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ABSTRACT

Our previous work on ferromagnetic shape memory Ni50Mn28.7Ga21.3 demonstrates reversible compressive strains
of ε = −4100µε along the [001] direction under the application of a magnetic field also along the [001] direction
with no external orthogonal restoring force. The reversibility of the strains is due to internal bias stresses oriented
orthogonal to the field. These results show promise for the use of Ni-Mn-Ga as the core material in solenoid
transducers. In this paper, the reversible strains are explained by considering pinning sites as the source of the
internal bias stresses in the material. Following prior work by Kiefer and Lagoudas,1 a phenomenological model
is constructed for the motion of twin variants in the presence of an orthogonal pair formed by a magnetic field
and an internal bias stress. The model is formulated by considering the Zeeman, elastic, and pinning energies,
from which an appropriate Gibbs energy function is constructed. Minimization of the Gibbs function then yields
a constitutive model for the strain. The accuracy of this model is studied and its implementation as a hysteresis
kernel in homogenization theories is discussed.

1. INTRODUCTION AND MOTIVATION

Ferromagnetic shape memory nickel-manganese-gallium (Ni-Mn-Ga) is attractive for transducer applications
due to the fact that it exhibits strains of 62, 3 to 9.5%4 when exposed to magnetic fields of 400 kA/m. Such
strains are on the order of those possible from shape memory alloys (SMAs) but because they are generated
in response to magnetic fields a higher frequency bandwidth is possible.5 As with standard SMAs, the large
strains in Ni-Mn-Ga originate in the psuedo-elasticity that occurs due to the reorientation of the martensitic twin
variants. In ferromagnetic shape memory alloys (FSMAs), however, the reorientation can be driven by magnetic
fields or external stresses. Unlike standard SMAs, Ni-Mn-Ga is typically employed solely in its low temperature
martensitic phase and hence lacks the restoring mechanism that the phase transformation in SMAs provides.
Thus, in order to achieve giant strains from Ni-Mn-Ga, an external force needs to be applied orthogonal to the
applied field to restore the original orientation of the twin variants. Our tests have shown that reversible strains
of -0.41%, which is over a two-fold strain increase over Terfenol-D, are achievable in Ni50Mn28.7Ga21.3 when the
applied field and output strain are along [001] and no external restoring force is applied. Existing models for
twin variant reorientation in Ni-Mn-Ga cannot predict such reversible strains. This paper, therefore, provides
an additional component to the current description of the strain mechanism in Ni50Mn28.7Ga21.3 and offers an
explanation for both the reversibility and the smaller magnitude of the strain obtained in previous tests.

The strain mechanism for Ni-Mn-Ga is well established in the literature.6–8 As a sample cools from its
high temperature austenite phase to its low temperature martensite phase, a self accommodating twinned struc-
ture results due to the minimization of the strain energy generated from the mismatch between the cubic and
tetragonal lattices. A two-dimensional representation of this twinned structure is shown in Figure 1. At zero
field the sample is comprised of two perpendicular variants separated by a twin boundary as illustrated in panel
(a). Each variant in turn consists of several distinct magnetic domains which are divided by 180◦ walls. The
twin variant volume fraction and the magnetic domain volume fraction are respectively denoted ξ and α. For
reasonably small transverse fields (∼8 kA/m), all of the magnetization vectors align with the preferred direction
of the variant and the magnetic domains disappear as shown in panel (b). Thus it is reasonable to assume α = 1.
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Figure 1. Strain mechanism for FSMAs under orthogonally applied stress and field.

As a transverse field is applied, the variants favored by the field will increase in size through twin reorientation.
Ni-Mn-Ga and other FSMAs have large magnetic anisotropy energies compared to the energy necessary to reorient
the unit cells at the twin boundary. Thus, as the applied magnetic field attracts the unit cell magnetization
vectors towards it, the unit cells along the twin boundary will switch orientation such that their magnetically
favored, short c-axis is more closely aligned with the field. This results in the growth of the favored variant
at the expense of the other through twin boundary motion and the overall axial lengthening of the sample, as
depicted in Figure 1(c). As the field is increased to the point where no further twin boundary motion is possible
and the field energy overcomes the magnetic anisotropy energy, the local magnetization vectors break away from
the short c-axis and align with the field. This results in magnetic saturation as shown in panel (d). When the
field is removed as in panel (e), the magnetic anisotropy energy will restore the local magnetization to the c-axis
of the unit cells. Since both variants are equally favorable from an energy standpoint,9 there is no restoring
force to drive the unit cell reorientation and the size of the sample will not change. Twin boundary motion and
reversible strain can be induced by applying an axial field, axial compressive stress, or a transverse tensile stress
all of which favor the variant with the short c-axis aligned with the axial direction as is illustrated in panel (f).
One common configuration for Ni-Mn-Ga consists of placing a rectangular sample in an electromagnet such that
the field is applied transversely and a bias axial compressive stress is always present10 as depicted in Figure 2.

Research preformed at MIT on stoichiometric Ni2MnGa in the mid 1990s reports reversible compressive strains
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Figure 2. Diagram of field and stress orientations in a electromagnet configuration.

502     Proc. of SPIE Vol. 5761

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



of ε = −1000µε (−0.1%) when the magnetic field is applied along the same direction as the measured strain11 and
no restoring force is applied. In previous work12 we presented results which are reproduced in Figure 3 and show
reversible compressive strains of ε = −4100µε (−0.41%) in Ni50Mn28.7Ga21.3 with no externally applied restoring
force. This is especially relevant because it implies that Ni-Mn-Ga can be employed in a solenoid transducer like
that of Figure 4, which can be designed to be smaller, more efficient, and have faster responses than electromagnet
transducers which require heavy pole pieces and air gaps. Solenoid transducers are promising for applications in
areas such as underwater communications and high bandwidth positioning. In a solenoid transducer the field is
applied along the axis of a cylindrical rod and no transverse stress or field is applied. According to the strain
mechanism presented in Figure 1 this configuration would not provide reversible strains because of the lack of a
restoring mechanism.

We propose a modification to the mechanism described in Figure 1 to include the existence of pinning sites
in the martensite which provide an internal restoring force allowing for reversible strain. The pinning sites,
which are physically point defects, small regions of a second phase material, or residual stresses can have varying
pinning energies.14 We hypothesize that in our Ni50Mn28.7Ga21.3 sample the twin boundaries are pinned to
sites which have energies too large to be overcome by the field, represented by circles in Figure 5. When an axial
magnetic field is applied, the twin boundaries attempt to displace according to the standard mechanisms for twin
variant reorientation as in panel (c) but the field does not provide enough energy to overcome the energy barrier
provided by the pinning sites. Instead, the twin boundary displaces as much as possible and as it does work
against the pinning sites, energy is dissipated. Saturation is achieved when the field energy is large enough to
overcome the anisotropy energy and the magnetic moments align with the field without changing the orientation
of the crystal (panel (d)). When the field is removed (panel (e)) the anisotropy energy returns the magnetic
moments to the easy c-axis of the crystal and the pinning site energy provides a restoring mechanism for the twin
boundary, returning the sample to its original length and magnetization. This theory provides an explanation
for the smaller magnitude of strain possible from this sample as well as the reversible strain measured in the
absence of an externally applied restoring force.

2. ENERGY FORMULATION FOR FSMAS

The pinning mechanisms discussed in the previous section allow us to drive NiMnGa in a solenoid transducer like
that shown in Figure 4. Because this transducer architecture includes a path for flux return, it is more compact
and energy efficient than its electromagnet counterpart. To model the strain produced by NiMnGa driven in
this manner, a thermodynamics approach similar to that presented by Kiefer and Lagoudas1 is proposed. An
additional term due to internal orthogonal stresses is included in the Gibbs function which quantifies the restoring
force found in our experiments. For simplicity, we assume that the structure comprises two variant orientations
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Figure 3. Quasi-static strain output versus input
magnetic field for Ni50Mn28.7Ga21.3 in a solenoid
transducer.13
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Figure 4. Diagram of field and stress orien-
tations in an solenoid configuration.
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described by the two-dimensional representation shown in Figure 6. Variant 2 is defined as that which is favored
by an axially applied field in the y-direction and has a volume fraction of ξ. Variant 1 refers to the transverse
variant with magnetization vectors oriented in the x-axis and has a volume fraction of (1 − ξ).

The material described in Figure 6 can be treated as a mixture of the two variants. The energy for such a
system can be written as

G(σ,H, T ) = (1 − ξ)GV 1 + ξGV 2 + Gbound (1)

where GV i is the energy of the i-th variant and Gbound is the energy of the boundary between the two variants.
In order to write expressions for GV i, it is assumed that (a) the system is isothermal and (b) the fields are large
enough that the effects of the magnetic domains can be ignored. In this case the expression for the energy of
each variant simplifies to the standard expression for Gibbs free energy15, 16

GV i(σ,H, T = const) = ψV i − 1
2ρ

σ · SV iσ − µ0

ρ
MV i · H (2)

where ψ is the Helmholtz energy, σ is the applied stress, S is the mechanical compliance, M is the magnetization,
H is the applied field, ρ is the density, and µ0 is the permeability of free space. Thus, the Gibbs Free Energy of
each variant is equal to the Helmholtz energy minus the elastic and Zeeman energy terms.
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Figure 5. Strain mechanism for FSMA under collinear stress and field. Arrows represent magnetic moments.
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Figure 6. Two-dimensional variants: notation and orientation.
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The energy of the twin boundary emanates from two sources. The first is the energy necessary to rotate a
unit cell which can be expressed as work done to overcome a force. The second is the energy associated with the
pinning sites which act as springs. Thus the boundary energy term has the form

Gbound =
{

c1ξ + k1ξ
2 ξ̇ > 0

c2ξ + k2ξ
2 ξ̇ < 0

(3)

where k is the effective spring constant of the pinning sites, c is the force associated with cell reorientation and
the two branches of the function occur because the behavior of the material is not the same when the field is
increasing and variant 1 is growing as it is when the field is decreasing and variant 1 is shrinking. It is noted that
this expression has the same form as the hardening function employed by Keifer and Lagoudas1 on the basis of
shape memory arguments.

For the solenoid configuration shown in Figure 4 both the applied stress and applied field are in the axial
direction. Using the geometry specified in Figure 6, substitution of (2) and (3) into (1) yields

G(σ,H, T = const) = ψV 1 − 1
2ρ

SV 1
yy σ2

y + ξ

[
− 1

2ρ
∆Syyσ

2
y − µ0Ms

ρ
Hy

]
+
{

c1ξ + k1ξ
2 ξ̇ > 0

c2ξ + k2ξ
2 ξ̇ < 0

(4)

where the ∆ operator refers to the difference between the two variants and ∆ψ = 0 since the Helmholtz energies
of the two variants are identical. Having now derived an expression for the free energy, relations can be used
to develop expressions for various thermodynamic quantities. The particular relation of interest comes about
through the Clausius-Duhem version of the second law of thermodynamics, which states that

πξ = εsσy − ρ
∂G

∂ξ
(5)

where πξ = ±Y ξ is the condition for the onset of twin variant motion and εs is the saturation strain. Differenti-
ation of (4) and substitution into (5) yields the force balance

±Y ξ = εsσy − 1
2
∆Syyσ2

y − µ0MsHy − ρ

{
c1 + 2k1ξ ξ̇ > 0
c2 + 2k2ξ ξ̇ < 0

. (6)

Expression (6) can then be solved for our variable of interest, ξ, as

ξ =

{
1

2ρk1
(εsσy + 1

2∆Syyσ
2
y + µ0MsHy − ρc1 − Y ξ) ξ̇ > 0

1
2ρk2

(εsσy + 1
2∆Syyσ

2
y + µ0MsHy − ρc2 + Y ξ) ξ̇ < 0

(7)

which is dependent on applied field Hy and axial stress σy .

3. PARAMETER IDENTIFICATION

In order to determine the volume fraction ξ for varied magnetic field and stress inputs, the parameters k1, k2, εs,
∆Syy, Ms, c1, c2, and Y ξ in relation (7) need to be determined. Parameters ∆Syy, Ms, and Y ξ can be measured
directly from experiments. For example, Ms is found from the magnetization vs field curve shown in Figure 7.
Figure 8 shows the maximum reversible strain possible from the Ni50Mn28.7Ga21.3 sample under various applied
loads. This data is fit with the expression

εs = εs,0

((
σy

σb

)2

− 2
(

σy

σb

)
+ 1

)
(8)

where σb is the blocking stress above which very little change occurs in the strain, and εs,0 is the strain possible
from an unloaded sample.

The remaining parameters can be found phenomenologically by fitting the desired shape of the hysteresis
loop to data for a particular applied stress (σp) as shown in Figure 9. The three points indicated in the figure

Proc. of SPIE Vol. 5761     505

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



−800 −600 −400 −200 0 200 400 600 800
−400

−300

−200

−100

0

100

200

300

400

Field (kA/m)

M
ag

ne
tiz

at
io

n 
(k

A
/m

)

Figure 7. Magnetization vs field curve for
Ni50Mn28.7Ga21.3.

13

Stress (Mpa)

M
ic

ro
st

ra
in

Figure 8. Maximum strain per input axial stress for
Ni50Mn28.7Ga21.3.

13

Table 1. Parameters in terms of measured data.

ε = ξεth

k1 = nk2

k2 = µ0MsH3(σp)εth

2(εs(σp)−ε2(σp))

c1 = εs(σp)σp + 1
2∆Syyσ2

p + µ0MsH1(σp) − Y ξ(σp)
c2 = εs(σp)σp + 1

2∆Syyσ2
p + Y ξ(σp) − 2k2

ε2(σp)
εth

εs,0 = εs(σp)σ2
b

(σp−σb)2

yield the following data points (1) field H1 at the strain turn around point, (2) strain ε2 at the cross over point,
(3) field H3 at the onset of saturation, and (4) saturation strain εs. Using these measurements the expressions
in Table 1 can be used to calculate the parameters needed to implement equation (7).

Note that strain ε is related to the volume fraction change ξ through the first equation in Table 1. The
maximum theoretical strain for the sample εth occurs if a single twin boundary sweeps through the entire sample
thus producing a change in ξ from 0 to 1. Hence, for the case where the boundary is pinned in place, ξ will be
limited to a much smaller range.
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Figure 9. Data points for parameter identification.
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4. MODEL RESULTS AND ACCURACY STUDY

To facilitate coding of this model, relation (7) is rewritten as

ξ =




1
2ρk1

(εsσy + 1
2∆Syyσ2

y + µ0MsHy − ρc1 − Y ξ) Ḣ > 0 and ξ < ξs

ξs ξ > ξs
1

2ρk2
(εsσy + 1

2∆Syyσ2
y + µ0MsHy − ρc2 + Y ξ) Ḣ < 0 and ξ < ξs

(9)

Since this is a phenomenological model and the parameters in these equations are fit to data, we now study the
accuracy of the model predictions for a given stress level σy if the coefficients are calculated based on various
stress levels σp. To that end, data points were collected for four stress levels as is shown in Table 2. Each of
these sets of data were used to find the coefficients for equation (9) and predictions were made for the strain
output at the other three stress levels.

Table 2. Model parameters obtained from measurements collected at various stress values.

σp = -0.0125 MPa σp = -0.62 MPa σp =-1.79 MPa σp = -4.16 MPa
εs (µε) -4050 -1265 -730 -455
H1 (kA/m) 12 10 11 10
ε2 (µε) -625 -250 -180 -250
H3 (kA/m) 180 125 180 250

The results are shown in Figure 10, where each graph shows the data and four predictions of the strain for
a sinusoidal input field at a particular applied stress σy. The four predictions are generated based on the the
data for various σp. Also plotted is the absolute value of the error e between the predicted and the measured
data for each of the cases. The plot in (a) shows the predictions for an applied stress of σy = −0.0125 MPa
which was the smallest possible load experimentally.17 As is expected the predicted strain based on coefficients
determined from σp = −0.0125 MPa matches both magnitude and slopel. For the coefficients determined from
the σp = −0.62, σp = −1.79, and σp = −4.16 MPa data the strain magnitude and slope of the hysteresis kernel
are underestimated with a maximum error for the σp = −4.16 case of about 3100 which corresponds to about a
75% error with respect to the maximum strain output. Panel (b) shows similar plots for the prediction of the
strain at σy = −0.62 MPa. As before, the prediction based on coefficients calculated from the data collected
for the same applied load case matches the data closely in both magnitude and slope and predictions based on
data for higher loads underestimate both slope and magnitude of the hysteresis kernels. The maximum error for
this load is found for the prediction based on the σp = −0.0125 MPa case and is calculated to be 2800 or about
a 220% overestimation with respect to the maximum strain output. The predictions for the σy = −1.79 and
σy = −4.16 MPa cases are shown respectively in panels (c) and (d). The trends established in (a) and (b) are
continued with the σp = σy case matching closely and σp < σy cases underestimating the slopes and magnitudes
of the kernel while the σp > σy cases overestimate these values. In each case the maximum absolute value of the
error was found for the σp = −0.0125 MPa case and it increases as the difference in stress levels increase being
about 380% for σy = −1.79 MPa and about 440% for σy = −4.16 MPa.

The error between the predicted and experimental outputs is quantified by various means in Table 3 where
e is the absolute value of the difference between the data and the prediction for each of the 174 data points,∑

e is the sum of these errors, 〈e〉 is the average value of the error, max(e) is the maximum of the error, and
e(Hmax) is the error at the maximum value of the field. It is observed that the two situations of largest error
are (a) predictions based on parameters generated from the 0.0125 MPa data and (b) predictions for the output
for the sample under 0.0125 MPa load based on parameters calculated from other data sets. As the stress levels
increase, the difference in achievable strains decreases and the error correspondingly decreases. This suggests
that stress ranges may need to be defined within which a specific set of parameters are appropriate and that
these ranges would be smaller for lower applied stress. It is noted that, as in the model by Kiefer and Lagoudas,1

this model accurately describes the overall trend of strain output decrease with increased load.
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Table 3. Error comparison for various choices of parameter source data

Parameter Source Data
σp = −0.0125MPa σp = −0.62MPa σp = −1.79MPa σp = −4.16MPa

σy = −0.0125MPa Σe = 186 × 103 Σe = 1779× 103 Σe = 2147 × 103 Σe = 2328× 103

〈e〉 = 288 〈e〉 = 2182 〈e〉 = 2634 〈e〉 = 2857
max(e) = 849 max(e) = 2674 max(e) = 3109 max(e) = 3272
e(Hmax) = 3 e(Hmax) = 2673 e(Hmax) = 3107 e(Hmax) = 3179

σy = −0.62MPa Σe = 1849× 103 Σe = 72 × 103 Σe = 278 × 103 Σe = 418 × 103

〈e〉 = 2269 〈e〉 = 88 〈e〉 = 341 〈e〉 = 513
max(e) = 2754 max(e) = 369 max(e) = 470 max(e) = 691
e(Hmax) = 2461 e(Hmax) = 2 e(Hmax) = 402 e(Hmax) = 468

σy = −1.79MPa Σe = 1873× 103 Σe = 325 × 103 Σe = 46 × 103 Σe = 64 × 103

〈e〉 = 2298 〈e〉 = 399 〈e〉 = 57 〈e〉 = 78
max(e) = 2694 max(e) = 664 max(e) = 212 max(e) = 215
e(Hmax) = 2416 e(Hmax) = 337 e(Hmax) = 0 e(Hmax) = 56

σy = −4.16MPa Σe = 1354× 103 Σe = 269 × 103 Σe = 79 × 103 Σe = 25 × 103

〈e〉 = 1664 〈e〉 = 331 〈e〉 = 97 〈e〉 = 31
max(e) = 1938 max(e) = 565 max(e) = 264 max(e) = 111
e(Hmax) = 1667 e(Hmax) = 265 e(Hmax) = 37 e(Hmax) = 0

5. STOCHASTIC HOMOGENIZATION FORMULATION

The error calculations presented in Section 4 highlight the limitations of model equation (9) as a tool to quantify
the field induced strain under various external axial loads. The model errors are in part due to the simplicity of
the shape chosen for the predicted curve and to the form of the equation used to fit the data in Figure 8. Errors
are also due to two simplifying assumptions made in the physical description of the mechanics of the system.

1. The sample is assumed to consist of only two variants with a single boundary. In reality, however, Ni-
Mn-Ga has many twin variants though only two distinct orientations. This implies that a sample will
have numerous twin boundaries and thus numerous pinning sites. As discussed by Marioni14 the pinning
energies vary over quite a large range which translates into a variation of the slopes k1 and k2.

2. The field is assumed to be uniform throughout the sample. However, due to the short-range interactions
the magnetic field in Ni-Mn-Ga can be considered to behave locally in a fashion similar to the mean field
proposed by Weiss.18 Thus, the magnitude of the field at a given point in the material is not equal to the
applied field but rather, is given by an effective field which is dependent on the applied field and the value
of the magnetization,

He = H + Hi = H + αM. (10)

The mean field constant α varies from point to point in the material due to differences in the lattice
structure.

Expression 7 quantifies the volume fraction and corresponding strain produced by an idealized single crystal
which consists of two variants and is exposed to homogeneous fields. Furthermore, the pinning sites are assumed
to be homogeneously distributed throughout the material. Stochastic homogenization methods like that devel-
oped by Smith19, 20 allow for extension of hysteresis models for ideal single crystals to more general regimes where
the lattice structure and magnetic field are not homogeneous, as is the case in most engineered polycrystalline
materials. For implementation, we will treat the pinning strength and interaction field as statistical distributions.
This yields

[ξ(H, σ)](t) =
∫ ∞

0

∫ ∞

−∞
ν1(Hi)ν2(k2)

[
ξ(H + Hi, σ, k2)

]
(t)dHidk2 (11)
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Figure 11. Distributions for (a) interaction field Hi, (b) pinning site strength k2 and (c) the effects of the k2 distribution
on the hysteresis kernels.

where ν1 and ν2 are appropriately chosen distributions and ξ̄ is given by expression (7). Since the Weiss
interaction field is known to have both positive and negative values the appropriate distribution is chosen as

ν1(Hi) = c1e
−H2

i /(2b2) (12)

which is a normal distribution centered at Hi = 0, as shown in Figure 11(a). The pinning site energies were
incorporated into the energy equations as effective mechanical springs. Thus, the values for k2 will never be
negative. To meet this criterion the distribution over k2 is chosen to be log-normal, as shown in Figure 11(b),
and is given by

ν2(k2) = c2e
−(ln(k2/k2)/2c)2

. (13)

The effect of this distribution on the slopes of the hysteresis kernels is shown in Figure 11c.

Future efforts will focus on the application of this formulation to develop more accurate predictions of both
the magnitude and shape of the hysteric strain per input field curves for various applied strain levels. Such
predictions will be valuable in the design and control of solenoid based Ni-Mn-Ga transducers.
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6. CONCLUSIONS

This paper has presented an adaptation to the existing theory of the internal mechanics of FMSA behavior to
include the effect of pinning site energies and to explain the existence of reversible strains in Ni50Mn28.7Ga21.3

when no restoring force is applied. A thermodynamic approach was used to modify the energy expressions to
include the pinning energy as effective springs attached to the twin variant boundary. These mathematical
expressions for the energy of the system were used to derive an expression for an idealized hysteresis kernel that
predicts the strain produced by the material under various loading conditions. An error analysis for this model
showed that though some basic trends were predicted the errors are too large for the model to be employed
independently. A procedure was presented that will lead to more accurate strain predictions by using stochastic
distributions to weight various forms of this hysteresis kernel. Future work will employ this approach in the
development of more accurate models for the nonlinear, hysteric strain under various operating conditions which
will allow for easier design and control of Ni-Mn-Ga solenoid transducers.
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