coil

made from AWG33 grade insulated copper wire wound several layers around the alu-

minum spool and connected to a Walker Scientific MF-5D integrating fluxmeter which

directly converts the change in voltage across the sensing coil to magnetic induction.

Since the Ni-Mn-Ga samples are more than an inch shorter than the height of the

solenoid, two magnetic stress proof 1144 steel pieces of equal length were attached

with wax to the top and bottom of the samples, thus aiding in positioning the sample

symmetrically at the center of the solenoid’s longitudinal axis. Compressive loading

is applied to the samples through a pushrod made of 1144 stress-proof magnetic steel

connected to a steel cross bar with an interface piece of non-magnetic 304 stainless
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steel in between to prevent the magnetic flux lines from leaking out. A second cross

bar connected to the top cross bar by means of vertical non-magnetic steel rods

provides a means for hanging a set of interconnecting steel trays which hold lead

bricks. The vertical rods slide in low-friction linear motion bearings which are rigidly

attached to the fixture frame. The number of trays and lead bricks connected to the

transducer’s load path can be varied such that the compressive force on the sample

is adjusted from zero up to a maximum of 1.5 kip (6.6 kN) in virtually continuous

increments. A PCB 208C04 force transducer is located between the cross bar and

the interface piece of non-magnetic steel, and is used to monitor the compressive

force applied to the Ni-Mn-Ga sample. The strain is measured by a Lucas Shaevitz

MHR-025 linear variable differential transducer. Fig. 3.2 shows the cross section of the

transducer without the loading fixture. The input and output signals are generated by

and recorded through a Data Physics SignalStar Vector 550 dynamic signal analyzer

that is interfaced through a PC.

3.2.1 Water-Cooled Solenoid

It is noted that in order to produce larger magnetic fields from a solenoid, increas-

ing the number of windings per unit length is more effective than increasing the coil

current. This is due to the Joule heating being proportional to the square of current,

while the field is directly proportional to current. Consequently, if the current flowing

in the solenoid is doubled, then the Joule heating increases four times. However, if

the number of windings is doubled, the resistance gets doubled and the Joule heating

increases only two times. Both the methods result in a doubling of the field. This
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Figure 3.2: Cross section of the water-cooled transducer used for testing of the Ni-
Mn-Ga samples.

design criterion has been employed in this investigation to prevent excessive heating

of the transducer.

The solenoid is made of AWG15 insulated copper magnet wire and was prepared

on an aluminum bobbin. The solenoid sits in between layers of copper cooling tubes

which were also initially set into the configuration by wrapping them on a bobbin.

The copper cooling tubes are 0.25 in in diameter and wound in three vertical layers

and two horizontal layers (top and bottom). When setting the cooling tubes into the

required shape on the bobbin, the tubes were filled with dry sand to prevent them

from cracking while being bent into the spiral shape. The first layer of magnet wire

was wrapped around the innermost layer of copper cooling tube, which was covered
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with a layer of solder to form a smooth cylindrical surface. This is a crucial step in the

fabrication of the transducer as the key to a good solenoid that produces an axially

symmetric magnetic field depends on the uniformity of the subsequent windings. A

layer of high performance Epotek T7109 epoxy was applied after every two layers of

the solenoid coil for a strong bond as well as to enhance the thermal conductivity

between the solenoid coils and the cooling tubes. The solenoid was cured in a hot

air oven after the twelfth layer of winding and the second layer of cooling tubes was

then wound. This was followed with another sixteen layers of magnet wire. The final

layer of cooling tubes was wound, and the finished solenoid was cured thereafter.

The solenoid coil thus, had 28 layers of magnet wire with an average of 48 turns

on each layer which gave a total resistance of 3.7 Ω to the solenoid. The solenoid

can generate up to 8.1 kOe at maximum current of 56 A and voltage of 210 V across

the solenoid terminals. Under quasi-static operations, this magnitude of current can

produce considerable Joule heating which might damage the insulation on the mag-

netic copper wire, which can withstand 200◦C. Water was, therefore, circulated at

6.25 liters/min through the cooling tubes to maintain a constant nominal tempera-

ture during testing of 14◦C inside the transducer. The temperature of the system was

monitored with four K-type thermocouples. Two of the thermocouples were placed

outside the transducer casing, on the surface of the inlet and outlet of the innermost

(first) layer of copper tubes. Another thermocouple was placed on the inner surface

of the innermost layer of the copper tubes and the last thermocouple was placed on

the outer surface of the non-magnetic steel housing. Both the latter thermocouples

were placed roughly at midway along the height of the transducer. An Omega 10-

channel temperature display unit was used to monitor the readings from each of the

69



thermocouples. A certain amount of time was provided after each test run to allow

the system to return to the operating temperature as a precaution to avoid disparity

in the data collected consecutively.

3.2.2 Magnetic Circuit

The transducer was designed and constructed with the goal to obtain a calibrated

and repeatable means for applying magnetic fields and stresses onto the Ni-Mn-Ga

samples. From a magnetism point of view, the main focus of the design was to achieve

maximum magnetic flux lines to pass through the samples with minimum flux leakage.

The top and bottom plates and the outer casing are made of 1018 steel which

serve as a smooth path with minimum reluctance for the flux lines. The magnetic

steel bottom cap is made of stress proof 1144 steel to prevent the relief of any stress,

and hence, deformations during test operation. The top surface of the magnetic

steel bottom cap, on which the sample rests, was machined with a shallow cup-like

structure to allow samples to sit flat and perfectly aligned with axis of symmetry of

the transducer.

An aluminum spool is placed to support the sensing or pickup coil to measure the

magnetic induction in the sample. This coil is made from AWG33 insulated copper

wire wound in two layers around the narrow portion of the aluminum spool. The turns

per turn area calibration of the sensing coil was calculated to be 104 turns per turn

cm2. Since the samples are more than an inch shorter than the drive solenoid, two

magnetic stress proof 1144 steel pieces of equal length were attached to the top and

bottom of the samples (with a little wax and kapton tape) for positioning the sample

symmetrically at the center of both the drive solenoid and the sensing coil. The

70



sensing coil is longer than the Ni-Mn-Ga samples to avoid leakage from the steel end

pieces into the coil’s electromagnetic induction path. The sensing coil is connected to

a Walker Scientific MF-5D integrating fluxmeter which converts the change in voltage

across the sensing coil into magnetic induction reading. The signal from the sensing

coil is also directly fed to the data acquisition system and mathematically converted

into magnetic induction. The integrating fluxmeter utilizes the relation given by

equation (1.11). The 1018 steel pushrod moves through a linear motion precision

bearing which is made of magnetic steel and also helps to create a complete path

for the magnetic flux lines between the sample and transducer casing. The entire

transducer is placed on a load fixture with a 0.7 in thick aluminum 6061-T6 plate in

between. The aluminum plate is used to prevent the magnetic flux lines from diverting

towards the fixture which would result in flux leakage. A 0.125 in depression, slightly

larger than the diameter of the transducer was milled on the aluminum plate to secure

the position of the transducer for precise load alignment.

3.2.3 Magnetic Circuit Calibration

The magnetic field intensity produced by the transducer at maximum drive current

was determined employing three different techniques and the effective magnetic field

per current was then estimated from the average of the three techniques. The three

methods are: (i) low frequency experimental measurements, (ii) magnetostatic finite

element analysis and (iii) Montgomery’s thick solenoid equation. Magnetodynamic

effects were neglected throughout these analyses because the scope of the material

characterization is limited to low frequency sinusoidal excitations of 0.1 Hz.
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For the experimental determination of the solenoid rating, a Walker Scientific

MG-4D Gaussmeter with an HP 245S axial Hall probe was used. Hall probes come

in axial and transverse models for measuring axial or transverse fields, respectively.

As the name suggests, the Gaussmeter gives a measure of the magnetic induction in

units of Gauss of the medium in which the Hall probe is placed though the aim is

actually to measure the magnetic field. The fact that the permeability of free space

in the CGS units is unity is employed in these measurements. Since B=µoH for free

space or air and µo=1 in CGS system of units, B = H so the readings in Gauss given

by the Gaussmeter would be equivalent to the same number of Oersteds which is

the measure of the field. Therefore, all the measurements using the Hall probe were

performed without the different internal components of the transducer so that the

near ideal environment of just free space would be created.

Two types of measurements were performed with the Hall probe always along the

longitudinal axis of the drive solenoid. In the first type of measurements, voltage

levels were varied with the Hall probe at different fixed distances from the bottom

of the solenoid. In the second type, the voltage was kept constant at different levels

and the distance of the probe from the bottom of the solenoid was varied.

Fig. 3.3 shows the field intensity observed along the longitudinal axis at various

heights from the bottom of the solenoid at different DC voltage levels and without the

top and bottom magnetic steel plates. It is seen that the maximum field intensity is

almost at the midpoint along the height of the solenoid and the field decreases at the

ends in agreement with the theoretical field intensity behavior of solenoids. The graph

on the left is plotted with the actual experimental data and the graph on the right is

just the corresponding spline approximation of the same data points. It is noted that
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the reference voltages shown represent the output from the data acquisition system

which are 60 times smaller than the true voltage across the solenoid. Since the active

sample is positioned at the center and midpoint along the height of the solenoid on

the longitudinal axis, the rating is calculated based on the intensity at the midpoint

rather than considering the distribution along the length that would be occupied by

the active sample. It is thus, assumed that the magnetic field strength is constant

along the length of the active sample. This is a fairly good approximation as will

be seen from the magnetic field distribution curve from the finite element analysis

simulation.

Figure 3.3: Magnetic field at different DC voltage levels along the height of the
solenoid.
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Fig. 3.4 shows the magnetic field intensity along the longitudinal axis of the

solenoid at different heights when a constant DC voltage of 60V (1V output from

the data acquisition system) is applied across the coil terminals. In this case, the

bottom magnetic steel plate is present. The presence of the steel plate, which has a

much higher permeability than air, causes the magnetic flux to concentrate resulting

in a higher magnetic induction near the bottom. Comparing Figs. 3.3 and 3.4 for

the 1V case (output from the data acquisition system), it is observed that even by

introducing just the bottom plate, there is a big improvement in the magnetic in-

duction and correspondingly the magnetic field concentration inside the transducer.

Taking the average rating from the four different voltages from Fig. 3.3, a rating of

132.45 Oe/A is obtained at the mid-height of the solenoid and from Fig. 3.4, a rating

of 160 Oe/A is obtained. Since in practice both the upper and lower steel plates

would be present along with the interior components of the transducer, the true rat-

ing would be slightly higher than these values. The FEA gives a rating value that

seems more reasonable.

Finite element analysis of the transducer’s magnetic circuit was performed using

FEMM 3.2, a 2-D specialized freeware package capable of very accurate magneto-

static calculations. The analysis performed here considers 2-D axisymmetry about

the longitudinal axis of the solenoid. The current density was assigned as the only

input in the analysis and was calculated from actual dimensions and input voltage.

The maximum current flowing in the solenoid coil is 56 A and the cross sectional area

occupied by the coils is 44.6× 10−4 m2 which was calculated from the geometry of

the coil. The ideal number of turns that could be accommodated was calculated to

be 1500 but due to losses arising from uneven packing of the coil and the space taken
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Figure 3.4: Variation of the magnetic induction at different heights from the bottom
of the solenoid for 60V true voltage.

up by the wire isolation and epoxy compound, the effective number of turns of the

coil was estimated to be 1325. The current density was then calculated by dividing

the product of the number of turns and current in each winding by the cross sectional

area of the windings. The value of the current density was 16.64 MA/m2. Since the

permeability of Ni-Mn-Ga is not readily available, a specimen of known permeability

was placed in the active sample position in the finite element geometry. An AISI

1018 cylindrical sample was used for this purpose since the data for this material was

readily available in the software database. Fig. 3.5 shows the magnetic induction and

the flux line contours in the transducer when a 0.25 in diameter 2 in long AISI 1018

is substituted in the position of Ni-Mn-Ga and the steel end pieces. The figure shows

flux lines bowing away from the longitudinal axis of the transducer which indicates

flux leakage. The curved line outside the transducer is the defined boundary beyond

which the flux lines are assumed to not escape.
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Figure 3.5: 2-D axisymmetric FEA output showing the magnetic flux density distri-
bution and flux line contours in the transducer with AISI 1018 as the test sample.

Fig. 3.6(a) shows the distribution of magnetic field along the length of the AISI

1018 sample. The zero on the x-axis is the bottom of the steel sample and since the

total length of the sample is 2 in (5.08 cm), the magnetic field intensity at the midpoint

along the length of the steel sample is of primary interest,i.e., at 2.54 cm. Since the

actual Ni-Mn-Ga samples are only an inch (2.54cm) long, constant magnetic field

along the length of the sample is assumed. With this assumption, a value of 175 Oe/A

for field per current rating of the coil is obtained. Fig. 3.6(b) shows software output

representing the variation of magnetic flux density along the length of the 1018 steel

specimen.
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(a) (b)

Figure 3.6: 2-D axisymmetric FEA calculation of (a) magnetic flux density and (b)
magnetic field intensity along the the centerline of the AISI 1018 sample.

In order to test the consistency of the field per current rating of the solenoid,

a different material with a known permeability and saturation magnetization was

chosen for the simulation. The simulation with AISI 1018 rod was done with maxi-

mum current flowing through the solenoid because steel saturates at a field of about

300 kA/m. Vanadium permendur reaches saturation at about 2.39 T and in a field

strength of 79 kA/m, so the second simulation was performed by placing a rod of vana-

dium permendur of the same size in the active sample position. A current density

corresponding to a current one twelfth of the maximum current (56 A) was assigned

to the solenoid cross sectional geometry so that the applied field would produce an

induction in the material with about the same magnitude as its saturation induction.

From Fig. 3.7, it is seen that due to less current flowing through the solenoid, the

AISI 1018 parts are not saturated but the vanadium permendur part is saturated.

The flux lines do not bow away from the longitudinal axis of the solenoid as much as
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in the case of AISI 1018 because the relative permeability of vanadium is about 6856

and and that of AISI 1018 is about 529. The high relative permeability of vanadium

permendur attracts more flux lines towards it and hence more induction for the same

magnitude of the field. Figs. 3.8(a)-(b) show the variation of the magnetic induction

and field along the length of the sample respectively. Again we observe the values

at the middle of the sample length which gives field per current rating of about

188 Oe/A.

Figure 3.7: 2-D axisymmetric FEA output showing the magnetic flux density distri-
bution and flux line contours in the transducer with vanadium permendur as the test
sample.

Finally, the equation for a thick solenoid coil given by Montgomery [14] was also

employed to estimate the field per current rating of the solenoid. Equation (1.3)
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(a) (b)

Figure 3.8: 2-D axisymmetric FEA calculation of (a) magnetic flux density and (b)
magnetic field intensity along the the centerline of vanadium permendur sample.

incorporates the geometrical features of the solenoid and gives the field at the center

of the solenoid. For r1= 1.06 in, r2= 3.3 in, L= 3.4 in, i= 56 A and N= 1325,

equations (1.1)-(1.5) give Ho=160 Oe/A. It should be noted that this method does

not take into account the material properties at the center of the solenoid. The field

per current rating of the coil should be higher than this value due to the presence

of the various magnetic steel components at the center of the transducer. With the

results from all the different methods of solenoid field calibration, a field per current

rating of 167 Oe/A was chosen to comply with the different results.

3.3 Loading Fixture

For quasi-static testing with dead weights, a stable fixture with an almost point

load application arrangement was necessary to avoid any bending moments on the

sample. Since the tests were conducted at very low frequencies but large loads, a
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Calibration technique Rating Used rating
(Oe/A) (Oe/A)

Hall probe (constant voltages varying height) 132.45
Hall probe (60 V input varying height) 160
FEA with AISI 1018 rod 175 167
FEA with vanadium permendur 188
Solenoid geometry equations 160

Table 3.4: Field per current rating values obtained from different methods and the
used rating value.

loading beam arrangement was opted for the application of stress on the sample. The

fixture is a table-like structure constructed entirely with Unistrut channels (Fig. 3.1).

The fixture was designed to supply loads up to 1500 lbs and was bolted to the floor.

The load fixture basically employs a hanging weight arrangement that is centered on

the structure. The top and bottom loading bars are made of 1018 steel with Unistrut

channels welded on the sides to enhance the section modulus of the bars. The two

bars are connected with two 1018 steel rods that are threaded at the ends so that

they can be tightened with nuts after engaging them with the two bars. The two

steel rods pass through two linear motion precision bearings on each side to prevent

the generation of undesired moments on the sample which may arise from the tilting

of the loading bars. The two linear motion bearings are supported inside steel block

housings that are adjustable along the width of the table. Further, with a considerable

length of the two rods threaded at the ends, the distance between the bars may be

adjusted. Additional constructive details are provided in Appendix B.
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3.3.1 Column Design

The main design considerations for load were involved in the loading bars, the

threaded rods connecting the upper and lower loading bars, the load distributor,

the eye bolts and the threaded connectors. The P1000 Unistrut channels were used

almost entirely in the structure along with a few P3000 channels at positions where

strength was not a serious issue. Unistrut channels were used because of the readily

available data on beam and column loading.

(a) (b)

Figure 3.9: (a) Section dimensions of P1000 channel in inches(left) and centimeters
(right) (b) Section dimensions of P3000 channel in inches(left) and centimeters (right).

Channel
Section Axis 1-1 Axis 2-2

area I S I S
in2 cm2 in4 cm4 in3 cm3 in4 cm4 in3 cm3

P1000 0.556 3.6 0.185 7.7 0.202 3.3 0.236 9.8 0.290 4.7
P3000 0.504 3.25 0.12 5 0.154 2.52 0.204 8.5 0.253 4.15

Table 3.5: Section properties of Unistrut channels.
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Table 3.5 gives the values of some important parameters of P1000 and P3000 that

were used for the design of the fixture. Since the aim was to load the active samples

up to 1000 lbs, there were two starting design considerations: (1) the height of the

loading fixture to provide adequate space for the loading trays and (2) avoid buckling

of the fixture. The compressive stress due to a load P on a column of cross sectional

area A is,

σ =
P

A
(3.1)

The height of each leg of the fixture was chosen to be 50 in and the the critical

load was calculated. The critical load is the load at which a column fails by buckling

and can be well below the yield stress of the material. The slenderness ratio of a

column plays a very important role in the calculation of the critical load. It is given

by,

Sr =
l

k
(3.2)

where l is the length of the column and k is the radius of gyration. For a short

column, Sr <10. The radius of gyration k is defined as,

k =

√
I

A
(3.3)

where I is the smallest area moment of inertia (second moment of area) of the column

cross section (about any neutral axis) and A is the area at the same cross section.

The Euler-column formula for the critical load is,

Pcr =
π2EI

l2eff

(3.4)

where E is the Young’s modulus of the material. Using equations (3.2) and (3.4), the

critical unit load may be expressed as,

Pcr

A
=
π2EA

S2
r

(3.5)
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Fig. 3.10 shows the column failure lines in which equations (3.1) and (3.5) have

been plotted against the slenderness ratio. The compressive yield strength of the

material Syc is used as the value for σ in equation (3.1) and the critical unit load

from equation (3.5) is plotted on the same axis as the material strength. The enve-

lope OABCO seemed to be a safe region for column unit loads, however, experiments

demonstrated that columns often failed in the loading region ABDA near the intersec-

tion B of the two curves. A parabolic curve was fitted between point A and tangent

point D which is the intersection of the Euler curve (equation (3.5)) and a horizontal

line at Syc/2. The slenderness ratio (Sr)D at point D is given by,

(Sr)D = π

√
2E

Syc

(3.6)

The equation of the parabola between points A and D is,

Pcr

A
= Sy −

1

E

[
SySr

2π

]2
(3.7)

If (Sr)D ≥ Sr, equation (3.5) is used otherwise equation (3.7) is used. For the

P1000 free-fixed channels, leff = 2.1l, k=1.5 cm and Sr=181.98. (Sr)D=127.7 using

the value for tensile yield stress Syt instead of compressive yield stress Syc. The value

for (Sr)D would be even smaller if Syc is used since Syc > Syt. So, Sr > (Sr)D.

Therefore, using equation (3.4) with E=200 GPa and I=7.7×10−8 m2 (smallest area

moment of inertia is the one about axis 1-1) from Table 3.5, taking a factor of safety

of 2, Pcr=2398.5 lbs.

From the column loading data (see Appendix C) it was seen that a P1000 column

could withstand loads upto 2500 lbs when loaded at the slot face which closely agrees

with the value calculated. The choice for the height of the channel was safe because
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Figure 3.10: Construction of column failure lines [16].

each leg would be subjected to only 250 lbs when a total load of 1000 lbs would be

applied.

3.3.2 Connecting Rods and Thread Design

The connecting rods linking the upper and lower loading bars were also designed

for 1000 lbs. The two connecting rods are threaded at the ends so that they sit in

the holes of the upper and lower loading bars. The two connecting bars are held in

position with the loading bars with appropriate nuts. Since the two connecting rods

would always be in tension when loaded, design considerations were performed with

the tensile strength data. The tensile stress in any specimen is also given by equation

(3.1) where P is now the tensile force applied and A is the cross sectional area of

the specimen. A constraint was selected for the principal stress σ1 to not exceed

one fourth the value of tensile yield stress Syt. With Syt=360 Mpa for AISI 1018,
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the factor of safety is N=Syt/σ1=4 resulting in σ1=128.67 MPa. Substituting this

value of σ1 in equation (3.1), we get diameter d=0.30 in. Therefore, two connecting

rods of diameter 0.5 in were chosen. The next step was to design the threads on the

connecting rods which would be subjected to shear load. One possible shear-failure

mode involves stripping of threads out of the nut or off the screw which is dependant

on the relative strengths of the nut and screw materials. If the nut material is weaker,

it may strip its threads at its major diameter and if the screw is weaker then it may

strip its threads at the minor diameter. If both the nut and screw are of the same

material, then thread stripping may occur at the pitch diameter. Here, we will assume

that the load is shared equally among the threads of the connecting rods for a total

load of 1000 lbs. The stripping area for As for one screw thread is the area of the

cylinder of its minor diameter dr which is given by,

As = πdrwip (3.8)

where p is the thread pitch and wi is the factor that defines the percentage of the

pitch occupied by the metal at the minor diameter. A similar equation can be written

for the stripping area of a single thread of a nut at its major diameter d.

As = πdwop (3.9)

where wo is a similar factor as wi but for the major diameter.

The values for wi and wo are set by the United National Standard (UNS) screw

threads. For a 0.5-13 UNC screw threads, wi=0.8, dr=0.4001 in, p=0.07692 in. This

gives a stripping area As=0.0775 in2 and a shear stress τs = P/2As=44.63 MPa on

one thread. If three nuts of effective height 0.43 in are engaged, total screw threads

engaged would be 13×0.43×3≈17. The total strip area would be multiplied by 17 and,
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therefore, τs=2.63 MPa which is a low and safe working value. A similar calculation

can be performed with the nut threads except with wo=0.88 and d=0.5 in. For the

engagement of 17 threads, τs=0.955 MPa which is also a safe working value.

3.3.3 Loading Beam Design

The upper and lower loading beams are the most important structures in the

fixture which demand minimum bending and deflection to prevent the two connecting

rods at its ends from moving closer toward the center. If the two connecting rods

move closer to one another due to the bending of the beams, they exert extra force

on the linear motion guide bearings which results in bearing damage and a smooth

vertical motion would not exist from the active sample strain. This situation would

also give rise to an opposing force on the movement of the active sample. Simple

schematics for the loading on the upper and lower beams have been illustrated in

Fig. 3.11(a) and (b) respectively.

(a) (b)

Figure 3.11: (a) Schematic of upper loading beam (b) Schematic of lower loading
beam .

The upper beam can be thought of as a combination of two cantilever beams on

either side. An assumption is made that a plane in the cross section of the beam
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exists at the point of support which acts as if it were fixed to a rigid support. The

bending stress for any beam is given by,

σ =
My

I
(3.10)

where M is the moment along the length of the beam, y is the distance measured

perpendicular to the neutral axis toward the edges of the beam and I is the area

moment of inertia about the neutral axis. The length L for the beams is taken as the

distance between the two 0.5 in diameter holes that are 20.375 in apart.

Figure 3.12: Cross section of the upper and lower loading beams.

Fig. 3.12 shows the cross section of the loading beams. The neutral axis is the

horizontal axis or the axis 2-2 for the P1000 channels. For both the upper and

lower loading beams, the maximum bending moment would occur at the midpoint

along the length of the bar at the top (tension) and bottom(compression) edges. The

moment at the midpoint along the length is given by M=(P/2)×0.5L=288.17 Nm,

y=0.02m and I=2×(I of each P1000 channel about axis 2-2)+(I of the square cross

section bar)=0.371×10−6. Using equation (3.10), we get σmax=16.03 Mpa. The end

deflection δ can be computed from δ=PL3/24EI=0.17 mm. The actual deflection
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would be slightly more than this value due to the holes present in the beams and the

stress concentration factor due to the small hole at the center has not been considered.

The bending stress analysis for the lower beam would be similar to the upper beam

except that the bending stress value would be increased by the stress concentration

factor for the hole of diameter 0.4375 in at the midpoint of the beam. For the

lower loading beam, h=1.5 in and d/h=0.292 which would give a stress concentration

factor Kt
∼=Ae[b(d/w)]=2.16 using Fig. 3.13. The maximum bending stress for the lower

loading beam is then σmax=34.6 Mpa.

Figure 3.13: Geometric stress concentration factor Kt for a bar with transverse hole
in bending [16].

A complete ANSYS analysis was also performed on the two loading beams for the

deflection and Von-Mises stress which is included in Appendix D. A comparison is

made between the single square section bar and the same bar with the P1000 channels
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attached to the sides for a total applied load of 1000 lbs. We see that the design is

highly improved with the addition of the C channels.

3.3.4 Load Distributor Design

The flat circular load distributor was designed using ANSYS (see Appendix D)

by monitoring the Von-Mises stress, the total vertical deflection and the change in

shape. The four chained links of threaded connectors run at an angle of about 45◦

to the vertical from the load distributor. Since the holes on the load distributor were

drilled perpendicular to the surface of the distributor, the contact area between each

threaded connector and the distributor is very small and can be taken as almost a

point contact. Therefore, a point force was assumed at these contact areas. The

ANSYS analysis shows high stress areas at the small contact points but the rest of

the area is in the safe region. The vertical deflection is also very small with little

change in shape.

3.3.5 Eye bolts, Threaded Connectors and Weights

The eyebolts are the main connecting devices between the loading beams and the

loading trays. Two eyebolts were used, one on the lower loading beam and the other

on the load distributor. The eye bolts were chosen based on the load bearing capacity

information which was readily available on the manufacturer’s product specification

sheet. The two shoulder pattern eyebolts are made of forged steel with a maximum

load capacity of 1800 lbs when the threaded shank length of 1.38 lbs is fully engaged.

The threaded connectors were also chosen according to the maximum load bearing

capacity. All threaded connectors are 0.25 in in diameter with a maximum load

capacity of 880 lbs except the one connecting the two eyebolts which is 0.375 in with
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a maximum load capacity of 2200 lbs. This big threaded connector is subjected to

the total load that is applied. The specifications for the eyebolts and the threaded

connectors are given in Appendix C.

The load is applied in the form of lead blocks each with dimensions 7.25”×4”×2”

and weighing about 24 lbs. The lead bricks were made from molten lead cast in ingots.

The lead bricks were placed on loading trays with each loading tray accomodating up

to 300 lbs. The first loading tray is connected to the load distributor through a link

of threaded connectors at 45◦ to the vertical and to the lower trays with threaded

connectors welded to the sides of the trays.

3.3.6 Arm Arrangement for 0-50 lbs Loading

The main loading fixture cannot be used for loading between 0-50 lbs due to the

weight of the loading beam arrangement which is itself almost 50 lbs. In order to

know the exact behavior of the samples under loading, strain and magnetization data

were necessary for lower loads also. Testing the samples at low loads would provide

the twinning region for strain which is an important parameter that could provide an

answer to the magnitude of strain produced.

The loading arm arrangement consists of a simply supported beam resting on

a fulcrum at one end and on a steel ball at the other end which is placed on top

of the push rod. The purpose of the steel ball is to create a point contact for the

applied stress and prevent the generation of any moments on the sample. The fulcrum

arrangement with a wedge support at the other end provides a line contact and reduces

the friction forces which may otherwise be considerable if ball bearings were to be

used. The height of the arm arrangement is adjustable for incorporating a force
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transducer in between the pushrod and the arm. An addition was made to the simple

loading arm arrangement for the constant bias voltage with the addition of a bolt and

belleville spring washers. The belleville spring washers were used as the main force

generating components with the bolt providing the compression on the sample. The

belleville washers were placed at the midpoint along the length of the loading arm so

that approximately half the force applied on the bolt at the center was transmitted

to the active sample.

3.4 Additional Instrumentation, Amplifiers and Data Acqui-
sition

A 208C04 ICP type PCB Piezotronics force transducer is screwed at the center

of the bottom surface of the top loading beam and a non-magnetic stainless steel

piece acts as a coupler between the pushrod and the loading arrangement. A 484B11

single channel signal conditioner is used with the force transducer. The load fixture

comprises an extended platform which is used for supporting the instruments used for

the tests. The strain in the active samples was measured with a Schaevitz MHR025

LVDT with a sensitivity of 1.26 V/mils with the core placed on the top surface of

the midpoint of the top loading beam. A separate support was made for the LVDT

from aluminum 6061-T6 blocks that was placed on a linear precision slider stage.

The LVDT is connected to the LVDT circuit board and the position of the core is

adjusted using the voltage reading from an Agilent 34401A multimeter. The LVDT

stage is fixed on the top surface of the transducer with a flat piece of aluminum plate

in between to prevent the leakage of magnetic flux.

The transducer was driven with two 4 kW Techron 7790 amplifiers arranged in

series that produced an overall average voltage gain of 60 with a maximum current
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of 56 A flowing in the transducer circuit at the rated solenoid resistance of 3.7 Ω.

The two amplifiers, with the nomenclature as ”master” and ”slave” can be connected

in either the current control mode or the voltage control mode. A heavy duty lever

switch was employed to switch the main power supply for the amplifiers.

Data acquisition was accomplished using a Data Physics DAQ board with Dy-

namic Mobilizer software running on a PC. Due to the noise in the system, low

sampling rate was used and the tests at 0.1 Hz were run for a time window of 25.166

seconds to get a significant wavelength of the periodic signal.
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CHAPTER 4

RESULTS

4.1 Introduction

The Ni-Mn-Ga samples employed in this study (see Section 3.1 for composition

specifications) were tested under sinusoidal magnetic fields of frequency 0.1 Hz and

various loading conditions from almost zero load up to blocking loads. Magnetic and

mechanical measurements include magnetic induction and strain, from which various

magnetic and magneto-mechanical properties were calculated. Since the transducer

is made of ferromagnetic materials and therefore, exhibits magnetostriction effects,

magnetostriction data on AISI 1144 steel is presented first. For purposes of con-

trasting the magnetoelastic behavior of Ni-Mn-Ga with a conventional ferromagnetic

material, strain and magnetization data for nickel 200 is provided as well.

4.2 Data Processing

A few points need to be explained beforehand in order to avoid ambiguity re-

garding the figures presented in the results. The field-induced strain curves plotted

against the field values are the reversible strains which have been obtained after ex-

cluding the first cycle of the sinusoidal current signal and the corresponding portion
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of the strain signal from the LVDT. Since the summing circuit used to nullify the DC

offset of the output signal from the DAC inverts the signal, the final signal is inverted

with respect to the the one generated by the DAC system. Hence, after excluding the

first cycle of the current signal, the remaining signal still starts with a negative half

cycle. All the figures with cyclic field plots (microstrain vs field and magnetization

vs field) have been plotted using a single current cycle after excluding the first cycle.

Another point to be noted is that in all the strain vs field graphs, the portion of the

curve in the negative region of the field shows slightly more strain than the one in the

positive region of the field. This is not due to the material behavior but due to the

Joule heating of the solenoid. When a peak voltage of 3.5V is output from the DAC

system, the gain (60) of the amplifiers creates a voltage of 210V across the terminals

of the solenoid and since each test is run for about 25 seconds, a considerable amount

of heating occurs in the solenoid. The heat increases the resistance of the solenoid

copper wires which decreases the current and hence, a smaller field is produced. Since

more heating occurs in the second half cycle of the sinusoidal field, the peak field value

is lower and lesser strain is produced. The decrease in field follows an exponential

envelope.

The tests under load were carried out using the loading fixture for loads greater

than 50 lbs and the loading arm for loads between 0 and 50 lbs. When using the

loading arm with the belleville washers, the sample does not experience constant

force due to the cyclic contraction of the sample in the cyclic field. The force acting

on the sample decreases as it contracts and returns to the starting value when the

sample gains its original length. In the figures showing the maximum strain versus

applied stress, a slight off-trend feature is seen in the strain decay between 0-50 lbs
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(0-7.03 MPa) and that above 50 lbs. This is because of the points being plotted

against the initial force values which are not exactly the true force values during the

actuation of the sample as explained above.

4.3 AISI 1144 Steel Experimental Results

Magnetic steel is known to exhibit appreciable amount of magnetostriction though

very small as compared to the field-induced strain produced by the Ni-Mn-Ga samples.

Therefore, to get an accurate measure of the field-induced strain produced by the Ni-

Mn-Ga samples, the magnetostriction of steel has to be subtracted for each loaded

as well as unloaded test. Besides the magnetostriction of the end steel pieces, there

would be some magnetostriction due to all the magnetic steel components present

in the path of the magnetic flux, i.e, from the magnetostriction of the bottom plate,

magnetic base, bottom cap and the push rod. An aluminum 6061-T6 sample of the

same size as the Ni-Mn-Ga samples was positioned inside the transducer in the same

way as the active samples and tests were run for the same magnitude of the magnetic

field, loaded and unloaded conditions. Aluminum 6061-T6 being non-magnetic, does

not produce any magnetostriction and the strain produced is entirely due to the

magnetostriction of magnetic steel components in the transducer. This strain is then

subtracted from the strain obtained with the active sample in position (with the steel

end pieces).

Fig. 4.1 shows the magnetostriction observed in the magnetic steel components

of the transducer including the end pieces with the aluminum piece in place of the

Ni-Mn-Ga samples. The total effective length of the steel components was taken as

the sum of the length of the two end pieces and half the length of the pushrod inside
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Figure 4.1: Magnetostriction of steel end pieces and other magnetic steel components
in the transducer at 0.1 Hz.

the transducer (since the entire length of the pushrod in the transducer would not

be subjected to the maximum field strength). Steel extends at low fields, undergoes

contraction as the field is increased and at higher fields, starts extending again. The

tendency of steel to extend again at higher fields affects the strain versus field curves

of the active sample at the point of peak magnetic field. Another interesting feature

to note is that as the load is increased, steel tries to extend more instead of contract-

ing. The typical ”W” shape for steel magnetostriction is clearly seen in the figure.

Generally, the magnetostriction of steel decreases with increase in carbon content.
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The subtraction of steel magnetostriction from the sample data must be done

carefully by making a basis for subtraction, i.e. level the strain curve of the sample

and that of steel on the same reference. For this purpose, the point at which the

sinusoidal current is zero is considered. The same point is then located in the time

trace of strain for steel and the active sample. This point is then set as the zero

for both the curves and the subtraction is performed. The idea for this method of

subtraction is based on the fact that the strain curve for the steel components must

fit in the strain curve for the active sample when positioned in the transducer.

4.4 Nickel 200 Experimental Results

A few tests were also run with a 2 in long 0.25 in diameter nickel 200 rod. Nickel

200 is one of the purest forms of nickel and the nickel that is used in the manufacture

of the Ni-Mn-Ga samples is about 99.99% pure. Thus, it would be relevant to include

the magnetostriction of nickel 200.

Nickel produces negative magnetostriction [1] which means that the application

of magnetic field causes it to contract along its length and the strain saturates at

low fields. From Fig. 4.2, it is seen that the strain saturation occurs at about about

62 ppm. This is obtained with a current of about 20.3 A flowing through the solenoid

at a corresponding field of about 269.78 kA/m

The magnetization curve in Fig. 4.3 shows that saturation is close to 260 kA/m

which is typical for nickel at a field value of about 225 kA/m. The magnetization

curve shown above is for a current of 16.22 A flowing through the solenoid. The basic

idea of presenting the data for nickel is to show that even though nickel is weakly

magnetostrictive and gallium and manganese are not magnetostrictive at all, a proper
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Figure 4.2: Magnetostriction of Ni 200 at 0.1 Hz different amplitude sinusoidal fields.

Figure 4.3: Magnetization of Ni 200 at 0.1 Hz sinusoidal field.
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composition of these three elements can initiate a crystal structure with completely

different magnetic and mechanical properties producing large field-induced strains.

4.5 Ni-Mn-Ga Experimental Results

The off-stoichiometric Ni-Mn-Ga samples were tested under quasistatic magnetic

fields primarily at 0.1 Hz. As mentioned in Section 1.1, the samples were activated

using a collinear compressive stress and field as opposed to the conventional drive

configuration of orthogonal compressive stress-field pair. The collinear drive configu-

ration is shown again in Fig. 4.4. It was observed that with the collinear compressive

stress-field pair, the strain produced in the samples was negative, i.e., the samples

contracted on the application of magnetic field. The strain is produced in a single

direction (always negative) with respect to the original length unlike in materials such

as electrostrictives which may show both positive and negative (up to some extent

depending on the amount of pre-poling) strain. All the samples were tested as cast

Figure 4.4: Solenoid based drive configuration.
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without any prior ”training” through field cycling or thermal treatments. Mechanical

training is usually the standard procedure adopted before the testing of these shape

memory alloys.

4.5.1 Results for dls-1-136-1

The dls-1-136-1 sample is the sample that produced the highest field-induced

strain. The sample produced a negative strain of 6379 ppm under zero load (only

the pushrod which weighed 39 g) at a peak field of 8.1 kOe (650 kA/m). Fig. 4.5

shows the curve obtained by plotting strain against the sinusoidal magnetic field. It

is seen that the sample contracts when activated by a magnetic field and the strain

produced by the sample is in a single direction with respect to the original length,

i.e., for both the positive and negative half cycles of the magnetic field, only negative

strain is observed.

The crossover point occurs at 855 ppm which is the point corresponding to zero

magnetic field. The existence of the crossover point may be partly due to the magnetic

remanence of the sample which sustains a certain magnitude of strain even when the

field is zero. However, more complicated effects related to twin boundary motion

relaxation may be possible. The strain and field share a largely non-linear relation

at higher fields but is almost linear at low fields. The piezomagnetic coefficient d33

was calculated at increasing and decreasing fields and the maximum values obtained

were 2.7114 × 10−7 m/A and 7 × 10−8 m/A. So there is more strain per field when

the field is increasing than when the field is decreasing. The maximum value for d33

in the increasing field is obtained near the point of zero field. This can be observed

in Fig. 4.6. When the field increases, d33 first decreases as the point of zero strain is
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Figure 4.5: Strain vs magnetic field curve for dls-1-136-1 at zero load and 0.1 Hz.

approached and after the point of zero strain, it increases and then finally approaches

zero at the point of strain saturation.

Fig. 4.7 shows the magnetization plotted against the field. The magnetization

is seen to saturate at about 381 kA/m (48.31 emu/gm) which is the highest amont

the samples tested. The coercive field is also very low at about 8.83 kA/m and the

remanent field is about 183.03 kA/m (0.23 T). The maximum differential permeability

was found to be 38.16 from the induction versus field curves.

Fig. 4.8 compares the strain curves produced from tests conducted at three differ-

ent low frequencies 0.1, 0.5 and 1 Hz. A very clear increase in the crossover point is

seen with the increase in frequency. The increase in the crossover point with increase

in frequency besides being due to just increasing remanence, may also be due to the
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Figure 4.6: Variation of piezomagnetic coefficient d33 with magnetic field for dls-1-
136-1 at zero load and 0.1 Hz field.

frequency dependant relaxation of the twin boundary motion. The increase in rema-

nence implies greater sustained magnetization and hence, larger sustained strain at

zero field. At each frequency the maximum d33 has a greater value in increasing field

than in decreasing field. The increase in coercive field can also be observed with the

increase in field.

The magnetization curves in Fig. 4.9 also show a prominent difference with in-

crease in frequency. The remanence and coercivity increase with frequency increasing

the total hysteresis. The magnetic loss, therefore, increases with frequency. Tests

were conducted on the dls-1-136-1 sample at various loads up to 414 lbs (58.23 MPa)
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Figure 4.7: Magnetization vs magnetic field curve for dls-1-136-1 at zero load and 0.1
Hz.

to see the effect on field-induced strain. Sinusoidal magnetic field of 0.1 Hz and am-

plitude 8.1 kOe was applied to the sample at each load. The results are shown in

Figs. 4.10 and 4.11.

The strain is seen to be very sensitive to load and decreases drastically with in-

crease in load. The first applied load is 0.9 lbs (0.13 MPa) and the strain produced

is 3290 ppm which is almost half of the value at zero load, i.e, 6379 ppm. This shows

that the work producing capacity of this sample is very low. Data was also collected

for magnetization at different loads but the change in magnetization was insignificant

with the change in applied load as illustrated in Fig. 4.12. This seemingly contra-

dicts the law of approach of anhysteretic magnetization [9] observed in ferromagnetic

materials under increasing compressive or tensile stress.
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Figure 4.8: Strain vs magnetic field curves for dls-1-136-1 at 0.1, 0.5 and 1 Hz under
zero load.

Figure 4.9: Magnetization vs magnetic field curves for dls-1-136-1 at 0.1, 0.5 and 1
Hz under zero load.

104



Figure 4.10: Strain vs magnetic field curves for dls-1-136-1 at 0.1 Hz and different
loads up to 40 lbs.

Figure 4.11: Strain vs magnetic field curve for dls-1-136-1 at 0.1 Hz and different
loads starting from 50 lbs.
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Figure 4.12: Magnetization curves for dls-1-136-1 at 0.1 Hz magnetic field under
different loads.

The maximum value of d33 at each applied stress is shown in Fig. 4.13 for both

increasing and decreasing fields. Maximum value of d33 occurs at zero applied stress

for both increasing and decreasing fields and the value decreases with applied stress.

Maximum d33 is always higher for increasing field than for decreasing field at each

applied stress.

The maximum field-induced strain for each load is plotted against the applied

stress in Fig. 4.14. The rapid reduction in strain even with small changes in load at

low loads is an interesting feature of the sample. The rate of decrease in strain is

gradual after about 15 MPa. The figure infers the low work capability of this sample

even at small loads.
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Figure 4.13: Maximum piezomagnetic coefficient d33 vs applied stress for dls-1-136-1.

The dls-1-136-1 sample was subjected to a major loop compression test starting at

zero magnetic field and increasing levels of DC magnetic field which were generated

using a DC power supply. The DC magnetic field values start from 32.33 kA/m and

then in multiples of 54 kA/m up to a maximum value of 378 kA/m. It should be

noted that the maximum value of the applied DC magnetic field does not saturate

the sample. Fig. 4.15 shows the major compressive stress-strain loops for the different

values of DC magnetic fields. Along the line of zero compressive stress, the loops for

each DC field has a certain offset showing the initial contraction of the sample due to

the field before the application of stress. The maximum load subjected to the sample

was 95 lbs (13.36 MPa). It is observed that the stress-strain hysteresis decreases with

increasing DC field and there is a certain amount of non-closure for each loop. The
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Figure 4.14: Maximum field-induced strain at 0.1 Hz drive vs applied stress for dls-
1-136-1.

non-closure of the loops may be due to the remanent magnetization that retains a

certain magnitude of contraction even after the stress is completely removed. Another

feature of these loops is that as the stress is increased, the material gets dominated

by the mechanical effects as compared to the lower stress region where the magnetic

effects dominate.

Fig. 4.16 is a reproduction of Fig. 4.15 showing only the loading portion of the

curves with all the initial contractions at the various field levels set to zero, i.e.

removing all the initial strain offsets of the loading curves of Fig. 4.15. It is observed

that the curves become steeper with increasing DC field and the difference between

the curves becomes smaller with increasing field. The curve for the zero field shows
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Figure 4.15: Strain vs compressive stress loops at different levels of applied DC mag-
netic field for dls-1-136-1 with the dash line showing the loop for zero field.

Figure 4.16: Loading curve of compressive stress-strain loop at different DC magnetic
fields for dls-1-136-1.
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neither a well defined starting twinning stress σs nor a prominent finish twinning

stress σf for the applied range of compressive stress but it can be seen that σf >10

MPa and σs <0.1 MPa.

The variation of Young’s modulus with compressive stress at different DC field

levels is shown in Fig. 4.17. The modulus increases with increase in stress and DC

field. There seems to exist a minima for the Young’s modulus at each DC field

level between 1-2 MPa. So the Young’s modulus is higher at the beginning of the

compression and slowly decreases reaching a minimum after which it again increases.

This is typical of shape memory alloys and is due to the softness of the material in

the martensite twinning region but comparatively higher stiffness before and after the

twinning region.

Fig. 4.18 shows second order quadratic fits for the variation of Young’s modulus

with DC field at fixed compressive stress levels which are obtained from Fig. 4.17 by

extracting the Young’s modulus values at different DC fields but at fixed compressive

stress values. The Young’s modulus changed by 186% and 65% at 3 MPa and 12.2

MPa respectively for the range of applied DC field. This further verifies the increase

in the stiffness of the specimen with increasing compressive stress and field.
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Figure 4.17: Variation of Young’s modulus with compressive stress at different DC
fields.

Figure 4.18: Variation of Young’s modulus with applied DC magnetic field at different
compressive stress levels.
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4.5.2 Results for dls-1-125-4

The dls-1-125-4 is the specimen with the highest percentage of manganese and

gallium (dls-1-136-1 also has the same percentage of Ga) but with the lowest valence

electrons per atom of 7.591. The maximum negative strain produced by this sample

is 4300 ppm at 0.1 Hz sinusoidal magnetic field of amplitude 8.1 kOe under zero load.

Fig. 4.19 shows the strain plotted against the magnetic field under zero load. The

crossover point occurs at 621 ppm and the d33 is 9.2769× 10−8 and 3.0847× 10−8 for

increasing and decreasing fields respectively. The piezomagnetic coefficient is greater

in the increasing field than in the decreasing field similar to the trend observed in

dls-1-136-1.

Figure 4.19: Strain vs magnetic field curve for dls-1-125-4 at zero load and 0.1 Hz
sinusoidal magnetic field.
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The variation of d33 with the applied magnetic field at zero load can be seen in

Fig. 4.20 which is similar to dls-1-136-1 except for comparatively lower values. The

strain curve of dls-1-125-4 is different from that of dls-1-136-1 at the points of peak

field. It is seen that the curve does not approach zero gradient in the increasing

field as much as the curve for dls-1-136-1. Hence, d33 does not approach zero at

points of peak fields which can be readily seen from the figure. In the increasing

field, the maximum value of d33 occurs at approximately the point of zero field. The

magnetization curve in Fig. 4.21 shows a saturation magnetization of about 342.8

kA/m (46.08 emu/gm)which is lower than the value for dls-1-136-1. The remanence

and coercivity are about 171.25 kA/m (0.215 T) and 8.25 kA/m respectively.

Figure 4.20: Variation of piezomagnetic coefficient d33 with magnetic field for dls-1-
125-4 at zero load and 0.1 Hz field.
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Figure 4.21: Magnetization vs magnetic field curve for dls-1-125-4 at zero load and
0.1 Hz sinusoidal magnetic field.

The sample was run at two other low frequencies of 0.5 and 1 Hz and the com-

parison of the strain curves for the different frequencies is shown in Fig. 4.22. The

crossover point increases with increase in frequency following the same trend as in

dls-1-136-1. The piezomagnetic coefficient is also greater in the increasing field than

in the decreasing field for all the three frequencies.

The magnetization curves for the three frequencies are shown in Fig. 4.23 and the

increase in hysteresis is prominent. The coercivity and remanence both increase with

increase in frequency.

The results of the tests conducted at different loads are shown in Figs. 4.24, 4.25

and 4.26. Fig. 4.24 shows the field-induced strain curves for loads between 5-40 lbs
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Figure 4.22: Strain vs magnetic field curve for dls-1-125-4 at 0.1, 0.5 and 1 Hz under
zero load.

Figure 4.23: Magnetization vs magnetic field curve for dls-1-125-4 at 0.1, 0.5 and 1
Hz under zero load.
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(0.7-5.63 MPa) at 5 lb increments. Fig. 4.25 shows the field-induced strain for loads

between 50-138 lbs (7.03-19.38 MPa) at 11.8 lb (1.66 MPa) increments and Fig. 4.26

shows the field-induced strain at loads above 150 lbs (21.1 MPa) at 24 lb (3.38 MPa)

increments. It is seen that the change in field-induced strain becomes less significant

at higher compressive stress and the strain hysteresis effect is also diminishing, i.e.

the area engulfed by the strain curve at each compressive stress becomes smaller.

The magnetization curves do not show significant variation with the applied stress.

This is shown is Fig. 4.27 for applied stress range 0-65 MPa. The maximum value

of d33 at different applied stresses is shown in Fig. 4.28 for loads up to 50 lbs (7.03

MPa). The variation of maximum d33 for dls-1-125-4 is significantly different from

that of dls-1-136-1 due to the lower rate of decrease of d33 with stress.

Figure 4.24: Strain vs magnetic field curve for dls-1-125-4 at 0.1 Hz and different
loads between 5-40 lbs.
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Figure 4.25: Strain vs magnetic field curve for dls-1-125-4 at 0.1 Hz and different
loads staring from 50-138 lbs.

Figure 4.26: Strain vs magnetic field curve for dls-1-125-4 at 0.1 Hz and different
loads staring from 150 lbs.
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Figure 4.27: Magnetization curves for dls-1-125-4 at 0.1 Hz magnetic field under
different loads 0-65 MPa.

Fig. 4.29 shows the peak field-induced strain plotted against the various compres-

sive stress levels. The decrease in strain at lower loads is not as sharp as in the case of

dls-1-136-1. The rate of decrease of strain at higher compressive stress is lower than

at lower compressive stress levels which is similar to the effect seen in dls-1-136-1.

After 15 MPa, the strain decay seems to be very gradual.

The dls-1-125-4 sample was subjected to cyclic compressive stress employing the

same method as for dls-1-136-1. The maximum stress applied was 113 lbs (16 MPa).

Fig. 4.30 shows the stress-strain loops for different levels of DC magnetic field. The

stress-strain hysteresis decreases with increasing DC field with the maximum hystere-

sis occurring at zero field. The dashed loop corresponding to zero field shows that

the sample is almost at its maximum compression at the maximum applied stress

118



Figure 4.28: Maximum piezomagnetic coefficient d33 vs applied stress for dls-1-125-4.

of 16 MPa since the strain is almost constant after 14 MPa. This is different from

both dls-1-136-1 and dls-1-61-1 (explained later) where more compression is possible

beyond 16 MPa.

The loading portion of the compressive stress-strain loops of Fig. 4.30 is repro-

duced in Fig. 4.31. It can be inferred from the figure that this sample also becomes

stiffer with increasing field and the change in stiffness with DC field at a constant

stress becomes less significant at higher fields. From the curve corresponding to zero

field, σs ≈ 0.8 MPa but σf >12 MPa.

The variation of Young’s modulus with applied compressive stress is illustrated in

Fig. 4.32 at different DC magnetic fields which is obtained by taking the slope of the

curves in Fig. 4.31. The presence of a modulus minima is clearly seen in the range of
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Figure 4.29: Maximum field-induced strain at 0.1 Hz drive vs applied stress for dls-
1-125-4.

1-2 MPa at the different DC field levels due to a better defined twinning region than

for dls-1-136-1. Fig. 4.33 is obtained from Fig. 4.32 by fitting quadratic curves for

the Young’s modulus at different DC fields for fixed compressive stresses. Percentage

increase of 143% and 66.4% are seen at 3.8 MPa and 13 MPa respectively. It is seen

that the Young’s modulus increases with both stress and field.
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Figure 4.30: Strain vs compressive stress loops at different levels of applied DC mag-
netic field for dls-1-125-4 with the dash line showing the loop for zero field.

Figure 4.31: Loading curve of compressive stress-strain loop at different DC magnetic
fields for dls-1-125-4.
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Figure 4.32: Variation of Young’s modulus with compressive stress at different DC
fields for dls-1-125-4.

Figure 4.33: Variation of Young’s modulus with applied DC magnetic field at different
compressive stress levels for dls-1-125-4.
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4.5.3 Results for dls-1-61-1

The dls-1-61-1 sample produced a peak field-induced strain of 1192 ppm at no load

and 0.1 Hz drive which is shown in Fig. 4.34. The crossover point occurs at 198 ppm

and the piezomagnetic coefficient has a value of 3.7653×10−8 m/A and 2.0128×10−8

m/A for increasing and decreasing fields respectively. It can be inferred that the strain

producing capacity per unit field of this sample is comparable in both increasing and

decreasing fields unlike dls-1-136-1 and dls-1-125-4 where a considerable difference

was noted between the two numbers.

Fig. 4.35 shows the variation of piezomagnetic coefficient d33 with the applied

field at zero load. The behavior is similar to the ones exhibited by dls-1-136-1 and

Figure 4.34: Strain vs magnetic field curve for dls-1-61-1 at zero load and 0.1 Hz
sinusoidal magnetic field.
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Figure 4.35: Variation of piezomagnetic coefficient d33 with magnetic field for dls-1-
61-1 at zero load and 0.1 Hz field.

dls-1-125-4 but the values are comparatively lesser for both increasing and decreasing

fields. Again the slope of the strain curve at peak field in increasing field does not

approach zero as in dls-1-125-4.

The magnetization curve in Fig. 4.36 at 0.1 Hz drive shows a magnetic saturation

of about 371.6 kA/m (47.16 emu/gm) with a remanence and coercivity of 222.97

kA/m (0.28T) and 8.87 kA/m respectively.

The comparative results for strain and magnetization at 0.1, 0.5 and 1 Hz are

shown in Figs. 4.37 and 4.38. The hysteresis increases with increase in frequency.

The increase in coercive field in Fig. 4.37 is also seen in Fig. 4.38 where the points

of zero strain shift away from the zero field line. The crossover point increases in
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Figure 4.36: Magnetization vs magnetic field curve for dls-1-61-1 at zero load and 0.1
Hz sinusoidal magnetic field.

magnitude with the increase in frequency and the maximum d33 coefficient is higher

in the increasing field as compared to its value in the decreasing field.

Fig. 4.39 shows the field-induced strain curves for loads between 0-50 lbs . In

Fig. 4.40 the field-induced strain is plotted against field for loads between 50- 137.8

lbs at 11.8 lb increments and Fig. 4.41 shows the strain for loads starting at 150 lbs

and above at 24 lb increments. A close look at the point of zero strain for all the curves

shows that the right half of the curve does not actually reach zero strain. This might

be due to an effect similar to that observed in Terfenol-D where the demagnetized

sample state is not single valued because of various domain configurations that may

exist at the demagnetized state.
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Figure 4.37: Strain vs magnetic field curve for dls-1-61-1 at 0.1, 0.5 and 1 Hz under
zero load.

Figure 4.38: Magnetization vs magnetic field curve for dls-1-61-1 at 0.1, 0.5 and 1 Hz
under zero load.
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Figure 4.39: Strain vs magnetic field curve for dls-1-61-1 at 0.1 Hz and different loads
between 5 and 50 lbs.

Fig. 4.42 shows the magnetic induction curves for the applied stress range 0-51.5

MPa. As in the other two samples, no significant change is seen in induction with

change in applied stress. The variation of maximum value of d33 with applied stress

is illustrated in Fig. 4.43 with the maximum d33 value always being greater for the

increasing field than for the decreasing field following the same trend as dls-1-136-1

and dls-1-25-4.

The maximum field induced strain at each compressive stress is plotted in Fig. 4.44.

It is seen that there is a drastic decrease in strain for the lower compressive stress

values and this behavior more closely resembles dls-1-136-1 than dls-1-125-4 in which

the rate of decrease is very high at lower stress.

127



Figure 4.40: Strain vs magnetic field curve for dls-1-61-1 at 0.1 Hz and different loads
between 50 and 137.8 lbs.

Figure 4.41: Strain vs magnetic field curve for dls-1-61-1 at 0.1 Hz and different loads
starting at 150 lbs and above.

128



Figure 4.42: Magnetization curves for dls-1-61-1 at 0.1 Hz magnetic field under dif-
ferent loads.

Figure 4.43: Maximum piezomagnetic coefficient d33 vs applied stress for dls-1-61-1.
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The result of the cyclic compression test is shown in Fig. 4.45 and the maximum

hysteresis is associated with the loop corresponding to zero magnetic field. A cer-

tain degree of non-closure is seen for the loop corresponding to zero magnetic field.

However, loop closure is seen for loops at higher fields.

The loading curves for the stress-strain loops are shown in Fig. 4.46 from which

the increase in stiffness with increase in field is clearly seen. The initial negative

strain due to the applied DC field has been offset to zero for comparison. The curve

corresponding to the zero field shows σs ≈ 0.5 MPa but σf > 8 MPa.

Fig. 4.47 shows the variation in Young’s modulus with applied stress at different

DC fields which is obtained from the slopes of the curves in Fig. 4.46. A modulus

minima seems to exist at a comparatively higher range of 2-5 MPa.

Figure 4.44: Maximum field-induced strain at 0.1 Hz drive vs applied stress for dls-
1-61-1.
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Figure 4.45: Strain vs compressive stress loops at different levels of applied DC mag-
netic field for dls-1-61-1 with the dash line showing the loop for zero field.

Figure 4.46: Loading curve of compressive stress-strain loop at different DC magnetic
fields for dls-1-61-1.
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Figure 4.47: Variation of Young’s modulus with compressive stress at different DC
fields for dls-1-61-1.

Figure 4.48: Variation of Young’s modulus with applied DC magnetic field at different
compressive stress levels for dls-1-61-1.
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The softest region, therefore, occurs at a higher stress in dls-1-61-1. Fig. 4.48

shows the variation of the Young’s modulus with DC field at certain fixed stress

values. Percentage changes of 139% and 31% in the Young’s modulus were seen at

5 MPa and 13 MPa respectively. Following the trend of dls-1-136-1 and dls-1-125-4,

the stiffness of the sample increases with applied field and stress.

4.5.4 Results for dls-1-42-1, dls-1-42-2 and dls-1-42-3

The dls-1-42 series samples have lesser percentage of Ga by weight as compared to

dls-1-136-1, dls-1-125-4 and dls-1-61-1 and the magnitude of the field-induced strain

produced by these samples is very weak. The dls-1-42-1, dls-1-42-2 and dls-1-42-3

produced 240, 215 and 177 ppm respectively under zero load. This order of field-

induced strain is comparable to the magnetostrain of the steel end pieces used and

,therefore, the percentage error in the observed strain after the subtraction of steel

magnetostriction would be higher. The dls-1-42 samples were also subjected to higher

loads but due to the error as explained above for weak samples, a clear trend could

not be established and the strain graphs have not been presented. The magnetization

data for the dls-1-42 samples indicate a saturation magnetizations of 323, 330 and 335

kA/m for dls-142-1, dls-1-42-2 and dls-1-42-3 respectively. It is seen that these three

samples do not differ much in their magnetic properties and their capacity to produce

field induced-strain. These values of saturation magnetization are significantly smaller

than the three samples that produced large strains which might explain the low field-

induced strain in the dls-1-42 series. The maximum permeabilities recorded were

32.85, 34.17 and 33.41 H/m for dls-1-41-1, dls-1-42-2 and dls-1-42-3 respectively.

133



4.6 Magnetization Comparison of the Tested Samples with
Samples of Different Composition

This section discusses the mapping of the tested samples based on their compo-

sition by superimposing them on previously developed composition maps [10]. The

samples are mapped in the saturation magnetization versus valence electrons per

atom graph in which the authors have approximated a straight line fit for the data

collected. Fig. 4.49 shows the experimantal saturation magnetization for the tested

samples plotted as a function of the composition based on the valence electrons per

atom. From the figure, it is seen that the tested sample that most closely matches

Figure 4.49: Experimental and calculated saturation magnetization mapping for dif-
ferent Ni-Mn-Ga alloys as a function of e/a ratio as well as for the measurement
obtained from our experiments.
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the straight line fit is the dls-1-125-4. These results on the samples show that the

magnetization does not decrease with the increase in the e/a ratio and a specific trend

may not be possible to define for the samples.

It is seen that the sample that produced the highest field-induced strain has the

highest saturation magnetization value of 48.23 emu/gm while the inactive samples

have saturation magnetization values that are less than 42 emu/gm. A sample with

the composition in the shaded region of Fig. 1.1 expected to show large field-induced

strain would have saturation magnetization value in the range 60-64 emu/gm. A

higher saturation magnetization might thus, suggest better field-induced strain.

4.7 Discussion of Results for dls-1-136-1, dls-1-125-4 and dls-
1-61-1

The magnitude of field-induced strains in the dls samples Ni50Mn28.7Ga21.3 (dls-

1-136-1), Ni48.1Mn30.6Ga21.3 (dls-1-125-4) and Ni48.99Mn29.98Ga21.03 (dls-1-61-1) are

considerably smaller than that observed in Ni48Mn30Ga22 [12, 13]. Simple mechanical

compression test performed on the samples show that the strain produced is about six

times smaller than that observed in Ni48Mn30Ga22. In accordance with Likhachev’s

model [13], only those samples with very low twinning stress are good candidates

for producing large field-induced strain. This statement follows from the fact that

the applied magnetic field generates an equivalent magnetic stress that would have to

overcome the twinning stress in order to achieve the same strain effect as a mechanical

compressive stress. Fig. 4.50 shows the compressive stress-strain curves for the tested

samples (the microstrain has been converted into percentage strain) and Fig. 4.51

shows the result of the mechanical compressive stress test for Ni48Mn30Ga22 according

to Likhachev.
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Figure 4.50: Compressive stress-strain curves for dls samples.

Figure 4.51: Compressive stress-strain curve for Ni48Mn30Ga22 [12, 11].
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In Fig. 4.51, σs ≈ 1.04 MPa, σf ≈ 2.12 MPa and ε0=5.8%. From Section 2.2,

it was seen that the maximum equivalent magnetic stress that can be produced in

Ni48Mn30Ga22 is about 2.25 MPa which is greater than σf and can easily overcome the

twinning stress giving large field-induced strains. In the case of the samples reported

in this thesis, value for maximum σmag is not known. However, if it is assumed

that maximum σmag is close to the value for Ni48Mn30Ga22 (assuming a tetragonal

martensitic structure), then it can be immediately inferred that this magnitude of

the equivalent magnetic stress is insufficient to produce large strains of the order of

those obtained from mechanical compression testing. This is because σf > 8 MPa

for all the tested samples. Hence, in order to obtain large field-induced strains, the

material should have a low twinning stress range and additionally, a greater equivalent

magnetic stress as compared to the finish twinning stress. A careful analysis of the

stress-strain curve for dls-1-136-1 shows that the maximum mechanical strain in the

twinning region might not be greater than 0.8% and the observation of field-induced

strain as large as 0.64% may infer that the magnetic driving force in this sample may

be greater than that in Ni48Mn30Ga22 so that σmag > 2.25 MPa. This further implies

that the difference in magnetization (the difference in magnetic free energy) between

the axial and transverse variants is greater in the dls-1-136-1 crystal structure.

An interesting feature can be observed from the results of cyclic compression tests

for the samples. The compressive stress-strain loops demonstrate a very good closure,

i.e. appreciable decrease in strain is seen with unloading. This effect is not seen in

Ni48Mn30Ga22 where during unloading, there is very less strain recovery and a result,

greater mechanical hysteresis exists. So for the same magnitude of stress, a greater

energy loss would be encountered as compared to the tested samples.
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The continuous decrease in magneto-strain with increase in applied stress in

collinear drive configuration is a trend that requires some explanation. In absence

of external load but only axial field, the theory of variable volume fraction of vari-

ants [12, 13, 18] may be applied to the observed sample behavior. Due to magnetic

anisotropy, the magnetic force favors the axial variants with the crystallographic easy

axis (the short axis) in the direction of the field. So there is a tendency for the for-

mation of more axial variants at the cost of the other variants which means that the

contribution to the length from the transverse variants decreases and the rod con-

tracts. When an axial external load is applied, the effect is to bias the variants into

the axial variant form and a subsequent contraction follows. But after the application

of the stress, more axial variants would be present than other types of variants so

the net magnetization difference decreases. This decrease in magnetization difference,

decreases the equivalent magnetic stress because as mentioned before, the equivalent

magnetic stress strongly depends on the magnetization difference of the favorable

and unfavorable variants. This decreased equivalent magnetic stress produces lower

reversible strains. As the external stress is increased, the material gets mechanically

biased with more axial variants resulting in lesser reversible strain.

The sharper decay in peak strain of dls-1-136-1 (Fig. 4.14) with applied compres-

sive stress as compared to the other samples may be explained using the mechanical

compression test result and the explanation in the preceding paragraph. It is seen that

below 5 MPa, dls-1-136-1 has the lowest stiffness which means that at lower stress,

dls-1-136-1 has a greater volume fraction of axial variants as compared to other sam-

ples. Therefore, axial variants nucleate more easily at lower stress in dls-1-136-1 and a
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very small fraction of the other variants remain. The magnetization difference, there-

fore, decreases rapidly at lower stress generating lower equivalent magnetic stress.

Accordingly, the magnitude of the reversible strain decreases drastically.
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4.8 Tabular Summary of the Zero Load Tests

Sample Frequency Crossover point Max. d33 (A/m) Max. d33 (A/m)
(Hz) (ppm) increasing field decreasing field
0.1 855 2.71× 10−07 7× 10−08

dls-1-136-1 0.5 1825 5.98× 10−08 4.18× 10−08

1 2670 1.11× 10−07 2.82× 10−08

0.1 621.4 9.28× 10−08 3.08× 10−08

dls-1-125-4 0.5 965 4.44× 10−08 2.22× 10−08

1 1250 4.78× 10−08 1.77× 10−08

0.1 198 3.77× 10−08 2.01× 10−08

dls-1-61-1 0.5 435 1.81× 10−08 1.23× 10−08

1 643 2.33× 10−08 7.74× 10−09

Table 4.1: Properties computed from the strain vs magnetic field curves at no applied
load.

Sample Frequency Max µ Coercive Remanent
(Hz) field (kA/m) field (kA/m)
0.1 38.16 8.83 207.28

dls-1-136-1 0.5 26.97 24.2 253.77
1 23.72 40.41 277.66

0.1 28.26 8.25 171.25
dls-1-125-4 0.5 21.03 22.58 209.92

1 18.39 40.32 235.94
0.1 40 8.87 222.97

dls-1-61-1 0.5 28.03 24.19 257.43
1 24.24 39.91 278.83

Table 4.2: Properties computed from the magnetization vs magnetic field curves at
no applied load.
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CHAPTER 5

CONCLUDING REMARKS

The goal of this investigation is to provide understanding of and develop proof-of-

concept for the strain reversibility in Ni-Mn-Ga samples driven by a collinear magnetic

field-stress pair. The conventional actuation method employing orthogonal stress and

field has been until now used in experiments to study the magneto-strain effect in the

Ni-Mn-Ga system. An important limitation of this drive configuration in applications

stems from the use of electromagnets, which are large, heavy and narrowband. The

collinear stress-field actuation is implemented by means of a solenoid for the gener-

ation of magnetic field, hence it is significantly smaller, lighter and has a broader

frequency bandwidth as compared to electromagnets.

A solenoid transducer capable of producing a field on the order of 8.1 kOe was de-

signed and fabricated. This value of the peak field requirement for saturating Ni-Mn-

Ga was determined from the literature as well as from preliminary tests carried out in

the Smart Material and Structures Laboratory. The transducer design incorporates

the necessary requirements for testing the samples under controlled thermal, mag-

netic and structural regimes. Characterization of the transducer was accomplished

through a series of calibration procedures. Three different methods were employed:

(a) experimental measurement using a Hall probe, (b) finite element calculations and
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(c) analytical equations for thick solenoids. The results yielded remarkably consistent

results and an an average rating of 167 Oe/A was established. The loading fixture

was designed to load the samples up to 1000 lbs and was fabricated with Unistrut

channels. The fixture was designed with the additional criteria of obtaining minimum

friction and avoiding bending moments on the samples.

Six samples of varying parent element composition were tested as cast, that is with-

out employing the common practice of material “training” through field cycling and

thermal treatment. Further performance enhancements may be achievable through

training. The observation of negative field-induced strains as large as 6379 ppm

(0.64%) for dls-1-136-1 ruled out the possibility of magnetostriction. Additionally,

the magnetization remained largely unaltered for all the samples even when the ap-

plied stress was varied. The saturation magnetization for all the samples were in

the range of 323 kA/m to 381 kA/m with the highest number being for the sample

producing the largest strain. The remanence and coercivity for all the samples were

very close and a significant difference was not observed. The maximum value for the

piezomagnetic coefficient d33 for all the samples was always greater in the increasing

field than in the decreasing field with the maximum value in the increasing field oc-

curring between the point of zero strain and the point of zero field. The result of the

additional tests run at 0.5 Hz and 1 Hz at zero load showed an increase in magnetic

hysteresis and crossover point with increasing frequency. The tests with applied load

were conducted at 0.1 Hz sinusoidal magnetic field drive up to blocked load values.

For all the samples, a sharp decay in the peak strain was seen at lower applied loads

up to about 50 lbs (7.03 MPa) after which the decrease was seen to be more gradual.
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The dls samples were subjected to cyclic mechanical compression tests both in

zero magnetic fields and with different DC fields. The basic mechanical compression

test results conducted at zero field showed that the finish twinning stress σf was

considerably higher than the range 2-3 Mpa which is the optimum range [13, 12, 11]

for achieving large field induced strains in Ni-Mn-Ga. The start twinning stress σs

was, however, less than 1 MPa for the samples tested. The compression tests in

the presence of DC magnetic fields provided information on the variation of stiffness

with field. It was observed that all the samples became stiffer with increasing DC

field and applied stress, which is phenomenologically in agreement with the ∆E effect

oberved in magnetostrictive Terfenol-D. It is emphasized that the stiffness variation

in Ni-Mn-Ga is attributed to twin boundary motion, whereas the ∆E effect is due to

a completely different physical origin (magnetoelastic coupling.)

The samples were contrasted to material of different compositions tested by several

research groups [10] and the information was compiled in a compositional map. The

curve fitted Curie temperature contours were not a good fit to the experimental Curie

temperatures obtained for the dls samples. The straight line fit for the saturation

magnetization against valence-electron-per-atom seemed to be appropriate for dls-1-

125-4 but the experimental values for the other samples had a considerable offset from

the fit. The empirical composition map for designing Ni-Mn-Ga FSMAs showed that

the dls-1-136-1 sample was closest to the shaded area where considerable actuation is

expected at room temperature and as seen from the experimental results, the sample

produced the maximum field-induced strain.
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The ultimate goal of this vein of research is to gain a fundamental understanding

and ultimately develop constitutive models of the magnetoelastic and thermoelas-

tic behavior exhibited by these alloys. This investigation represents the first step

towards developing such understanding. The results presented here provide neces-

sary information for the development of constitutive models for the behavior of these

alloys.
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APPENDIX A

WATER COOLED TRANSDUCER DESIGN
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Figure A.1: AISI 1018 magnetic steel casing
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Figure A.2: AISI 1018 magnetic steel top plate
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Figure A.3: AISI 1018 magnetic steel bottom plate
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Figure A.4: 303 stainless steel sample housing
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Figure A.5: Aluminum 6061-T6 sensing coil spool
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Figure A.6: AISI 1144 stress proof magnetic steel bottom cap
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Figure A.7: AISI 1018 magnetic steel base
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Figure A.8: AISI 1144 push rod
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APPENDIX B

LOADING FIXTURE MACHINED COMPONENTS
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Figure B.1: AISI 1018 upper loading beam

Figure B.2: AISI 1018 lower loading beam
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Figure B.3: AISI 1018 linear motion ball bearing housing
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Figure B.4: Aluminum 6061-T6 transducer support plate
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Figure B.5: AISI 1018 load distributor plate
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Figure B.6: AISI 1018 loading tray
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APPENDIX C

PURCHASED PARTS SPECIFICATIONS
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(a) (b)

Figure C.1: (a) Standard jaw threaded connector (b) Pear shaped threaded connector

Standard jaw
S A B C Work load limit (lbs)

0.25” 0.28125” 2.75” 1.75” 880
0.3125” 0.375” 2.9375” 2.3125” 1760
0.375” 0.4375” 3.125” 2.4375” 2200

Pear shaped
0.25” 0.5625” 3.1875” 0.8125” 440

Table C.1: Size and work load limit of the threaded connectors used
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Table C.2: Beam loading data for P1000 channel

Table C.3: Column loading data for P1000 channel
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Table C.4: Beam loading data for P3000 channel

Table C.5: Column loading data for P3000 channel
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APPENDIX D

FEM ANALYSIS OF FIXTURE PARTS
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Figure D.1: Upper rectangular loading beam vertical deflection.

Figure D.2: Upper loading beam (with C channels) vertical deflection.
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Figure D.3: Upper rectangular loading beam average Von-Mises stress level.

Figure D.4: Upper loading beam (with C-channels) average Von-Mises stress level.
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Figure D.5: Lower rectangular loading beam vertical deflection.

Figure D.6: Lower loading beam (with C channels) vertical deflection.
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Figure D.7: Lower rectangular loading beam average Von-Mises stress level.

Figure D.8: Lower loading beam (with C channels) average Von-Mises stress level.
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Figure D.9: Load distributor vertical deflection.

Figure D.10: Load distributor average Von-Mises stress level.
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