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Experimental Implementation of a
Hybrid Nonlinear Control Design
for Magnetostrictive Actuators
A hybrid nonlinear optimal control design is experimentally implemented on a magneto-
strictive Terfenol-D actuator to illustrate enhanced tracking control at relatively high
speed. The control design employs a homogenized energy model to quantify rate-
dependent nonlinear and hysteretic ferromagnetic switching behavior. The homogenized
energy model is incorporated into a finite-dimensional nonlinear optimal control design
to directly compensate for the nonlinear and hysteretic magnetostrictive constitutive be-
havior of the Terfenol-D actuator. Additionally, robustness to operating uncertainties is
addressed by incorporating proportional-integral (PI) perturbation feedback around the
optimal open loop response. Experimental results illustrate significant improvements in
tracking control in comparison to PI control. Accurate displacement tracking is achieved
for sinusoidal reference displacements at frequencies up to 1 kHz using the hybrid non-
linear control design, whereas tracking errors become significant for the PI controller for
frequencies equal to or greater than 500 Hz. �DOI: 10.1115/1.3089560�

Keywords: nonlinear optimal tracking, magnetostrictive, rate dependence, perturbation
control
Introduction
The role of smart materials continues to be a critical part of

echnology development in many biomedical, automotive, aero-
pace, and industrial applications. These materials provide advan-
ages in applications where large forces and small displacements
re desired over a broad frequency range with high precision. The
olid state characteristics of these materials provide compact ac-
uators, which are critical in applications where size and weight
re important. A large number of these applications employ piezo-
lectric or magnetostrictive materials, which respectively possess
lectric or magnetic field induced displacement and force. For
xample, single crystal ferroelectric relaxors �lead magnesium
iobate-lead titanate �PMN-PT� or lead zine niobate-lead titanate
PZN-PT�� have provided significant advances in sonar transducer
pplications due to their efficiency and relatively high strain be-
avior ��1%� �1�. Additionally ferroelectric lead zirconate titan-
te �PZT� has been successfully implemented in commercial nan-
positioning stages for controlling the position of material
pecimens for probing atomic structures using atomic force mi-
roscopy and scanning probe microscopy �2�. The robustness of
agnetostrictive terbium-iron-dysprosium �Terfenol-D� actuators

as provided reliable actuator designs for several applications,
ncluding precisely machined out-of-round piston heads by effec-
ively controlling the cutting tool position �3�.

Although ferroic materials have been successfully implemented
n a number of applications, limitations associated with nonlinear
nd hysteretic material behavior have presented challenges in de-
eloping high performance actuation response over a broad fre-
uency range. The nonlinear and hysteretic material behavior is
rimarily due to the reorientation of local electric or magnetic
ariants that align with the applied electric or magnetic fields.
oderate to large field levels can induce 0.1% strain in polycrys-

alline PZT �4� and up to 6% strain in single crystal ferromagnetic
hape memory alloys �5�; at these field levels, obtaining accurate

Contributed by the Dynamic Systems, Measurement, and Control Division of
SME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CON-

ROL. Manuscript received August 30, 2007; final manuscript received December 8,

008; published online April 29, 2009. Assoc. Editor: Nader Jalili.

ournal of Dynamic Systems, Measurement, and Control
Copyright © 20

om: http://dynamicsystems.asmedigitalcollection.asme.org/ on 07/06/2017
and precise control is greatly complicated by nonlinearities and
magnetic hysteresis. Moreover, small excitations near resonance
may also introduce non-negligible hysteresis with deformation
comparable to large excitations away from resonance �excluding
dc�. These issues have motivated research in developing new con-
trol designs that can effectively compensate for nonlinearities and
hysteresis induced by ferroelectric or ferromagnetic switching
while still providing accurate forces or displacements over a broad
frequency range.

Two general strategies are typically considered when develop-
ing a control design to compensate for nonlinearities and hyster-
esis. These two strategies illustrated in Fig. 1 are characterized by
either a nonlinear inverse compensator or direct nonlinear control.
The approach illustrated in Fig. 1�a� employs a nonlinear inverse
compensator, which approximately linearizes the constitutive be-
havior so that linear control methods can be employed �6–11�.
This approach provides the ability to implement well-developed
linear control laws. It can also be advantageous in applications
where an unknown disturbance load is present or the reference
signal is not known well in advance; however, this advantage is
only realized if the constitutive model is efficient enough to be
inverted in real time. The second strategy illustrated in Fig. 1�b�
entails direct incorporation of the material model into the control
design so that the nonlinear control input is directly determined.
This circumvents issues associated with computing the constitu-
tive inverse law but introduces challenges in identifying robust
numerical algorithms that can achieve convergence efficiently.
The second strategy is implemented here where a nonlinear open
loop control signal is computed off-line, and perturbation feed-
back is then introduced to improve robustness when operating
uncertainties are present.

Both of the inverse compensator and nonlinear control designs
require an efficient and accurate constitutive model that can quan-
tify the nonlinear and hysteretic ferroic switching behavior. A sig-
nificant amount of literature is available describing various ap-
proaches for modeling ferromagnetic and magnetostrictive
materials �e.g., see Refs. �12–16��. For control applications, Prei-
sach models are often considered for quantifying nonlinear and

hysteretic material behavior in ferromagnetic materials due to
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heir computational efficiency for real-time applications �e.g., see
efs. �8,17��. These models have the disadvantage of requiring a

arge number of nonphysical parameters to accurately predict mi-
or loop hysteresis. In the analysis presented here, a ferroic ho-
ogenized energy model is implemented, which utilizes funda-
ental energy relations at the mesoscopic or lattice length scale to

uantify macroscopic constitutive behavior in ferroic materials.
he model utilizes a multiscale approach that relates local mate-

ial inhomogeneities using a stochastic framework to quantify
acroscopic material behavior �18–27�. This modeling frame-
ork has been successful in modeling rate-dependent major and
inor hysteresis loops in several ferroelectric, magnetostrictive,

nd shape memory alloy compositions �see Ref. �22� for a re-
iew�. The stochastic modeling approach utilizes general densi-
ies, which can be fitted to experimental results. This improves

odel prediction, which is critical in model-based control designs
o that the amount of feedback required to achieve a specified
erformance criteria is reduced.

The second strategy in developing a model-based nonlinear
ontrol design is presented here where the constitutive law is di-
ectly incorporated into an optimal control design. This approach
s shown to improve tracking control accuracy for a magnetostric-
ive transducer at frequencies up to 1 kHz. The authors are only
ware of one other model-based control design successfully
mplemented experimentally on a similar magnetostrictive actua-
or �8�. In their analysis, a Preisach-based nonlinear inverse com-
ensator was employed. The reference displacement was limited
o aperiodic signals centered around 30 Hz, and tracking control
as improved in comparison to proportional control. In the analy-

is presented here, comparisons between the nonlinear optimal
ontrol design and classical proportional-integral �PI� control are
onducted. It is demonstrated that PI tracking control performance
egins to degrade for sinusoidal reference displacements with fre-
uencies at or above 500 Hz. The bandwidth of the actuator is
mproved by directly incorporating the constitutive behavior
ithin the control design. Reasonable tracking control is achieved

or frequencies up to at least 1 kHz.
The experimental analysis presented here utilizes a nonlinear

ontrol design previously analyzed numerically for controlling a
agnetostrictive transducer operating in the current control mode

24,25�. The model is extended to include voltage control to ac-
ommodate the experimental setup and is validated over a broader
ange of frequencies �100–1000 Hz� than previous numerical
nalyses. In Sec. 2, the experimental setup is described. In Sec. 3,
he constitutive model and the dynamic model are presented and
ompared with open loop actuator characterizations. In Sec. 4, the
onlinear control design is presented and compared with classic
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ig. 1 Examples of nonlinear control designs. „a… Nonlinear
nverse compensator. „b… Direct nonlinear control.
I control to identify operating regimes where the nonlinear con-
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trol design provides enhanced performance. Section 5 presents the
tracking control experimental results. Section 6 includes discus-
sion and concluding remarks.

2 Experimental Implementation
The validation of the proposed control method was performed

on an Etrema Products, Inc. �Ames, IA�, magnetostrictive
Terfenol-D actuator model MFR OTY77. The actuator employs a
Terfenol-D rod 12.5 mm in diameter by 100 mm in length, which
is subjected to a 10–14 MPa preload and an �40 kA /m magnetic
field bias from a permanent magnet. The drive coil rating is
6.2 kA /m A with a 3.4 Arms limit. Figure 2 illustrates the basic
internal components in the Etrema actuator, which includes a
Terfenol-D rod, a compression bolt and a spring washer to preload
the rod, a surrounding wound wire solenoid, and a permanent
magnet.

The drive voltage is generated by a 16 bit digital-to-analog
converter �DAC� on a dSPACE DS1104 controller board, which
has an output range of 10 V and �80 dB signal-to-noise ratio.
The drive voltage is amplified by an AE Techron LVC 5050 linear
amplifier set to a gain of 17 V/V. The bandwidth of the amplifier
is 20 kHz.

Reported data include the DS1104 drive voltage, actuator cur-
rent, and actuator strain. The current supplied to the actuator is
measured by the Techron’s current monitor, which outputs 1 V for
every 3 A of current. The current monitor signal is sampled using
the 16 bit analog-to-digital �ADC� on the DS1104 board. The
strain measurement is simultaneously sampled with the same
ADC from a Lion Precision capacitive sensor �PX405JTC probe
with DMT10R driver� with a sensitivity of 0.257 mm/V and a
bandwidth of 12.5 kHz. An Omega Engineering, Inc. �Stamford,
CT� signal amplifier model OMNI-AMP III dc with a gain of 10
V/V and a bandwidth of 10 kHz is used to match the dynamic
range of the strain measurement with the range of the ADC.

Tests were set up as block diagrams using Mathworks �Natick,
MA� SIMULINK. The block diagrams were then compiled and
downloaded to the DS1104 controller using REAL TIME WORKSHOP,
also by Mathworks. Data were acquired using CONTROLDESK by
DSPACE with a sample frequency of 10 kHz.

3 Model Development
The modeling framework used in implementing the control de-

sign incorporates magnetostrictive nonlinearities and hysteresis
into an actuator model. The ferromagnetic switching behavior is
modeled using a homogenized energy model that is based on pre-
vious work described in detail in Refs. �18–23�. Here, only key
equations are given to motivate the implementation of the consti-
tutive model in the structural dynamic model and control design.
The homogenized energy model is formulated using an applied
magnetic field; however, the power amplifier used in the control
experiments uses voltage control. Although a hardware modifica-
tion can be employed to run the power amplifier in current con-
trol, the homogenized energy model was extended to relate volt-

� �
�
�
�

Permanent Magnet

Terfenol−D Rod

Wound Wire Solenoid

Bolt
Compression

Spring
Washer

Fig. 2 Schematic of the Terfenol-D actuator used in the control
experiments
age to current to simplify experimental implementation. This

Transactions of the ASME

 Terms of Use: http://www.asme.org/about-asme/terms-of-use



a
t
r

i
l
f
r
f
p
f
i
s
e
d
c

S
m
h
l
m
t
h
s

M
e
m
m
d
b

1
fi
m
a
m

r

f
H
fi
m
e
m
a
t
w

c
l
t
b
c
s
c

r
c
h

J

Downloaded Fr
pproach results in directly determining the nonlinear voltage con-
rol input from the homogenized energy model, structural dynamic
elations, and optimal control design.

In addition to quantifying the ferromagnetic switching behav-
or, the structural dynamics of the actuator are quantified using a
umped parameter model. Although a distributed weak partial dif-
erential equation �PDE� formulation can be employed to incorpo-
ate spatial dependence along the actuator length, the operating
requencies considered are below resonance; therefore, a lumped
arameter model reasonably approximates the structural dynamics
or the sinusoidal reference displacement signals used in validat-
ng the control design. For more general reference displacements,
uch as a step input that excites higher order harmonics, a finite
lement model may be necessary. Finite element models can be
irectly incorporated into the model and control design, as dis-
ussed in Refs. �22,24,25�.

First the homogenized energy model is briefly summarized.
econd, the equations associated with the structural dynamic
odel are summarized to quantify displacements predicted by the

omogenized energy model for a magnetic field input. The non-
inear electrical impedance of the amplifier-actuator system is then

odeled to relate the magnetic field to the voltage input for con-
rolling the Terfenol-D actuator using voltage control. Lastly, the
omogenized energy model is compared with experimental re-
ults.

3.1 Rate-Dependent Ferromagnetic Homogenized Energy
odel. We summarize here the ferromagnetic homogenized en-

rgy model and illustrate how it is used to develop a constitutive
odel. The model is employed in Sec. 3.2 to construct a structural
odel for a Terfenol-D actuator, which is later used in the control

esign. Details regarding the constitutive model formulation can
e found in Refs. �19,22,23�.

For the Terfenol-D transducer depicted in Fig. 2, we focus on a
D model in accordance with the uniaxial loading and applied
elds. The model is constructed in two steps: �i� development of
esoscopic magnetization relations based on energy principles

nd �ii� use of stochastic homogenization techniques to construct
acroscopic constitutive relations.
We first consider the construction of lattice-level Gibbs energy

elations,

G�H,�,M,�� = ��M� + 1
2YM�2 − a1�M − Mr�� − a2�M − Mr�2�

− �0HM − �� �1�

or uniform, homogeneous, isothermal, single crystal materials.
ere H, M, �, and �, respectively, denote the applied magnetic
eld, magnetization, strain, and uniaxial applied stress. Further-
ore, �, YM, a1, a2, �0, and Mr denote a magnetic Helmholtz

nergy, Young’s modulus, piezomagnetic coupling coefficient,
agnetostrictive coupling coefficient, free space permeability, and
bias magnetization �e.g., positive remanence�. We note that in

he Gibbs relation �1�, H ,� constitute independent variables,
hereas M ,� are dependent variables.
As detailed in Ref. �23�, the Ising principles can be used to

onstruct a temperature-dependent magnetic Helmholtz energy re-
ation that incorporates the ferromagnetic to paramagnetic phase
ransition and provides noncongruent hysteresis kernels. Although
ased on statistical mechanics tenets, the resulting models are
omputationally intensive to implement and hence are better
uited for material analysis and characterization than real-time
ontrol implementation.

Alternatively, one can employ Taylor expansions about equilib-
ia in the Helmholtz energy relation derived from statistical me-
hanics principles to obtain piecewise quadratic magnetic Helm-

oltz relations of the form

ournal of Dynamic Systems, Measurement, and Control
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��M� =�
1

2
��M + Mr�2, M � − MI

1

2
��M − Mr�2, M � MI

1

2
��MI − Mr��M2

MI
− Mr� , 	M	 	 MI


 �2�

where � denotes the reciprocal slope dH /dM after switching and
MI is the positive inflection point. We focus primarily on this
Helmholtz relation in subsequent model development due to its
implementation efficiency.

For operating regimes in which thermal after-effects are negli-

gible, the local magnetization M̄ is determined from the condi-
tions

�G

�M
= 0,

�2G

�M2 � 0 �3�

As detailed in Ref. �23�, use of the statistical mechanics Helm-
holtz relation yields Ising kernels of the form

M̄�H� = Ms tanh�H + 
M

a�T�
� �4�

when magnetoelastic effects are neglected. In agreement with ex-
perimental data �and in contrast to classical Preisach models�,
these kernels are noncongruent and illustrate the role of interac-
tion fields HI=
M in the effective field He=H+HI. Alternatively,
use of the Helmholtz relation �2� yields piecewise linear kernels
that accommodate reversible postswitching behavior �see Refs.
�22,23� for details�.

To incorporate the thermal relaxation mechanisms that produce
phenomena such as after-effects, one can balance the Gibbs en-
ergy G with the relative thermal energy kT /V via the Boltzmann
relation

��G� = Ce−GV/kT �5�

where V is a representative volume element at the mesoscopic
length scale, k is Boltzmann’s constant, and the constant C is
specified to ensure integration to unity. We note that Eq. �5� quan-
tifies the probability of achieving an energy level G�H ,� ,M ,��
for a given applied stress � or magnetic field H.

As detailed in Refs. �19,22,23�, this yields mesoscopic magne-
tization relations

M̄ = x+�M+� + x−�M−� �6�

where x+ and x− denote the fraction of moments having positive
and negative orientations; hence x++x−=1 and

�M+� =
MI

�

M��G�dM, �M−� =
−�

−MI

M��G�dM �7�

denote the magnetizations associated with positively and nega-
tively oriented moments—note that � and −� can be replaced by
the saturation magnetizations Ms and −Ms for the statistical me-
chanics Helmholtz kernel relation.

The local relations �4� and �6� or the piecewise linear relation
resulting from Eq. �3� yields macroscopic magnetization models
for homogeneous materials with uniform effective fields. To ob-
tain macroscopic models for polycrystalline, nonhomogeneous
materials with distributed effective fields, as motivated by Eq. �4�,
we make the assumption that the coercive fields Hc and interac-
tion fields HI are manifestations of underlying densities �c�Hc�
and �I�HI� rather than constants. For the operating regimes under
consideration, it has been observed that preload levels are suffi-
ciently large so as to render dynamic stress effects on the magne-
tization as negligible. Hence we neglect effects due to stress and
strain contributions to the Gibbs energy and employ the macro-

scopic model

JULY 2009, Vol. 131 / 041004-3
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�M�H���t� =
−�

� 
0

�

��Hc,HI��M̄�H + HI;Hc,���t�dHIdHc

�8�

here ��Hc ,HI�=�c�Hc��I�HI� and  denotes the initial distribu-
ion of moments. Examples illustrating the model performance for
egimes that exhibit after-effects, including creep behavior and
onclosure of biased minor loops, can be found in Refs. �23,26�.
etails regarding the extension of the framework to incorporate
agnetomechanical coupling are provided in Ref. �27�.
We note that for certain operating regimes, a priori choices of

ormal and lognormal relations for �I�HI� and �c�Hc� provide suf-
cient accuracy. For general operating regimes requiring high ac-
uracy, the techniques detailed in Refs. �21,22� for general density
dentification can be employed.

Whereas the homogenized energy model can be interpreted as
roviding an energy basis for certain extended Preisach models, it
iffers from the classical Preisach model �characterized by the
roperties of deletion and congruency� in five fundamental as-
ects. �i� The energy basis permits correlation of certain param-
ters with measured properties of the data. �ii� The energy basis
ermits the direct incorporation of temperature or stress depen-
encies in the the kernel or basis rather than the parameters or
eights. �iii� Derivation of the theory from Boltzmann principles
ields models that directly incorporate the after-effects and minor
oop nonclosure measured for certain materials and operating re-
imes. �iv� Derivation of the model using Helmholtz relations
erived from statistical mechanics principles yields kernels or
ysterons that incorporate the noncongruency measured for cer-
ain operating regimes and materials. �v� The framework auto-

atically incorporates reversible magnetization mechanisms for
mall ac field excursions about a fixed dc value. Additional dis-
ussion detailing similarities and differences between this frame-
ork and Preisach models can be found in Refs. �22,23�.
For operating regimes in which internal damping is considered

egligible, the condition �G
�� =0, for G given by Eq. �1� yields the

agnetoelastic constitutive relation

� = YM� − a1�M�H� − Mr� − a2�M�H� − Mr�2

o incorporate internal damping, one can posit that stress is pro-
ortional to a linear combination of strain � and strain rate �̇, in
he absence of applied fields, to obtain the constitutive relation

� = YM� + cD�̇ − a1�M�H� − Mr� − a2�M�H� − Mr�2 �9�

here cD denotes the Kelvin–Voigt damping coefficient. We em-
loy this relation, with M given by Eq. �8�, in subsequent model
evelopment.

The material parameters for the homogenized energy model are
iven in Table 1. These parameters were identified from the ex-
erimental results presented in Sec. 3.4 using parameter optimiza-
ion techniques detailed in Ref. �22�. The parameter optimization
tilizes a MATLAB constrained optimization algorithm coupled to
he homogenized energy model to quantify a set of parameters
ased on a quadratic cost between the model displacement and the
easured displacement. Note that these parameters are not unique

able 1 Parameters employed in the homogenized energy
odel where �m denotes the magnetic susceptibility, �=V /kT

s the reciprocal of the relative thermal energy, Mr is the local
emanent magnetization, and � is the time constant „see Ref.
22‡ for details…

�m=3.3
�=1.23�108 ms2 /kg

Mr=190 kA /m
�=1.15�10−4 s
ince magnetic induction was not measured. Furthermore, many

41004-4 / Vol. 131, JULY 2009
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of the material parameters are often dependent on the field mag-
nitude and internal magnetization state. Here, variations in the
magnetostrictive, piezomagnetic, and permeability are included in
the model via the ferromagnetic switching and homogenization
approach. Conversely, variations in the elastic modulus is ne-
glected. The model fits are based on average elastic properties at
the bias field, as illustrated in Fig. 4.

The parameter optimization was conducted using experimental
displacement measurements and was compared with the current
applied to the solenoid in the magnetostrictive actuator. This iden-
tification procedure requires implementing the structural model
described in the following section. Moreover, the structural pa-
rameters given in Table 2 were also determined using parameter
optimization to obtain a complete set of material parameters for
use in the control design.

3.2 Structural Model. The constitutive relations given by
Eqs. �8� and �9� are used to develop a system model that quantifies
forces and displacements when a magnetic field or stress is ap-
plied to the magnetostrictive actuator. The PDE model is first
given and is then reformulated as a lumped parameter ordinary
differential equation �ODE�. The effective stiffness, mass, and
damping factor are determined from the parameter optimization,
which is based on the structural dynamics of the Terfenol-D ac-
tuator and the damped oscillator used in preloading the actuator. A
simple schematic of this configuration is illustrated in Fig. 3.

A balance of forces gives

�A
�2w

�t2 =
�Ntot

�x
�10�

where the density of the actuator is denoted by �, the cross-section
area is A, and the displacement is denoted by w �see Refs. �22,28�
for details�. The total force Ntot acting on the actuator is

Ntot�t,x� = − YMA
�w

�x
− cDA

�2w

�x � t
+ A�a1�M�H� − Mr� + a2�M�H�

− Mr�2� �11�

where the hysteretic and nonlinear H-M relation is quantified by
Eq. �8�. The model quantifies relative displacements from the pre-
loaded reference state. The linear elastic strain component in the

Table 2 Model parameters for the magnetostrictive actuator
and damped oscillator. The parameter optimization identified
the magnetostrictive coefficient a2 to be zero for the consid-
ered operating regime.

k̄=1.96�107 N /m
a1=3275 N /A m
a2=0 N m2 /A2

m̄=0.013 kg
c̄D=2.3�103 N s /m
A=1.27�10−4 m2

� �
� �

L

L

d L
F

+w
k w

dw/dtc

M
u(t)

Transducer

x=0 x= l

Fig. 3 Magnetostrictive actuator with a damped oscillator
used to quantify loads under a time varying magnetic field. Dis-
turbance forces along the actuator are given by Fd, and the

control input is u„t….
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irection of loading is defined by �=�w /�x. Differentiation of the
patially invariant magnetization relation in Eq. �11� is equivalent
o differentiating a characteristic or Heaviside function over the
nterval �0,�� spanned by the rod. This yields a Dirac distribution
t the end of the rod, which diminishes the convergence properties
f standard approximation techniques. This is avoided through the
se of conventional weak formulations, as detailed in Ref. �22�.

The mechanical, piezomagnetic, and magnetostrictive param-
ters obtained through parameter optimization are given in Table
. These parameters, in addition to parameters given in Table 1,
ere obtained for operating regimes used in the control design.
his operating regime was restricted to minor hysteresis loops
round a magnetization state that is affected by the permanent
agnetization bias �see Fig. 2� and a biased magnetic field re-

uired to track the reference signal later described in Sec. 4. These
lots are shown later in Fig. 4. For this operating regime, the
agnetostrictive coefficient was determined to be zero. The com-

ination of biased field and magnetization results in model fits in
perating regimes where the material behavior can be sufficiently
escribed by piezomagnetic coupling. For example, if the magne-
ostrictive coupling is approximated by taking the first term in a
aylor series expansion around a biased magnetization M0 of the
erfenol-D rod actuator, the effective piezomagnetic coefficient is

ā1 = a1 + 2a2M0 �12�
n general, this would not be true if the model was fit to the full
ysteresis loop.

As illustrated in Fig. 3, the boundary conditions are defined by
zero displacement at x=0, and the balance of forces at x=�

ields

Ntot�t,�� = − kLw�t,�� − cL

�w

�t
�t,�� − mL

�2w

�t2 �t,�� �13�

he initial conditions are w�0,x�=0 and �w /�x�0,x�=0.

3.2.1 Lumped Parameter Model. The distributed parameter
ystem described in the previous section is approximated as a
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Fig. 4 Rate-dependent constitutive dat
ergy model described in Sec. 3. The fr
were „a… 100 Hz, „b… 200 Hz, „c… 300 Hz,
umped parameter model for implementation within the control
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design. Here, the tracking problem is focused on sinusoidal refer-
ence signals that are well below the resonance of the Terfenol-D
actuator. When more general reference signals or significant dis-
turbances are considered, the distributed parameter model should
be discretized using methods such as finite elements �see Ref. �29�
for an example of controlling vibration of thin plates�.

In the lumped parameter case, the second order differential
equation given by Eq. �10� with boundary conditions �13� is re-
written in the form

m̄ÿ + c̄Dẏ + k̄y = Fm�H� + Fd �14�

where m̄, c̄D, and k̄ denote the effective mass, damping, and stiff-
ness coefficients, respectively. The displacement at the end of the
rod is denoted by y�t�. These parameters represent the effective
structural dynamic coefficients for the Terfenol-D rod and damped
oscillator, which are determined using the parameter optimization
as described in Sec. 3.2. These model parameters associated with
the magnetostrictive actuator and damped oscillator are given in
Table 2.

For control implementation, Eq. �14� can be reformulated as a
first order system,

ẋ�t� = Ax�t� + �B�u���t� + G�t�

x�0� = x0

y�t� = Cx�t� �15�

where x�t�= �y , ẏ�T. The matrix A incorporates the mass, damping,
and stiffness matrices given in Eq. �14�, and �B�u���t� includes the
nonlinear input where u�t� is defined as the magnetic field. The
disturbances are denoted by the matrix G�t�. These matrices are
given below in Eq. �16�. The initial conditions are defined by x0.
The output of the system y�t� is a function of the system states
according to the matrix C= �1,0�, where only the displacement at
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A = � 0 1

− k̄/m̄ − c̄D/m̄ �, B�u� = Fm�u�� 0

1/m̄ � , �16�

G�t� = Fd�t�� 0

1/m̄ �
The constitutive modeling results at multiple frequencies using

q. �15� are illustrated in Fig. 4 and compared with experimental
esults. A reasonable estimation of rate-dependent hysteresis is
chieved over the frequency range of 100–500 Hz using the pa-
ameters in Tables 1 and 2. However, voltage control is used in the
ontrol experiments; therefore the model is extended to include
onlinear electrical impedance relations to obtain a model that can
uantify the nonlinear voltage control input for experimental
mplementation.

3.3 Nonlinear Current-Voltage Relations. A lumped circuit
odel is used to relate the input voltage to the magnetic field

pplied to the Terfenol-D actuator. The electromagnetics analysis
ssumes no leakage losses and ideal flux linkage. A linear power
mplifier is used in the experiments. The nonlinear impedance
ssociated with the electrical part of the system is assumed to be
elated to the ferromagnetic switching in the Terfenol-D actuator.
his can be modeled using a resistor in series with a nonlinear

nductor �i.e., the Terfernol-D rod� and a voltage source that has
een amplified by the linear power amplifier.

The nonlinear inductance is quantified by coupling the homog-
nized energy model with the lumped-electric circuit model. The
rst order nonlinear ODE for a resistor in series with a nonlinear

nductor is

L�M�
di�t�

dt
+ Ri�t� = V�t�

i�0� = i0 �17�

here L�M� is the inductance written as a function of magnetiza-
ion, i is the current, V is the voltage input, R is the resistance, and
he initial conditions are defined by i0.

The magnetic field H applied to the Terfenol-D rod is related to
he current by the relation

H =
N

�
i �18�

here � is the actuator length and N is the number of coils in the
olenoid. Here, the tangential magnetic field on the surface of the
erfenol-D rod is assumed to fully penetrate the rod cross-section
rea over the frequency range considered. This assumes that the
ffects of eddy current losses are negligible. Model uncertainties
ssociated with this assumption are discussed in Sec. 6.

The inductance can be related to the magnetic permeability and
he wound wire solenoid. From classic electromagnetics �30�, the
nductance describes the self-induced emf, which is proportional
o the time rate of change in current. The inductance can therefore
e written as

L�M� =
N2

�

d�m�M�
dH

�19�

here N is the number of turns in the solenoid and �m is the flux.
he flux is related to the induction through the relation

�m =
A

B · dA �20�

here B is the induction and A is the surface. Since eddy currents
n the Terfenol-D actuator have been neglected and if rod end

ffects are neglected, the flux can be defined by

41004-6 / Vol. 131, JULY 2009
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�m = BA �21�

for the induction component B parallel to the rod length, and A is
the cross-sectional area.

The nonlinear inductance can be determined by including
changes in the remanent magnetization with respect to the change
in field given in Eq. �19�. This can be described by representing
the magnetization as a superposition of a linear term and the rate-
dependent nonlinear and hysteretic term associated with the
change in remanent magnetization. This is considered at the mac-
roscopic length scale by writing Eq. �8� as

�M�H���t� = �mH�t� + �Mr�H���t� �22�

where �m=�0�1+�m� is the macroscopic magnetic susceptibility
and Mr�H� is the remanent magnetization. The induction relation
B=�0�H+M� can then be written as

�B�H���t� = �0�1 + �m�H�t� + �0�Mr�H���t� �23�

where �0=4��10−7 Wb /A m is the permeability of free space.
The nonlinear induction is then

L�M� =
N2A

�

dB

dH
=

N2A

�
��m + �o

dMr

dH
� �24�

where �m is the relative permeability of the material. Note that
this relation simplifies to the classic linear inductance relation for
a wound wire solenoid when the remanent magnetization is con-
stant. Whereas this approach is expected to provide a relation for
nonlinear inductance, H-B data are not available from the
Terfenol-D actuator which requires estimating the inductance. A
fitting parameter is introduced according to

L�M� = N
dB

di
� KL

dy

di
�25�

where y is the Terfenol-D actuator displacement determined from
Eq. �15� and KL is quantified from the experimental results using
voltage versus current data and current versus strain data. KL was
quantified at 100 Hz and held fixed for all other frequencies con-
sidered in the model-based control design. The value that was
quantified from the experiments was KL=2�105 V s /m, which
was used in the model and compared with experiment results pre-
sented in Sec. 3.4. The nonlinear model is also compared with a
linearized lumped circuit model where the remanent magnetiza-
tion is assumed constant. When the inductance is linearized, the
model prediction is reasonable in regimes of positive current for
the given frequency range. When the current is negative, more
ferromagnetic switching occurs since the Terfenol-D rod was
magnetized in the positive direction. This requires implementing
the nonlinear inductance model to improve accuracy; therefore,
the nonlinear model is used in determining the nonlinear voltage
control input.

3.4 Actuator Characterization. Characterization of the ac-
tuator was performed using open loop sinusoidal drive voltages at
100 Hz, 200 Hz, 300 Hz, and 500 Hz. Each data set was initiated
by a half-cycle of a 1 Hz sine wave with an amplitude of 1 V to
the amplifier-actuator system; this corresponds to a current of 4.6
A. After the initial magnetization half-cycle, sinusoidal voltage
signals at frequencies of 100 Hz, 200 Hz, 300 Hz, and 500 Hz
were used to drive the Terfenol-D actuator. The peak-to-peak sinu-
soidal voltage inputs were adjusted to achieve minor loops ex-
tending 60 �m. Strain-current minor loops are illustrated in Fig.
4 for the frequencies of 100 Hz, 200 Hz, 300 Hz, and 500 Hz. The
corresponding current-voltage loops are illustrated in Fig. 5. The
data given in these figures are compared with the homogenized
energy model and lumped electric circuit model discussed in the

previous sections.
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Control Design
To provide a metric of comparison for the hybrid nonlinear

ontrol design, we compare its tracking performance to a PI con-
rol design. First the control gains selected for the PI controller are
iscussed, and experimental results describing the closed loop dy-
amics of the PI controller are presented. Second, the fundamental
quations describing the nonlinear control design and PI perturba-
ion feedback are given. This follows previous theoretical and
umerical analyses of the hybrid nonlinear control design for fer-
omagnetic actuators; details regarding the algorithm formulation
an be found in Refs. �24,25,31�. Previous numerical analysis fo-
used on quantifying a magnetic field control signal and did not
onsider the electrical impedance of the amplifier-actuator system.
he inclusion of the voltage-current dynamics presented in Sec.
.3 is discussed in this section to illustrate how the open loop
onlinear voltage control signal is implemented experimentally.

4.1 Proportional-Integral Control Design. To facilitate the
esign of the PI controller, the transfer function of the open loop
mplifier-actuator system in the near linear regime was measured
sing a swept sine voltage input from the DS1104 controller board
here the output was the rod tip displacement �see Fig. 6�.
The PI controller was designed using the form

D�s� = KP

s + KI/KP

s
�26�

here KP is the proportional gain and KI is the integral gain. The
ain KP was chosen to move the mechanical resonance peak ob-
erved at 4 kHz below 0 dB. The ratio KP /KI was chosen so that
he phase lag occurred well below the open loop cross-over fre-
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Fig. 5 Current-voltage behavior of the amplifie
linear and nonlinear inductor-resistor lumped ci
correspond to the data in Fig. 4 where „a… 100 Hz
uency. Gains of KP=2�10 V /ppm �parts per million� and
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KP /KI=30 s were chosen. The PI controller boosts the low fre-
quency gain to reduce the steady-state error at the expense of the
low frequency phase, as illustrated in Fig. 7�a�. The open loop
controller-amplifier-actuator transfer function was measured using
a swept sine controller input to determine the stability margins
�see Fig. 7�b��. The phase margin is 45 deg, and the gain margin is
2. The resulting closed loop bandwidth for PI control is 1140 Hz
�see Fig. 8�.

4.2 Nonlinear Optimal Tracking Control Design. We sum-
marize here the formulation of a finite-dimensional nonlinear op-
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it model discussed in Sec. 3.3. The frequencies
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imal tracking control design where an open loop control signal is
omputed off-line. To improve robustness to operating uncertain-
ies, perturbation feedback using PI control is implemented. The
evelopment of the hybrid nonlinear optimal tracking control de-
ign follows previous numerical analyses focused on the hyster-
sis of magnetostrictive actuators for vibration attenuation of
eam and plate structures and tracking control of rod structures
24,25,31�. We summarize here key equations associated with
onlinear optimal tracking control and perturbation feedback.

Optimal tracking control employs a cost functional to determine
he optimal control input. The cost functional

J̄ =
1

2
�Cx�tf� − r�tf��TP�Cx�tf� − r�tf�� +

t0

tf

�H − �T�t�ẋ�t��dt

�27�
enalizes the control input and the error between the Terfenol-D
ctuator displacement and the prescribed displacement where P
enalizes large terminal values on the tracking error, H is the
amiltonian, and ��t� is a set of Lagrange multipliers. The Hamil-

onian is

H =
1

2
��Cx�t� − r�t��TQ�Cx�t� − r�t�� + uT�t�Ru�t�� + �T�Ax�t�

+ �B�u���t� + G�t�� �28�
here penalties on the tracking error and the control input are
iven by the variables Q and R, respectively.
The minimum of the cost functional in Eq. �27� is determined

nder the constraint of the differential equation given by Eq. �15�.
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Fig. 7 Frequency response of the PI controller
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By employing Lagrange multipliers, an unconstrained minimiza-
tion problem is constructed where the stationary condition for the
Hamiltonian yields the adjoint relation �32,33�

�̇�t� = − AT��t� − CTQCx�t� + CTQr�t� �29�

and optimal control input

u��t� = − R−1� �B�u�
�u

�T

��t� �30�

The resulting optimality system is

� ẋ�t�

�̇�t�
� = �Ax�t� + �B�u����t� + G�t�

− AT��t� − CTQCx�t� + CTQr�t� �
x�t0� = x0

��tf� = CTP�Cx�tf� − r�tf�� �31�

The force due to input fields is included in the input operator
�B�u����t�, which directly includes the rate-dependent nonlinear
and hysteretic H-M behavior within the control design. This dy-
namic system results in a two-point boundary value problem,
which precludes an efficient Ricatti formulation due to the non-
linear nature of the input operator. This system of equations and
the boundary conditions are solved using a quasi-Newton method
to determine the nonlinear magnetic field input �see Ref. �24� for
more details�.

An additional step is necessary to implement the control design
experimentally using the voltage control amplifier. As discussed in
Sec. 3.3, the homogenized energy model can be used to quantify
nonlinear inductance. This relation is used to numerically deter-
mine the voltage control from Eq. �17� since the current can be
determined from the magnetic field in Eq. �30� and the current-
field relation in Eq. �18�.

The following steps are used to determine the voltage control
input: �1� The optimal magnetic field is computed from Eq. �30�.
�2� The actuator is simulated by applying u��t� to Eq. �15� to
determine dy /du� to obtain the nonlinear inductance. �3� The non-
linear voltage control is computed by solving the nonlinear ODE
in Eq. �17� numerically. Numerical implementation of Eq. �17�
uses a central difference approximation,

Vk =
1

2
�L�Mk� + L�Mk+1��

ik+1 + ik

�t
+

1

2
R�ik+1 + ik� �32�

where a temporal step size �t is employed, giving a discretization
in time defined by tk=k�t. The voltage solved in Eq. �32� is the
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nonlinear open loop control input used in the experiments.
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4.2.1 Perturbation Feedback. It is known that open loop con-
rols are not robust with regard to operating uncertainties such as
nmodeled constitutive behavior or disturbance loads. To mitigate
hese effects, PI perturbation feedback about the optimal open
oop signal is implemented to improve robustness.

The perturbation control design is identical to the PI controller
iven in Eq. �26�. The perturbation control can be written in the
ime domain as

�u�t� = − KPe�t� − KI
0

t

e�s�ds �33�

here e�s� is the error between the measured displacement and
he reference displacement. The perturbation control input is
dded to the system given by Eq. �15�

˙ �

0 0.01 0.02 0.03 0.04
−40

−20

0

20

40

60

80

Time (s)

T
ra

ck
in

g
E

rr
or

(µ
m

)

PI Control

Nonlinear Optimal Control

Nonlinear Optimal + Perturbation Control

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
−40

−20

0

20

40

60

80

Time (s)

T
ra

ck
in

g
E

rr
o

r
(µ

m
)

PI Control
Nonlinear Optimal Control
Nonlinear Optimal + Perturbation Control

(c)

0 1 2 3 4 5 6

x 10
−3

−40

−20

0

20

40

60

80

Time (s)

T
ra

ck
in

g
E

rr
or

(µ
m

)

PI Control
Nonlinear Optimal Control
Nonlinear Optimal + Perturbation Control

(e)

Fig. 9 Comparison of the tracking control perfo
mal control, and nonlinear open loop optimal con
tested range from „a… 100 Hz, „b… 200 Hz, „c… 30
reference displacement amplitude was 30 �m.
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rmance using PI control, nonlinear open loop opti-
trol with PI perturbation feedback. The frequencies
0 Hz, „d… 500 Hz, „e… 700 Hz, and „f… 1000 Hz. The
x�t� = Ax�t� + �B�u + �u���t�
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Fig. 10 Tracking control experimental results at 1 kHz ex-
panded from Fig. 9 to illustrate improvements in tracking con-

trol between PI control and nonlinear optimal control
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x�t0� = x0 + �x0 �34�
here the nonlinear input operator includes the optimal open loop

ontrol u��t� and the perturbation feedback control �u�t�. Possible
ariations in the initial conditions are denoted by �x0. The control
ains used in the perturbation feedback controller were the same
s the PI controller presented in Sec. 4.1.

Tracking Control Experimental Results
The performance characteristics of the PI controller, open loop

onlinear optimal control design, and nonlinear optimal controller
ith PI perturbation feedback is given to illustrate operating re-
imes where the nonlinear controller is superior. In all the control
xperiments, a sample frequency of 10 kHz was used. The control
xperiments were initiated by a half-cycle of 1 Hz sine wave with
n amplitude of 1 V. The reference displacement is taken to be
ero at the onset of applying control; therefore, the initial remnant
isplacement occurring after the magnetization half-cycle is sub-
racted from the total actuator displacement. The commanded ref-
rence input to the controller was a sinusoidal signal. The ampli-
ude of the reference signal was chosen to be 30 �m, which
epresents an operating regime where significant nonlinearities ex-
st, as previously illustrated in Fig. 4. Control experiments for
requencies of 100 Hz, 200 Hz, 300 Hz, 500 Hz, 700 Hz, and
000 Hz were conducted, and the results are illustrated in Fig. 9
or each control design. The tracking error for each control design
s shown to emphasize performance attributes over the frequency
ange tested. The length of the reference signal in all cases except
or the 1 kHz case was 4.25 periods. The 1000 Hz experiment was
xtended to 10 periods in order to observe the potential effects of
rift using the open loop nonlinear optimal controller.

The comparison in tracking performance for each reference dis-
lacement signal is illustrated in Fig. 9. Comparable performance
as achieved between the PI controller and the nonlinear optimal

ontrol design for 100 Hz and 200 Hz reference displacements.
arginal differences in tracking control between PI and the non-

inear control design become apparent at 300 Hz, and at higher
requencies, the tracking error using PI control continues to in-
rease. A phase lag occurs due to the hysteresis as the frequency
ncreases above 500 Hz. As the reference displacement frequency
pproaches the bandwidth of the PI controller, the amplification in
he closed loop system previously shown in Fig. 8 degrades track-
ng control �see Fig. 9�. This is also illustrated in Fig. 10 where
he voltage control input is shown for the 500 Hz and 1000 Hz
ases. A phase lag is shown between the nonlinear open loop
ptimal control and the PI controller at 500 Hz, while the PI
ontroller overamplifies the control signal at 1000 Hz. Figure 10
llustrates how the nonlinear open loop control directly compen-
ates for the nonlinear and hysteretic constitutive behavior. It
hould also be noted that minor errors in drift occur at 1000 Hz
sing nonlinear open loop control, but this error is corrected by
ncluding perturbation feedback, as shown in Fig. 9�f� and ex-
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The average tracking error for each experiment is quantified
using the percent root-mean-square �rms� error and is presented in
Table 3. The percent rms error is defined by

erms =

1

T0

T

e2�t�dt

max�y�t�� − min�y�t��
�35�

where T is the final time in each experiment. A direct comparison
of percent rms errors between nonlinear control with perturbation
and PI control illustrates superior performance at all frequencies
tested. The percent error was reduced by more than one order of
magnitude at each frequency tested. It should also be noted that
open loop nonlinear control and perturbation feedback control
gave approximately the same error at frequencies �500 Hz. This
is believed to be related to the bandwidth of the PI controller used
for perturbation feedback since the control gains were the same as
the PI control design.

6 Discussion and Concluding Remarks
The incorporation of the homogenized energy model in the non-

linear optimal control design was shown to significantly improve
tracking control at frequencies up to at least 1000 Hz. Reasonable
robustness in model predictions was illustrated by fitting a single
set of rate-dependent material parameters to data between 100 Hz
and 500 Hz, which was then used in controlling the Terfenol-D
actuator up to 1 kHz. As previously noted, only current versus
displacement data were measured, which required estimating the
current versus magnetization hysteresis loops. Since the induction
of the magnetostrictive actuator was not measured, uncertainty in
estimating certain rate-dependent model parameters occurred.
While this may limit achieving an accurate model for both dis-
placement and magnetization, it illustrates the ability to imple-
ment the model-based control design on magnetostrictive actua-
tors in situations where the magnetization is not measurable but
only displacement tracking is desired.

Previously, the homogenized energy model has focused on ap-
plying a magnetic field to quantify changes in the internal mag-
netization state. In the present analysis, the homogenized energy
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Table 3 Percent rms error for each tracking control experi-
ment illustrated in Fig. 9

Frequency
�Hz� PI control Open loop optimal control Perturbation control

100 0.7% 1.4% 0.02%
200 2.3% 2.2% 0.08%
300 4.8% 1.7% 0.2%
500 15% 0.73% 0.8%
700 29% 1.2% 2.4%

1000 94% 2.2% 1.3%
(
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Downloaded Fr
odel was used to relate magnetic fields to voltage inputs. A
imple relation was presented to relate the magnetic field in the
erfenol-D rod to the current in the wound wire solenoid. This
pproach assumed full penetration of the magnetic field for the
requency range considered, which neglects eddy currents. The
erfenol-D rod was not laminated; therefore, the possibility of
enerating eddy currents is likely to occur in the frequency range
ested. Further work is required to quantify this behavior and iden-
ify the appropriate method for including eddy currents in the

odel-based control design. The effect of ferromagnetic switch-
ng behavior on the nonlinear inductance was included in the

odel, as previously illustrated in Fig. 5. The incorporation of
onlinear induction in regions where more ferromagnetic switch-
ng is expected to occur reduced modeling errors of current-
oltage behavior, as shown in Fig. 5, but approximating the in-
uctance as linear may be sufficient depending on the
erformance requirements needed and the magnitude of ferromag-
etic switching.

The nonlinear optimal control design has focused on applica-
ions where the reference displacement is known in advance and
recise control is desired at relatively high speed. For such appli-
ations, which may include high speed machining or micro- to
anopositioning systems, the nonlinear control input can be com-
uted off-line and then implemented in real-time control applica-
ions. Although the numerical procedure requires convergence of a
onlinear two-point boundary value problem, once the numerical
rocedure is developed, the control input for most reference sig-
als �within physical limitations� can be quantified. This approach
rovides an alternative to nonlinear inverse compensator designs,
hich depend on the ability to invert the constitutive model effi-

iently in real time. It should also be noted that smooth reference
isplacement signals were considered here. In cases where the
eference signal is nonsmooth, higher order harmonics may be
nduced and may require extending the model to include higher
rder dynamic behavior and coupling to ferromagnetic switching.
his may also have implications on the perturbation feedback de-
ign since PI control may not provide sufficient control of the
losed loop system.

The PI controller provided good tracking control at 100 Hz and
00 Hz, and performance degradation began to occur at 300 Hz.
mplification in the closed loop response �see Fig. 8� increased

he tracking error as the frequency approached the bandwidth of
he system �see Figs. 9�a�–9�f��. In addition, the effects of nonlin-
arities and hysteresis previously illustrated in Fig. 4�d� become
ignificant at higher frequencies, which limits precise displace-
ent control. Conversely, when the nonlinear optimal control de-

ign is implemented with perturbation feedback, the tracking er-
ors are reduced and good performance is achieved up to 1000 Hz.
hese experimental results used perturbation control gains that
ere identical to the PI control gains. Although larger gains were

onsidered for perturbation control, reduction in tracking error
as not achieved. Whereas the inclusion of open loop nonlinear

ontrol is expected to reduce the effect of phase lag from nonlin-
arities and hysteresis and to allow the application of larger per-
urbation control gains, this was not the case. More work is re-
uired to identify this issue. Despite this effect, the hybrid
onlinear control design provides considerable improvements in
andwidth by including the homogenized energy model in the
ontrol design. Additionally, due to the general ferroic homog-
nized energy modeling framework, the control design can be
otentially applied to a number of smart material systems and
tructures that use ferroelectric, magnetostrictive, or shape
emory alloys.
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