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ABSTRACT

This paper focuses on the development of a model whic
characterizes the nonlinear and hysteretic stress-dependence
herent to magnetic transducer materials operating in high drive
regimes. The model builds upon a previous ferromagnetic cha
acterization framework based on energy analysis at the lattic
level in combination with stochastic homogenization technique
Aspects of the stress-dependent magnetomechanical model
illustrated through comparison with experimental steel data.

INTRODUCTION

As detailed in [3, 4, 5, 10, 11], magnetic transducers ar
increasingly considered as actuators and sensors for numero
aerospace, aeronautic, automotive, industrial, and biomedical a
plications. For low to moderate drive levels, the relation betwee
input fieldsH and stressesσ and the magnetizationM and in-
ductionB generated in the transducer materials is approximate
linear, and linear constitutive relations provide sufficient accu
racy for system and control design. However, at the higher driv
levels required for many applications, hysteresis and constitu
tive nonlinearities inherent to theH-M, H-B, σ-M, andσ-B re-
lations must be incorporated in models and model-based contr
designs to achieve accurate transducer characterization and c
trol specifications. In this paper, we extend the framework o
[12, 13], which characterizes the nonlinear and hystereticH-M

�
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andH-B behavior of ferromagnetic materials, to include certain
stress-dependent effects. This provides initial coupled magne-
tomechanical constitutive relations that are suitable for subse-
quent transducer characterization and control design.

The coupled magnetomechanical behavior of ferromagnetic
materials is highly complex and we do not attempt to characterize
all manifestations of the phenomenon in this paper. Instead we
focus on specific effects which must be accommodated to con-
struct nonlinear constitutive relations as a first step toward char-
acterizing the stress-dependent dynamics of high performance
actuators and sensors.

The direct magnetomechanical effect can be broadly catego-
rized as reflecting two cooperative phenomena; (i) the behavior
of the anhysteretic magnetizationMan or inductionBan changes
due to a number of mechanisms including stress-dependent be-
havior of local coercive and effective fields, and (ii) the magneti-
zationM is driven toMan (equivalently,B is driven toBan).

The former attribute is illustrated in Figure 1 with anhys-
tereticH-Ban steel data from [8] collected at fixed stresses rang-
ing from -200 MPa to 200 MPa. An observation which proves
important for model development is that the curves cross at dif-
ferent field values depending on the fixed input stress.

Figure 2 illustrates the manner through which application
of an applied compressive stress drives the magnetization (or
equivalently induction) near positive and negative remanence
(H = 80 A/m) to Ban. As detailed in Pitman [9], a steel spec-
imen was driven to both positive and negative saturation and
then held at a constant field value of 80 A/m while compres-
Copyright  2005 by ASME
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Figure 1. Stress-dependent anhysteretic data from [8].

sive stresses were applied and subsequently released. A com
ison of the data plotted in Figures 2(b) and (c) illustrates that
both cases, the induction was driven toBan by input stresses of
approximatelyσ =�400 MPa. This reflects the fact that these
stresses are sufficiently large to eliminate local minima asso
ated with pinning sites so that the induction equilibrates to th
global minimum associated withBan. In other words, local coer-
cive fields have been reduced to zero. Close examination of
σ-B relations upon stress release reveals that they are not c
stant and hence the global energy minimum associated withBan

is also stress-dependent.
Additional details regarding the physics associated with th

direct magnetomechanical effect, the Villari effect — which con
stitutes changes in magnetization due to applied stresses —
previous models used to characterize these phenomena can
found in [2, 7, 11].

In the second section, we summarize the framework dev
oped in [12, 13] to characterize hysteresis and constitutive no
linearities in theH-M andH-B relations. In the first step of the
development, Gibbs energy relations at the lattice level are us
to quantify the local average magnetization in the presence
absence of thermal relaxation (magnetic after-effects). Second
the effects of polycrystallinity, material nonhomogeneities, an
variable effective fields are incorporated by treating physic
quantities such as the coercive and effective fields as manif
tations of underlying distributions rather than fixed parameter
In the third section, we extend this framework to incorporate in
put stresses through the introduction of generalized Gibbs e
ergy relations and stress-dependent parameters in the homo
nized energy framework. Attributes of the model are illustrate
in the fourth through fits to the experimental steel data plotte
in Figures 1 and 2. We note that whereas steel does not p
vide the output levels associated with transducer materials su
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Figure 2. (a) Manner through which the induction near positive rema-

nence is driven to the anhysteretic curve through application of compres-

sive stresses; (b) and (c) data from Pitman [9] quantifying the σ-B behav-

ior for steel near positive and negative remanence.

as Terfenol-D, its magnetomechanical properties have been more
widely investigated which facilitates illustration of the model.
The framework is equally applicable to more specialized trans-
ducer materials such as Terfenol or Galfenol.

MAGNETIC MODEL

As a prelude to the development of a coupled magnetome-
chanical model for ferromagnetic materials, we summarize first
the magnetic model developed in [12, 13]. This model was devel-
oped in the context of uniaxial materials but is generally applica-
ble to isotropic and weakly anisotropic materials. The framework
provides the capability for incorporating magnetic after-effects
and thermal relaxation but does not include eddy current losses;
hence it should be employed for low frequency regimes or trans-
ducer architectures for which eddy current losses are minimal.
Copyright  2005 by ASME



At the lattice level, two Helmholtz energy relations are ap
propriate. The first,

ψ(M;T) =
HhMs

2

�
1� (M=Ms)

2�
+

HhT
2Tc

�
M ln

�
M+Ms

Ms�M

�
+Msln

�
1� (M=Ms)

2��; (1)

results from statistical mechanics principles whereas asympto
approximation of (1) under fixed temperature conditions yield
the piecewise quadratic relation

ψ(M) =

8>><
>>:

1
2η(M +MR)

2 ; M ��MI
1
2η(M�MR)

2 ; M � MI

1
2η(MI �MR)

�
M2

MI
�MR

�
; jMj< MI :

(2)

In (1), Hh;Ms and Ts respectively denote a bias field, the lo-
cal saturation magnetization, and the Curie temperature wher
MR;MI andη in (2) denote a local remanence magnetization, th
positive inflection point and the reciprocal of the slope for th
hysteresis kernel after moment switching. For simplicity, we wi
focus on (2) throughout the remainder of this discussion whi
noting that analogous theory holds for (1) as detailed in [12, 13

An appropriate expression for the Gibbs energy is

G(H;M) = ψ(M)�µ0HM (3)

whereµ0 denotes the permeability of free space. The behavior
the Gibbs energy forH = 0 and positive applied fields is depicted
in Figure 3.

A macroscopic magnetization model is constructed in tw
steps. In the first, we summarize relations for the local ave
age magnetizationM in the presence and absence of thermal a
tivation. These relations can be directly extrapolated to qua
tify the magnetization in homogeneous, isotropic materials wi
constant effective fields. In the second step of the developme
stochastic homogenization techniques based on the tenet that
tain material properties are manifestations of underlying distr
butions rather than constants are employed to construct mac
scopic models which incorporate the effects of polycrystallinity
material nonhomogeneities, and variable effective fields.

For regimes in which thermal activation is significant,M is
given by

M = x+ hM+i+x� hM�i (4)

where x+;x� denote the fraction of positively and negatively
oriented moments andhM+i ;hM�i are corresponding expected
3
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Figure 3. (a) Helmholtz energy ψ and Gibbs energy G for increasing

field H (H2 > H1 > 0). (b) Dependence of the local average magne-

tization M given by (9) or (10) on the field in the absence of thermal

activation.

magnetizations. Using the Boltzmann relation

µ(G) =Ce�GV=kT; (5)

to quantify the probability of achieving an energy levelG, where
C;V andk respectively denote an integration constant, a control
volume, and Boltzmann’s constant, the expected magnetizations
hM+i andhM�i are given by

hM+i=

Z ∞

MI

Me�G(H;M;T)V=kTdM
Z ∞

MI

e�G(H;M;T)V=kTdM

hM�i=

Z �MI

�∞
Me�G(H;M)V=kTdM

Z �MI

�∞
e�G(H;M)V=kTdM

:

(6)

The moment fractions are quantified by the evolution equations

ẋ+ =�p+�x++ p�+x�

ẋ� =�p�+x�+ p+�x+

which can be simplified to

ẋ+ =�p+�x++ p�+(1�x+) (7)
Copyright  2005 by ASME



through the identityx++ x� = 1. The likelihoods of switching
orientations are

p+� =
1

T (T)

Z MI

MI�ε
e�G(E;M)V=kTdM

Z ∞

MI�ε
e�G(E;M)V=kTdM

p�+ =
1

T (T)

Z �MI+ε

�MI

e�G(E;M)V=kTdM

Z �MI+ε

�∞
e�G(E;M)V=kTdM

(8)

whereε is taken to be a small positive constant andT is the
relaxation time.

For regimes in which thermal activation is negligible, mo-
ments switch instantaneously as compared with the more gradu
transitions associated with thermally active operating regimes i
which moments can switch in advance of fields which eliminate
local minima ofG — e.g., see Figure 4.

The kernel in the absence of thermal activation can be dete
mined using the sufficient condition∂G

∂M = 0 to be

M =
µ0

η
H +MRδ (9)

whereδ= 1 for positively oriented moments andδ=�1 for neg-
ative orientations. To quantifyδ in terms of initial moment con-
figurations and previous switches, we employ Preisach notatio
and take

[M(H;Hc;ξ)](t) =

8><
>:

[M(H;Hc;ξ)](0)
µ0
η H�MR

µ0
η H +MR

(10)

for the respective casesfτ(t) = /0g, fτ(t) 6= /0 andH(maxτ(t)) =
�Hcg, fτ(t) 6= /0 andH(maxτ(t)) = Hcg. Here

Hc =
η
µ0

(MR�MI ) (11)

denotes the local coercive field and

τ(t) = ft 2 (0; t f ] jH(t) =�Hc or H(t) = Hcg

denotes transition points. The initial moment orientation is given
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Figure 4. (a) Gibbs energy profile with a high level (– – –) and low

level (——) of thermal activation in the Boltzmann probability µ(G) =
Ce�GV=kT. (b) Local magnetization M given by equation (4) with high

thermal activation (– – –) and limiting magnetization M specified by (9) or

(10) in the absence of thermal activation (——).

by

[M(H;Hc;ξ)](0) =

8><
>:

µ0
η H �MR ; H(0)��Hc

ξ ; �Hc < H(0)< Hc
µ0
η H +MR ; H(0)� Hc

The behavior ofM given by (10) in this limiting case is depicted
in Figure 3(b) and 4(b).

The kernelsM given by (4) or (10) quantify the hysteretic
behavior at the lattice level and yield macroscopic models only
for homogeneous materials with negligible interaction fieldsHI

— hence the effective fieldHe = H +HI is simply the applied
field H.

To incorporate the effects of polycrystallinity, material
nonhomogeneities, inclusions, texture, and variable interaction
fields, we make the assumption that the local coercive fieldHc

given by (11) and interaction fieldHI are stochastically dis-
tributed with respective densitiesν1 andν2 which satisfy the de-
Copyright  2005 by ASME
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(i) ν1(x) defined forx> 0;

(ii) ν2(�x) = ν2(x);

(iii) jν1(x)j � c1e�a1x ; jν2(x)j � c2e�a2jxj

for positivec1;a1;c2;a2. These assumptions enforce the phys
ical properties that local coercive fields are positive, low-field
Rayleigh loops are symmetric [1], and local coercive and in
teraction fields decay as a function of distance. As detailed
[11, 12, 13], one choice forν1 andν2 which facilitates imple-
mentation and provides sufficient accuracy for various materia
and applications is

ν1(Hc) = c1e�[ln(Hc=Hc)=2c]2

ν2(HI ) = c2e�H2
I =2b2

(12)

wherec1;c2;b are positive constants andhHci � Hc approxi-
mates the mean of the lognormal distribution whenc is small
compared withHc.

The resulting macroscopic magnetization model is

M(H) =

Z ∞

0

Z ∞

�∞
ν1(Hc)ν2(HI )M(H+HI ;Hc;ξ)]dHI dHc (13)

with M given by (4) or (10). Approximation of the integrals in
(13) yields

M(H) =
Ni

∑
i=1

Nj

∑
j=1

ν1(Hci )ν2(HI j )M(HI j +H;Hci ;ξ j)viwj (14)

whereHI j ;Hci are abscissas andvi ;wj are quadrature weights.
Details regarding the construction, implementation, and accura
of (14) for various ferromagnetic materials can be found in [11
12, 13].

MAGNETOMECHANICAL MODEL

To extend the framework of the last section to include th
direct magnetomechanical effects illustrated in Figures 1 and
we consider two extensions to the theory: (i) formulation of
more general Gibbs energy which incorporates magnetomech
ical coupling, and (ii) development of stress-dependent relatio
for the meanHc(σ) employed in the density definition (12).
5
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Gibbs Energy

To incorporate the stress-dependent effects on the anhys-
teretic inductionBan shown in Figure 1, we extend the Gibbs
relation (3) to

G(H;M;σ;ε) = ψ(M)+ γ4M4+
1

2YM σ2� γ1(σ)σM2

�γ2(σ)σM4�µ0HM�σε
(15)

whereψ is given by (2). HereYM denotes the Young’s modu-
lus at constant magnetization,ε is the uniaxial strain,γ1(σ) and
γ2(σ) are stress-dependent magnetoelastic coupling coefficients,
andγ4 is a constant magnetoelastic coefficient.

For a fixed magnetization level, enforcement of the sufficient
condition ∂G

∂ε = 0 yields the nonlinear constitutive relation

σ =YMε�YMλ(σ) (16)

where

λ(σ) = γ1(σ)M2+ γ2(σ)M4 (17)

denotes the stress-dependent magnetostriction. Following the ap-
proach in Jiles [7], we employ two-term Taylor expansions

γ1(σ) = γ1(0)+σγ01(0)

γ2(σ) = γ2(0)+σγ02(0)
(18)

for the coupling coefficients. It should be noted that the anhys-
teretic curves will not cross ifγ2(σ) = 0 and hence only quadratic
magnetoelastic coupling terms are employed in the Gibbs energy.
Moreover, they cross at a single point ifγ01(0) = γ02(0) = 0 and
hence the magnetostriction is independent of stress. The anhys-
teretic behavior shown in Figure 1 dictates the retention of all
four components. Additionally, the quartic termγ4M4 is included
to maintain continuity between the internal energy quantified by
the Helmholtz energy and the magnetoelastic energy. The coef-
ficientsγ1(0);γ01(0);γ2(0);γ02(0) andγ4 are identified through a
least squares fit to the data.

For operating regimes in which thermal excitation is suffi-
cient to cause discernible magnetic after-effects, the local mag-
netizationM is specified by (4) with the Gibbs relation (15) em-
ployed in (6)–(8). For regimes in which thermal activation is
negligible, enforcement of the sufficient condition∂G

∂M = 0 yields
the stress-dependent magnetization relation

[4γ4+4γ2(σ)σ]M3+[2γ1(σ)σ�η]M

+[µ0H +δηMR] = 0:
(19)
Copyright  2005 by ASME



For model construction, this cubic relation can be solved eithe
directly or using a gradient-based optimization method.

Stress-Dependence of Hc(σ)

The Pitman data plotted in Figure 2 illustrates that the mea
hHc(σ)i � Hc(σ) is driven to zero by both tensile (positive) and
compressive (negative) stresses. It has also been verified that t
effect is rate-dependent with higher values of

��dσ
dt

�� causing faster
decreases in the local coercive field.

To phenomenologically incorporate these effects, we em
ploy the stress-dependent relation

Hc(σ) = bHce
�(k+j dσ

dt jσ)σ

= bHce
�(k+k2σ)σ

(20)

wherek2 =
��dσ

dt

��. The parametersbHc;k andk2 are determined
through a least squares fit to the data.

MODEL VALIDATION WITH EXPERIMENTAL DATA

Example 1
We first consider the characterization of the Pitman dat

plotted in Figure 2. As noted in the Introduction and detailed in
[9], this data was collected from a steel sample that was driven
two separate experiments to positive and negative saturation a
then held at a constant field of 80 A/m while compressive stresse
were applied and subsequently released. This had the effect
driving local coercive fields to zero which reduced the magneti
zation and induction to the anhysteretic values. The slight stres
dependence of the anhysteretic inductionBan is noted in the data
plotted in Figure 5 as the stress is increased to zero.

To construct the model, the parametersMR= 5:4�103 A/m,
η = 2:765� 10�6, b = 0:4 A/m, c = 19:2� 106 A/m, C =
c1 � c2 = 0:0323, γ1(0) = 1� 10�16 A�2m2, γ01(0) = �3:51�
10�22 A�2m2Pa�1, γ2(0) = �1:08� 10�22 A�4m4, γ02(0) =
�5:0� 10�31 A�4m4Pa�1, γ4 = �6:0� 10�15 A�4m4, k =
1:0�10�10 Pa�1, k2 = 3:5�10�17 Pa�1s�1 and bHc = 6:0�103

A/m were obtained through a fit to the data. The resulting
model fit, with induction values computed using the relation
B = µ0(H +M), is compared with the data in Figure 5 where
it is observed that the model accurately quantifies both the re
duction in local coercive fields and change anhysteretic behavi
associated with application and release of compressive stresse

Example 2
Secondly, we illustrate the performance of the model fo

characterizing the stress-dependent anhysteretic behavior sho
in Figure 1. The data was collected from a steel specimen havin
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Figure 5. Changes in the induction B due to compressive stresses with

an initial field of 80 A/m: (a) positive remanence, and (b) negative rema-

nence.

a length of 6 cm and cross-sectional area of 1 cm as reported by
Jiles and Atherton [8].

To construct the discretized magnetization model (14),
the parameter valuesη = 2:765� 10�6, b = 1:28 A/m, c =
19:0� 106 A/m, C = c1 � c2 = 0:0204, γ1(0) = 4:15� 10�15

A�2m2, γ01(0) = �4:0� 10�23 A�2m2Pa�1, γ2(0) = �4:65�
10�23 A�4m4, γ02(0) =�6:8�10�32 A�4m4Pa�1, γ4 = �6:6�
10�15 A�4m4, k= 1:0�10�9 Pa�1 andbHc = 4:0�103 A/m were
determined through a fit to the data. We note thatk2 =

��dσ
dt

��= 0
since stresses are fixed in each case. Corresponding induction
values were computed using the relationB = µ0(M +H). The
resulting model fit is compared with the data in Figure 6 where
it is observed that the model accurately quantifies the stress-
dependent behavior of the anhysteretic magnetization and induc-
tion.
Copyright  2005 by ASME
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Figure 6. (a) Stress-dependent anhysteretic magnetization data from [8], (b) model predictions given by (13), and (c) comparison between model predic-

tions and experimental data for stresses of -200 MPa, -100 MPa, 0 Mpa and 200 MPa.
CONCLUDING REMARKS

This paper addresses the incorporation of direct magnetom
chanical coupling inherent to magnetic materials in a mann
which facilitates the development of nonlinear constitutive r
lations for subsequent transducer and control design. The ini
framework for the model is provided by theory from [12, 13
which quantifies the nonlinear and hysteretic behavior ofH-M
7
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andH-B relations. Stress-dependence is incorporated by formu-
lation of an extended Gibbs energy relation and stress-dependent
coercive field expression. Attributes of the model are illustrated
through comparison with experimental steel data. Present in-
vestigations are focused on the development and experimental
validation of distributed transducer models using these nonlinear
constitutive relations.
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