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State-Space Constitutive Model for Magnetization and Magnetostriction
of Galfenol Alloys
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We present a thermodynamic model that quantifies the magnetization and magnetostriction of annealed or unannealed Galfenol alloys
subjected to magnetic fields and mechanical stresses. The model requires a small number of parameters directly related to physical
properties of the data, thus providing a useful tool for material characterization and design. Furthermore, the model is formulated in
state-space form, which simplifies computations for design and control of Galfenol devices.

Index Terms—Constitutive model, Galfenol, state-space formulation, thermal relaxation.

I. INTRODUCTION

GALFENOL Fe Ga ) is an emerging new magne-
tostrictive material that possesses fundamental advan-

tages. Unlike most active materials, Galfenol is malleable and
machinable, and can be safely operated in tension, compres-
sion, bending, and under shock loads. Due to Galfenol’s unique
combination of metallurgical and mechanical properties, it has
the potential to enable smart load-bearing devices and struc-
tures in innovative 3-D geometries manufactured by welding,
extrusion, rolling, deposition, or machining. Further, the con-
trol of anisotropies through manufacturing and post-processing
methods made possible with Galfenol could lead to innovative
devices with fully coupled 3-D functionality. Examples include
nanowires for acoustic sensors that mimic the hairlike cilia of
the inner ear [1], sonar transducers with load-bearing proper-
ties and adaptive 3-D projection patterns, and shock-tolerant
adaptive structures.

Previous models for Galfenol [2], [3] have followed
Armstrong’s approach [4] of using a single energy-weighted
average of the Gibbs free energy for the entire material to
calculate the distribution of moments. The weighting function
tends to smooth the sharp magnetization and magnetostriction
transitions obtained by direct minimization of the Gibbs free
energy, thus providing a more accurate description of physical
measurements. However, the weighting function depends on a
nonphysical parameter. Because the moment volume fractions
are not tracked, this model cannot characterize the hysteresis
due to anisotropy or rate dependent thermal effects, which oc-
curs because of the history dependence of the moment volume
fractions in each Gibbs energy well.

In this paper, we present a macroscopic constitutive model
that accurately quantifies hysteresis, stress and annealing-in-
duced anisotropies, and thermal relaxation effects present in the
magnetization and magnetostriction of general magnetostric-
tive materials, with especial consideration to Galfenol’s specific
properties. Our approach consists of finding a local magnetiza-
tion kernel through minimization of the Gibbs free energy of a
single magnetic moment and then applying Boltzmann statis-
tics to calculate the evolution of moment volume fractions in
the bulk material. We formulate the model in state-space form,
which greatly simplifies model implementation for large-signal
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(i.e., nonlinear) device design and control. The model requires a
small number of parameters that can be correlated with physical
properties of the data.

In our approach, thermal energy creates a Boltzmann distribu-
tion of moments in each of the Gibbs energy wells and causes
moments to jump between wells. The bulk magnetization and
magnetostriction are calculated by tracking the volume fraction
of moments in each well and summing their expected contribu-
tion to the bulk magnetization or magnetostriction. The result
is a linear time-variant equation that is expressed in state-space
form. The modeling of a nonlinear time-invariant system as a
linear time-variant system is advantageous because the stability
properties of such systems are well understood (see, for ex-
ample, [5]).

II. MODEL DEVELOPMENT

A. Energy Formulations

The Helmholtz free energy is given by the Legendre trans-
formation of the internal energy , where is
temperature and is entropy. The internal energy is comprised
of magnetocrystalline anisotropy energy and stress-induced
anisotropy energy .

The magnetocrystalline anisotropy energy depends on the ori-
entation of the magnetization. Stress-an-
nealed Galfenol has tetragonal crystal symmetry [2] for which

has been given in [6]

(1)

The and spatial directions are assumed to be aligned
with the [100], [010], and [001] crystal directions. The constant

is the fourth-order cubic anisotropy constant and the con-
stants and are the second-order and fourth-order uniaxial
anisotropy constants that favor or penalize the direction de-
pending on their sign. Recognizing that
can be shown to be related to in the traditional cubic formu-
lation (used, for example, in [4])

(2)

by . Rafique et al. [7] measured for single-
crystal Galfenol alloys with 5–20 at.% Ga. We use a value
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Fig. 1. Comparison of (a) unannealed and (b) annealed Helmholtz free energies
with no applied stress. The energy has been normalized and is proportional to
the distance from the origin and the color.

that is about 40% lower than the corresponding value ob-
tained from the coefficients presented in [7]. The difference
is due to our samples being highly textured polycrystals rather
than single crystals.

The stress anisotropy, which is induced by the magnetoe-
lastic coupling energy, depends on the stress tensor in a
manner dictated by the crystal symmetry. The derivation of the
stress anisotropy from the magnetoelastic coupling energy for
materials exhibiting cubic symmetry in the magnetostriction
has been presented by Kittel [8]. The stress contribution to the
anisotropy is

(3)

where and are magnetostriction along the [001] and
[111] directions, respectively.

By considering only isothermal processes and incor-
porating irreversibilities into the moment rotations (see
Section II-D) rather than through a direct entropy formula-
tion, the Helmholtz free energy reduces to the internal energy

.
Fig. 1 shows the effect of stress-annealing or compressive

stresses along the -axis on the Helmholtz free energy. The -di-
rection becomes a higher energy direction, which has two effects
on the magnetization due to magnetic fields applied in this direc-
tion. First, the hysteresis and remanence magnetization decrease
because there is no longer a deep energy well to trap magnetic
moments. Second, higher fields are required to saturate the ma-
terial. The depth of the wells on the -axis is determined by the
magnitude and sign of and relative to . In the case
when and are zero as in Fig. 1(a), relation (1) is iden-
tical to (2) up to the term and the symmetry is cubic.

The Gibbs free energy of a single magnetic mo-
ment is obtained through the Legendre transformation

, where is the saturation mag-
netization and is an applied magnetic field. In the common
case in which the applied magnetic field and stress are oriented
along the -axis, the Gibbs free energy has the form

(4)

where is the magnetic field and is the stress along the
-axis. Constant terms have been omitted because it is the

change in the Gibbs energy that determines the moment orien-
tation. The Gibbs energy (4) is expressed more efficiently in
spherical coordinates with the orientation of the magnetization
vector defined by the angle it makes with the -axis and the
angle that its projection in the - plane makes with the

-axis

(5)

When thermal energy and material defects are negligible, all
of the magnetic moments will be oriented in the locally min-
imum directions in each of the energy wells. The bulk magneti-
zation is the vector sum of the magnetization due to each mag-
netic moment. Therefore, to determine the bulk magnetization
one requires an equation for the trajectory of the energy wells
produced by applied magnetic fields and the volume fraction of
moments in each well. The symmetry in the 3-D Gibbs energy
implies that the moments in each of the four energy wells in the
basal plane follow the same path when an applied magnetic
field in the -direction induces rotation of moments into the field
direction. It is sufficient then to model the trajectory of just one
of these wells because the contribution to the magnetization in
the -direction of moments lying in any of the four wells will
be the same [Fig. 2(a), (c), (e)]. Choosing the energy well in the

-direction to be tracked and using only cos functions,
(5) becomes

(6)

This reduced-dimension energy potential is shown in
Fig. 2(b), (d), (f) beside the 3-D energy potential (4). Mini-
mization of (6) yields the orientation of the energy wells.
Since and always contribute together and in nearly the
same proportion, we neglect as was done in the anhysteretic
model of Restorff et al. [2].

Gibbs energy (6) was derived for single crystals under
uniaxial compression. However, it is also appropriate
for highly textured polycrystals having negligible grain
misalignment. Consider for example a grain with a five
degree misalignment of the [001] direction with the axis
of a rod subjected to a compressive stress along the axis
( -direction). The stress state in the rod reference frame
would be
while the stress state in the grain reference frame would be

, which is approxi-
mately uniaxial. To accommodate lower grade polycrystals
having appreciable grain misalignment, the tensorial stress-in-
duced anisotropy energy (3) would need to be used along with
a homogenization technique like that of Appino, Valsania, and
Basso [9] to characterize the distribution of grain orientations.
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Fig. 2. Left column: 3-D Gibbs free energy given by (4). Right column: Re-
duced 2-D Gibbs free energy given by (6). The rows represent low, medium,
and high magnetic fields (top to bottom).

B. Local Magnetization

The orientation of a single magnetic moment is determined by
two conditions, and . Application of
the first condition to (6), followed by factorization gives

(7)

(8)

Relation (8) coupled with the second condition simply
identifies the easy axes in the positive and negative

-directions and their intervals of existence. The posi-
tive -direction is a minimum energy direction on the
interval and
the negative -direction is a minimum on the interval

. Magnetic fields
outside of the first interval will cause the easy axis in the
positive -direction to become hard and magnetic fields outside
of the second interval will cause the easy axis in the negative

-direction to become hard.
Relation (7) is a cubic equation in that can be solved an-

alytically with Cardano’s method. The three solutions give the
location of the two energy maxima and the energy minimum

Fig. 3. Local magnetization hysteron obtained from minimization of the Gibbs
free energy.

in Fig. 2(a). The discriminant in Cardano’s method can be used
to determine the interval of existence of the energy minimum;
this yields a simpler solution than the condition on the second
derivative of the Gibbs energy. Setting the discriminant equal to
zero yields the interval of existence

(9)

The hysteretic, local magnetization in the -direction (Fig. 3) is
constructed from the relation , in which possible
values of are the solutions to (7) and (8) with their respec-
tive magnetic field intervals of existence. The result is a triple
valued hysteron in which the cubic branch that passes through
the origin accounts for the low hysteresis and characteristic “S”
shape of the – major loop of bulk Galfenol. The shallow
slope and finite interval of existence of the cubic branch is a
manifestation of the rotation of magnetic moments away from
the four energy wells in the -plane into the direction of the
applied magnetic field and the eventual disappearance of these
wells.

C. Local Anhysteretic Magnetization

At low magnetic field levels and in cases when a compressive
stress is applied or stress-annealed Galfenol is used, the energy
wells that give rise to the cubic branch of the kernel are much
deeper than the wells that give rise to the saturation solutions.
As a result, at low magnetic fields most of the magnetic mo-
ments will reside in these energy wells and the bulk magneti-
zation will follow the cubic branch of the kernel. The slope of
the cubic branch at zero field can be obtained through a linear
approximation to (7)

(10)

(11)

Under the assumption that the bulk magnetization follows the
cubic branch closely at low fields, (11) provides a useful mea-
sure of the anisotropy since , , and
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Fig. 4. Anhysteretic magnetization calculated from the measured magnetiza-
tion curve of Fe Ga . The following values were observed from the data
using (11) and (12): K = �8:0 kJ/m , K = �0:10 kJ/m , � M =
1:61 T, and (3=2)� = 260�strain.

are all easily measured. This assumption is accurate for suffi-
ciently high compressive stress.

A second measure of the anisotropy is necessary since there
are two anisotropy coefficients. As the applied magnetic field is
increased or decreased from zero, it reaches a level where the
energy well of the saturation solution in the direction of the ap-
plied field becomes deeper than the energy wells of the cubic
branch. At this point, rapid jumping of magnetic moments oc-
curs from the energy wells of the cubic branch to the energy
well of the saturation solution. This situation is evident in the
burst region of the magnetization curve. A close approximation
of the field level that will initiate the burst region can be found
analytically by equating the Gibbs energy (6) evaluated on the
saturation solution with the Gibbs energy evaluated on the linear
approximation of the cubic branch (10). This yields

(12)

Since the transition into the burst region of the measured mag-
netization curve is smooth, it is not possible to measure
exactly. However, a first approximation of the anisotropy con-
stants can be obtained by assuming that is the start of the
linear portion of the burst region (which is observable in data,
see Fig. 4) and then using relations (11) and (12). This point is
more clearly identifiable when either a moderate compressive
stress is applied or the material has been stress-annealed.

The anhysteretic curve is generated by forcing all of the mag-
netic moments to follow the cubic branch of the kernel until the
saturation branches become the global minima at fields above

or below (Fig. 4). This anhysteretic curve does not
closely follow actual magnetization curves due to the effects of
thermal energy. However, relations (11) and (12) do provide an
approximate measure of the anisotropy coefficients without the
need of a least-squares fitting procedure to a full model. Fur-
thermore, these relations could be used in transducer design to

select the mechanical prestress needed to achieve a prescribed
magnetization, and hence magnetostriction, response.

The magnetization kernel also provides insight into the mag-
netization process. Since the energy wells of the cubic branch
shrink continuously with increasing fields until they disappear,
it is expected that by the time they disappear, nearly all of the
moments have jumped to the saturation branch. Thus, the end
point of the cubic branch can be interpreted as the end of the
burst region. Fig. 4 shows the theoretical anhysteretic curve and
kernel along with Galfenol data. The material is unannealed
Fe Ga subjected to a constant compressive stress of
27.6 MPa. The anisotropy constants were approximated using
(11) and (12).

D. Thermal Energy

As proposed by Néel [10], thermal energy causes precession
of magnetic moments about local energy minima and jumping
between energy wells. Following the approach of Smith et al.
[11], we assume that the magnetic moments follow a Boltzmann
distribution within each energy well and that Boltzmann statis-
tics quantify the likelihood that moments overcome the barrier
between adjacent wells. Since jumping between the four energy
wells in the -plane and precession in the coordinate have
little effect on the magnetization or strain in the -direction, we
neglect these effects and continue using the reduced-dimension
Gibbs energy (6).

The expected value of magnetization in the -direction of
moments residing in each of the energy wells can be calcu-
lated from the assumed Boltzmann distribution (with the
ratio of Boltzmann constant, temperature, and effective moment
volume) [11]

(13)

Here, and are the expected values of
magnetization of moments residing in the energy wells associ-
ated with the positive saturation branch, the cubic branch, and
the negative saturation branch of the kernel, respectively. The
integration limit is the location of the energy hump
that separates the energy wells and is the relative
magnetization in the -direction (Fig. 5).

To calculate the bulk magnetization, both the volume fraction
of moments residing in each energy well and the expected values
of magnetization for each energy well are needed. This requires
knowledge of the initial distribution and the rates at which mo-
ments jump between energy wells. When a magnetic moment
is excited to the inflection point in the Helmholtz free energy, it
has enough energy to jump to the adjacent energy well [12]. The
probabilities of a magnetic moment jumping from an initial
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Fig. 5. Two-dimensional representation of the Helmholtz free energy.

energy well to a destination well
are [11]

(14)

The proportionality constant is the frequency at which mo-
ments attempt to jump, with the thermal relaxation time con-
stant. The integral bounds and are the inflection
points on either side of the energy humps in the Helmholtz free
energy (Fig. 5) that may be found as the positive roots of the
second derivative of the Gibbs energy (6) under zero field. The
parameter is the width of a small interval of relative magneti-
zation that includes the inflection point in the Helmholtz energy.
Because has to be small compared to the width of the energy
wells, the integrals in the numerators of (14) can be evaluated
using right endpoint numerical integration

(15)

This approximation allows us to define a time constant ratio,
, in which index is 1 for the positive and

negative energy wells and 2 for the cubic energy well. The unit
of measure for is seconds because is unitless. The time
constant ratio is treated as a parameter to be identified from ex-
perimental data. Assuming a typical time constant

s, the integration intervals are calculated to vary between
and depending on stress, annealing,

and which energy well is considered (Tables II and III). These
values are sufficiently small relative to the width of the positive,

TABLE I
MODEL PARAMETERS

TABLE II
PARAMETER OPTIMIZATION FOR UNANNEALED Fe Ga

AT FOUR STRESS LEVELS

TABLE III
PARAMETER OPTIMIZATION FOR ANNEALED Fe Ga

AT FOUR STRESS LEVELS

negative, and cubic energy wells, which have the relative mag-
netization values of 0.3172 , and
1.3656 , respectively.

With the jumping probabilities (14), the evolution of the mo-
ment volume fraction in each energy well, , can
be expressed as

(16)

Implicit in model (13)–(16) is the assumption that the rate at
which thermal equilibrium is achieved within each energy well
is much faster than the rate at which moments jump between
wells. This justifies the local use of the Boltzmann probability
in (13)–(14) that is derived assuming thermal equilibrium (see
[13, pp. 104–108] for details). Analogous kinetic models have
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been used to characterize the quasi-static behavior of piezoelec-
tric and shape-memory materials [14], [15]. The bulk magneti-
zation can now be obtained by integrating (16) and summing the
products of the volume fractions and their respective expected
value of magnetization

(17)

Equations (16) and (17) can be assembled in state-space form
to yield a linear, time-variant system of the form

(18)

where is the vector of volume fractions, is the matrix of
field dependent jumping probabilities, and is the vector
of field dependent expected values of magnetization. System
(18) depends only on the input magnetic field, applied stress,
and the six material constants in Table I.

The thermal quantity is interpreted as the thermal en-
ergy per volume, where the volume is that of a single rotational
element. This volume changes with field and varies throughout
the material because three distinct rotations take place: coherent
rotation of moments (domain rotation), incoherent rotation of
moments within domains (moment precession), and rotation of
single moments at domain walls (domain wall motion). Domain
rotation occurs in the high permeability burst region, moment
precession at all field levels, and domain wall motion mainly in
the low field region [16]. To preserve the low order of the model
we do not attempt to characterize the domain configuration and
hence use a constant volume that is determined through a least
squares fit to the data ( m , or the volume
of a sphere with radius 12 nm).

While the hysteron described by relations (7) and (8) and
shown in Fig. 3 does not appear explicitly in the model (18),
the model converges to the hysteron as the thermal energy de-
creases, i.e., as the quantity decreases. This was shown
in [11] for a double well potential and is illustrated in Fig. 6 for
the triple well potential (6).

E. Magnetostriction Model

Kellogg et al. [17] experimentally quantified the nonlinear
relationship between the magnetostriction and the square of
the magnetization, concluding that the magnetization process
does not occur solely from 90 moment rotation. Since this
agrees with the magnetization model developed in Section II-D,
we follow the same approach for the magnetostriction model.
Probabilities (14) remain unchanged. We simply need to calcu-
late the expected value of the strain contribution of moments
residing in each energy well and sum their product with the
volume fractions calculated from integration of (16). With
cubic crystal symmetry the relationship between the magne-
tization and magnetostriction under axially applied stresses

Fig. 6. Bulk magnetization model (18) calculated for the cases: (a) low thermal
energy, (b) medium thermal energy, and (c) high thermal energy compared to
the local hysteron described by relations (7) and (8).

and negligible thermal activation is [8].
The effect of thermal energy is quantified as in Section II-D
by classical Boltzmann statistics. The expected values of the
magnetostriction thus are

(19)

These are assembled into the output vector to yield a
state-space magnetostriction model of the same form as (18)

(20)

This system also depends only on the input field, applied bias
stress, and the material parameters in Table I.

F. Bulk Anhysteretic Model

The anhysteretic magnetization and magnetostriction are
given by the steady-state solution to systems (18) and (20)
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Fig. 7. High field measurement of Fe Ga with 27.6 MPa preload.

The components of the steady state vector are calculated
from and the conservation relation

The steady-state anhysteretic model may be used to quantify the
magnetostriction and magnetization of materials with small
and in cases when the input magnetic field varies slowly. Fig. 8
illustrates the convergence of the hysteretic model to the anhys-
teretic model as is decreased. As is decreased, the delay
decreases and so does the hysteresis.

G. High Stress or Stress Annealing

When the prestress or the uniaxial anisotropy constant
exceed a critical value, the Helmholtz energy becomes a single-
well potential. In this case, all of the moments reside in the same
well and there is no hysteresis due to anisotropy. This situation
occurs when the unstable equilibrium of the Helmholtz free
energy (see Fig. 5) is greater than unity. The level of stress or
uniaxial anisotropy that produces can be found by
expressing explicitly from , setting it equal to
unity, and solving for or . This gives

With a single-well Helmholtz potential there are no moment
jumping effects due to thermal energy. However, thermal en-
ergy does create a Boltzmann distribution of moments within
the well. Thus, for a single-well potential, the magnetization and
magnetostriction can be modeled as

(21)

Fig. 8. (a) Magnetostriction model and (b) magnetization model for decreasing
time constant � including the anhysteretic steady-state model.

(22)

III. COMPARISON WITH EXPERIMENTAL DATA

The model is compared to major loop measurements of
both unannealed and annealed Fe Ga . The samples are
research-grade highly textured polycrystals from Etrema Prod-
ucts Inc., which have a large fraction of the crystallites with
the [001] direction oriented within five degrees of the rod axis.
Galfenol manufactured in this fashion exhibits cubic anisotropy
when unannealed and tetragonal anisotropy when annealed [2].
The measurements were performed in a closed magnetic circuit
with ramp current inputs to a solenoid that take 40 seconds to go
from positive saturation to negative saturation. Because of the
nonlinear nature of the magnetic circuit, the applied magnetic
field was not a perfect ramp. However, perfect ramp inputs
were used in the model. Because the tests were quasi-static,
the shape of the major loop is not affected by the shape of the
input field provided it is monotonic as it increases to positive
saturation and monotonic as it decreases to negative saturation.

To evaluate the accuracy of the model and its sensitivity to
operating conditions, we optimized the model parameters with
a least-squares algorithm for four different cases, each with a
different level of compressive stress (Tables II and III) for both
unannealed and annealed material. The parameters and
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Fig. 9. Comparison of model with experimental data of unannealed
Fe Ga with stresses of �1:38;�13:9;�27:6; and �41:4 MPa.
Each model curve was generated with parameters obtained through minimiza-
tion of the error with the respective curve.

were measured directly as 1.62 T and 260 strain, re-
spectively. Initial values for the anisotropy constants were esti-
mated from the – curve as described in Section II-C. For the
magnetostriction measurements, the zero-field magnetostriction
is defined as zero for each curve. Zero magnetostriction for
model equation (20) is the 90 moment orientation that is only
achieved at high stress levels. Hence, to compare the model
to measurements, the zero-field magnetostriction must be sub-
tracted from the model.

The objective function of the optimization algorithm was the
sum of the square of the errors in the magnetostriction at each
data point. The magnetostriction was used partly because of the
difference in the magnetostriction and magnetization-squared
behavior shown in Fig. 7 and because the magnetostriction is
of greater interest for transducer design. If the magnetostriction
were due solely to domain rotation and domain rotation were the
only magnetization process, the magnetostriction versus field
and magnetization-squared versus field would be nearly iden-
tical when plotted as a relative magnitude. Since they are not,
there are unmodeled effects present such as domain wall mo-
tion and material defects.

Fig. 10. Comparison of model with experimental data of annealed
Fe Ga with stresses of �1:38;�13:9;�27:6; and �41:4 MPa.
Each model curve was generated with parameters obtained through minimiza-
tion of the error with the respective curve.

Because of our choice of objective function, the error in the
magnetostriction, Fig. 10(a), is smaller than the error in the mag-
netization, Fig. 10(b). Tables II and III show the parameters op-
timized for each stress case and some amount of variability in
the parameters is noted. While clear trends in the parameters
with respect to stress are not evident, the errors are larger for
the unannealed, low-stress cases 1 and 2. This may be attributed
to domain wall motion being a more significant magnetization
process when stress is low in unannealed material. Both stress
and annealing tend to align magnetic moments perpendicular to
the rod; rotation then becomes the dominant process as moments
rotate into the direction along the rod in response to an applied
field.

The model accurately quantifies both the shape and the small
amount of hysteresis present in the data. Fig. 9(a) shows that the
thermal energy formulation in Section II-D describes the ability
of a compressive stress to encourage 90 initial moment orienta-
tions. The model also describes the decrease in hysteresis to near
nonexistence due to annealing and applied stress (Fig. 10). For
the fourth stress level ( 41.4 MPa), the uniaxial anisotropy and
stress were high enough to require use of the constitutive equa-
tions for a single-well potential (21) and (22). Fig. 11 shows
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Fig. 11. Comparison of the single-well model with experimental data of an-
nealed Fe Ga for stresses of�55:2;�69;�82:7; and�96:5MPa. Each
model curve was generated with parameters obtained through minimization of
the error with the respective curve.

measurements of the annealed material at higher stresses and
further illustrates the accuracy of the single-well constitutive
model.

The model parameters are related to physical properties of
the data. The saturation intrinsic flux density and mag-
netostriction are simply the intrinsic flux density and magne-
tostriction (when sufficient prestress is applied) achieved at high
magnetic field. The effect of the anisotropy constants and

is manifested through relations (11) and (12), which de-
scribe how the low-field slope and the start of the burst region
change with stress. This change can be seen in the data [see
Figs. 9(b), 10(b), and 11(b)] where the low-field slope decreases
and the start of the burst region is delayed with increasing stress.
The effect of the thermal energy is evident in the smooth
transitions of the burst region as opposed to sharp jumps as pre-
dicted by minimization of the Gibbs energy. Finally, the time
constants are related to the amount of hysteresis in the data
where less hysteresis implies a smaller time constant.

Fig. 12 illustrates the performance of the model when
the same parameter set is used on the four stress cases; the
parameters were optimized for the first and third stress values
with the error in the magnetostriction used as the optimization

Fig. 12. Comparison of model with experimental data of unannealed
Fe Ga with stresses of �1:38;�13:9;�27:6; and �41:4 MPa. Each
model curve was generated with the same set of parameters.

objective function. The maximum percent error was 3.6%,
5.6%, 1.3%, and 1.3% for stress cases 1–4, respectively (com-
pare to Table II). The error is again larger in cases 1 and 2 where
the stress is not large enough to achieve complete alignment of
moments perpendicular to the rod axis.

IV. CONCLUDING REMARKS

A linear, time-variant, state-space constitutive model is
presented that quantifies the nonlinear magnetization and
magnetostriction of Galfenol alloys. The effects of external
magnetic fields, stresses, and stress annealing on the magneti-
zation and magnetostriction of Galfenol are modeled by quan-
tifying the coupling between magnetocrystalline anisotropy,
magnetoelastic, Zeeman, and thermal energies. A triple-valued
magnetization kernel characterized by a triple-well Gibbs
energy potential provides an understanding of both the low
permeability and burst regions of the major loop magnetization
curve. Boltzmann statistics is used to describe the distribution
and rotations of magnetic moments. This provides a physical
basis for understanding the key features of the magnetization
and magnetostriction loops as well as the ability of a compres-
sive stress to align magnetic moments 90 from the -axis for
maximum magnetostriction. A small amount of hysteresis is
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naturally present in the model due to anisotropy and agrees
well with experimental measurements. Unaccounted-for effects
such as pinning sites are likely to contribute to the magnetic
hysteresis as well.
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