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ABSTRACT: Prior experimental measurements by the authors demonstrated large reversible
strains of �0:41% along the [001] crystal direction of a cylindrical Ni50Mn28.7Ga21.3 rod
driven with a magnetic field along the same direction and no external restoring force. The
origin of the reversibility is attributed to internal bias stresses generated by impurities
absorbed during manufacture of the alloy. This article presents a macroscopic constitutive
model for Ni–Mn–Ga strain in collinear field and stress configuration. The switching between
two variant orientations in the presence of Zeeman energy and the pinning energy of the
impurities is formulated through a Gibbs energy function for the crystal lattice.
Inhomogeneous local interaction fields and impurity distributions are addressed through
stochastic homogenization techniques. Attributes of the model are illustrated through
comparison of model results with strain–field measurements collected at various compressive
loads. Constrained optimization is used to determine the necessary parameters and an error
analysis is performed to assess the accuracy of the model for various loading conditions. The
collinear field and stress configuration can lead to solenoid transducers with enhanced energy
density and bandwidth relative to standard electromagnet devices.

Key Words: Ferromagnetic shape memory, Ni–Mn–Ga, free energy modeling, multi-scale
homogenization, actuation.

INTRODUCTION

L
ARGE magnetic field-induced strains (MFISs) as
large as 9.5% have been observed in nickel

manganese gallium (Ni–Mn–Ga) martensites exposed
to magnetic fields of 400 kA/m (Likhachev et al., 2001;
Murray et al., 2001; Sozinov et al., 2002). Due to the
field activation, the frequency response of Ni–Mn–Ga
alloys can be higher than that exhibited through thermal
activation in shape memory alloys (Faidley et al., 2003).
These properties are significant for actuator and sensor
applications in emerging technological areas in which
increasing performance demands dictate the need for
transducer materials capable of large deformations
simultaneously with broad frequency bandwidths.
As is the case with shape memory materials, the large

deformations exhibited by Ni–Mn–Ga alloys originate
in the rearrangement of martensitic twin variants under
the action of magnetic fields. Unlike nickel titanium and
other shape memory materials, in which the ability to do
work stems from thermomechanical transformation
between the martensite and austenite phases, the main

actuation mechanism in Ni–Mn–Ga takes place in the
low-temperature martensite phase and is driven
by magnetic fields or mechanical stresses. Since in
Ni–Mn–Ga magnetic fields and compressive stresses
applied collinearly favor the same variant, a mechanical
force or magnetic field must be applied orthogonal to
the driving magnetic field to restore the twin variants
and thus obtain bidirectional deformations. In applica-
tions, this is done by placing a rectangular sample in an
electromagnet with the magnetic field applied along the
[110] crystallographic direction of the parent phase and
a bias compressive stress applied along the [001]
direction (Tickle, 2000).

Models for twin variant rearrangement in ferromag-
netic shape memory alloys have been constructed both
from microscopic principles (James and Wuttig, 1998;
DeSimone and James, 2006) and macroscopic thermo-
dynamic considerations (O’Handley, 1998; Murray
et al., 2000). The former approach tends to be more
general and accurate but at the expense of computa-
tional efficiency, hence its implementation often is
restricted to highly simplified cases. Thermodynamic
formulations often include the difference in Zeeman
energy across the twin boundaries as the driving force
for twin rearrangement, on the assumption that the
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anisotropy energy is much larger than the
Zeeman energy. For those situations in which the
anisotropy energy is small, drive magnetic fields align
the magnetization vectors without rotating the unit
cells, thus leading to a small MFIS. For intermediate
anisotropy energies, both effects take place leading to
saturation behavior in the strain–field curves. After
formulating the total energy as a combination of
appropriate driving energies and the elastic energy,
minimization with respect to volume fraction leads to
constitutive expressions for strain and magnetization.
Prior literature on parallel field and stress

configurations is virtually nonexistent. Wu et al. (1999)
have reported a large recoverable MFIS of �0:31% in
the [001] direction of an off-stoichiometry single crystal
of Ni52Mn22.2Ga25.8 driven by a 20 kOe field along the
[001] direction. This alloy showed a martensitic self-
strain of 2%, about a hundred times as large as that of
Ni2MnGa, thus suggesting that the martensite variants
in a large fraction of the alloy are preferentially oriented.
This reduces the degree of self-accommodation and
leads to reduced deformations compared with the
6% strains achievable by reorientation of the c-axis
throughout the alloy. The measured deformations are
very significant, nonetheless, as they compare favorably
with those of Terfenol-D. However, the combination of
high fields and low martensitic transformation
temperature, which in this alloy is situated slightly
below room temperature, precludes the practical
implementation of this alloy in motion generation
systems. Ohmic and eddy current heating produced
within the solenoid transducer would easily cause the
alloy to transform to its austenitic phase.
Malla et al. (2006) have established that large

reversible strains of �0:41% are possible in
Ni50Mn28.7Ga21.3 exposed to alternating magnetic
fields along the [001] direction of the parent austenite
phase with no external restoring force. This unexpected
result suggests the presence of internal bias stresses in
the alloy which act as localized energy potentials that
oppose twin boundary motion and provide an otherwise
nonexisting restoring force when the magnetic field is
removed. The presence of internal restraining forces also
explains the reduced deformations relative to alloys
capable of over 6% strain, in which twin boundary
motion is largely unimpeded. The bidirectional
deformations and associated macroscopic magneto-
mechanical behaviors (Malla et al., 2006) have remained
unaltered after the alloy, which was tested as cast
without mechanical ‘training’, was subjected to a large
number of field and stress cycles (Malla et al., 2006).
While this effect could stem from a number of
mechanisms at the lattice level, impurities are the most
likely cause of stable internal stresses in the alloy.
It has been shown that Ni–Mn–Ga alloys are
extremely susceptible to impurities; inclusions of

gallium sulfide (S), tantalum (Ta) plates of various
shapes and sizes, and titanium-rich (Ti) precipitates have
been observed (Richard, 2005). It was assumed that for
the large, incoherent S and Ta inclusions observed, twin
boundaries would have to loop around the impurities in
order for twin boundary motion to occur. Since the
observed Ti precipitates are much smaller than the S and
Ta inclusions, it was argued that the mechanism of twin
boundary motion in the presence of Ti precipitates is
most likely cutting through the particles, as opposed to
looping. By cutting, the twin boundaries form two new
interfaces which provide a low-energy path for twin
boundary movement as compared to looping around the
particles. It was estimated that the small Ti-rich
precipitates have a strength of �0.53 Ku, with Ku the
uniaxial anisotropy constant; thus they could be
overcome by the application of sufficiently large
magnetic fields. These small precipitates do not seem
to impact the MFIS of the alloys studied as strains of
6% were observed.

This article is focused on the development and
implementation of a macroscopic constitutive model
for twin boundary rearrangement in the presence of
impurities and associated pinning energies. As
hypothesized by Malla et al. (2006), low-energy impu-
rities do not contribute to the mechanism for reversible
MFIS in the alloy investigated; during the first few field
cycles after manufacture of the alloy, the twin bound-
aries have unattached from these sites and permanently
attached to higher energy sites. Hence, the model is
constructed on the assumption that twin boundaries are
normally pinned to impurities whose energy is greater
than the anisotropy energy. The model provides an
additional component to the current description of the
strain mechanism in Ni–Mn–Ga and lays the
groundwork for future work on implementation and
control of solenoid Ni–Mn–Ga transducers like that
shown in Figure 1. Because solenoid transducers can be

Figure 1. Solenoid Ni–Mn–Ga transducer for use in dynamic
actuator and sensor applications.
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designed around a closed magnetic circuit, they can
potentially offer higher efficiency and enhanced
frequency bandwidth relative to their electromagnet
counterparts. These enhanced properties can possibly
offset the reduced deformations produced by the
Ni–Mn–Ga element in this configuration.
The article starts with a discussion of the strain

mechanism in Ni–Mn–Ga for materials without and
with twin boundary impediment by impurities. The
constitutive model, which is presented thereafter,
comprises two main components. The first component
employs a Gibbs energy function to quantify twin
boundary motion in the presence of an orthogonal pair
formed by a uniaxial magnetic field and internal bias
stresses associated with impurities in the alloy. The
model is formulated by considering the Zeeman, elastic,
and pinning energies. This component of the model is an
extension of a phenomenological model presented by
Kiefer and Lagoudas (2004). The resulting constitutive
relations quantify the local average strain for single
crystal materials and does not account for the variability
in the density and strength of the impurities throughout
the material. This variability is addressed in this article
by considering stochastic homogenization techniques
that are constructed on the assumption that local
coercive fields and pinning energies are manifestations
of underlying distributions. This approach has been
developed by Smith et al. for ferroelectric materials,
ferromagnetic materials, and shape memory alloys
(Smith et al., 2003, 2006; Smith, 2005; Smith and
Dapino, 2005). Model parameters were obtained
through constrained optimization from experimental
data under several loading conditions. A comparison
between model results and measurements is presented by
means of an error analysis for the various sets of
identified parameters.

STRAIN MECHANISMS

The strain mechanism for Ni–Mn–Ga is well
established (Tickle and James, 1999; Likhachev and
Ullakko, 2000). As Ni–Mn–Ga cools from the high-
temperature austenite phase to the low-temperature
martensite phase, a self-accommodating twinned
structure results due to the minimization of the strain
energy generated from the mismatch between the cubic
and tetragonal lattices. A simplified 2D representation
of this twinned structure is shown in Figure 2. At zero
field, the material consists of two perpendicular variants
which are separated by a twin boundary as illustrated in
panel (a). Each variant consists of several distinct
magnetic domains which are divided by 180� walls.
The magnetic domain volume fraction is denoted by a.
At small transverse fields H, all of the magnetization
vectors remain aligned with the magnetically easy, short

c-axis of each variant and the magnetic domains
disappear as shown in panel (b). Since we are interested
in the behaviors at medium to large fields, a ¼ 1 is
assumed.

As a transverse field is applied, the variants favored
by the field will increase in size through twin variant
rearrangement. Alloys in the Ni–Mn–Ga system have
large magnetic anisotropy energies compared to the
energy necessary to reorient the unit cells at the twin
boundary. Thus, as the magnetization vectors attempt to
align with the applied magnetic field, the unit cells along
the twin boundary will switch orientation such that their
c-axis is more closely aligned with the field. This results
in the growth of favorable variants at the expense of
unfavorable ones through twin boundary motion and
the overall axial lengthening of the bulk sample, as
depicted in panel (c). As the field is increased to the
point where no further twin boundary motion is possible
and the field energy overcomes the magnetic anisotropy
energy, the local magnetization vectors break away from
the c-axis and align with the field. This results in
magnetic saturation as shown in panel (d). When the
field is removed, as in panel (e), the magnetic anisotropy
energy will restore the local magnetization to the c-axis
of the unit cells. Since both variants are equally
favorable from an energy standpoint, (Murray et al.,
2000) there is no restoring force to cause the
reorientation of the unit cell and the size of the
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Figure 2. Bidirectional strain mechanism for Ni–Mn–Ga under an
orthogonal field–stress pair: (a) no field applied; (b)–(d) sample
elongation due to increasing field; (e) sample length remains
unchanged when field is removed; and (f) sample contraction due
to a compressive stress.
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sample will not change upon removal of the field. Twin
boundary motion and reversible strain can be induced
by applying an axial field, axial compressive stress, or a
transverse tensile stress, all of which favor the variant
with the short c aligned with the axial direction; see
panel (f).
We propose a modification to the mechanism

described in Figure 2 to include the effect of impurities
in the martensite. The twin boundaries are normally
pinned to the impurities – represented by black dots in
Figure 3 – which have energies larger in magnitude than
the anisotropy energy of the sample. The impurities have
been shown to have varying pinning energies (Marioni
et al., 2004).
When exposed to axial magnetic fields, the twin

boundaries attempt to displace according to the
standard mechanisms for twin variant rearrangement,
as in panels (b)–(c), but the field does not provide
enough energy to overcome the energy barrier provided
by the impurities. Instead, the twin boundaries loop
around the impurities and as they do work against the
pinning energy, energy is dissipated. Saturation is
achieved when the field energy is large enough to
overcome the anisotropy energy and the magnetic
moments align with the field without changing the
orientation of the crystal, as shown in panel (d). When
the field is removed (panel (e)) the anisotropy energy
returns the magnetic moments to the easy c-axis of the
crystal and the pinning energy provides a restoring
mechanism for the twin boundary, returning the sample

to its original length and magnetization. This theory
provides an explanation for the smaller magnitude of
strain possible from the alloy investigated and for the
reversibility of the strain when the magnetic field is
cycled.

MODEL

The strain produced by Ni–Mn–Ga driven by
collinear magnetic fields and stresses is quantified in
two steps. In the first, a thermodynamic approach is
formulated which builds on a previous model for
FSMAs proposed by Kiefer and Lagoudas (2004) for
conventional perpendicular magnetic fields and stresses.
An additional term due to internal orthogonal stresses
which quantifies the restoring force found in our
experiments is included in the Gibbs energy
function (Faidley et al., 2005). The model quantifies
the strain generated by single crystalline two-variant
systems in which the pinning density and magnetic field
are homogeneous throughout. Under these conditions
the model yields ‘blocky’ strain–field curves which are
not consistent with the mollified responses exhibited by
real engineered materials. In the second step of model
development, this shortcoming is addressed by consider-
ing a homogenization procedure (Smith, 2005) whereby
the pinning strength and local magnetic fields are
assumed to be stochastically distributed rather than
constant. This yields a formulation which characterizes
the evolution of volume fractions in Ni–Mn–Ga alloys
driven by collinear magnetic fields and stresses in the
presence of internal restoring forces.

Free Energy Formulation

For simplicity, we assume that the structure
comprises two variant orientations described by the
2D representation shown in Figure 4. Variant 2 is that
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Figure 4. Two-dimensional variants: notation and orientation.
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Figure 3. Strain mechanism for Ni–Mn–Ga driven by a collinear
stress and field pair in the presence of impurities: (a) no field
applied; (b)–(d) sample contraction due to increasing field; and
(e) return to original length when the field is removed.
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which is favored by an axially applied field in the
longitudinal direction and has a volume fraction of x.
Variant 1 is the transverse variant with magnetization
vectors oriented orthogonal to the applied field and a
volume fraction of (1� x).
The material described in Figure 4 can thus be treated

as a mixture of variants. The specific energy for this
system is given by

Gðr,H,T Þ ¼ ð1� xÞGv1 þ xGv2 þ Gb ð1Þ

where Gvi is the energy of the i-th variant and Gb is the
energy of the boundary between the two variants. It is
assumed that the system is isothermal and the fields are
large enough to ensure that the effects of the magnetic
domains can be ignored. In this case, the expression for
the energy of each variant simplifies to the standard
expression for specific Gibbs free energy (Bozorth, 1951;
Smith, 2005)

Gvið�,H,T ¼ constÞ ¼  vi �
1

2�
r � Svir�

�0

�
Mvi �H ð2Þ

where for the i-th variant,  vi is the Helmholtz energy, r
is the applied stress, Svi is the mechanical compliance,
Mvi is the magnetization, H is the applied field, � is the
density, and �0 is the permeability of free space.
The energy of the twin boundary stems from two

sources. The first is the energy necessary to rotate a unit
cell, which can be expressed as work done to overcome a
force. The second is the energy of the impurities, which
can be modeled as that of a mechanical spring. Thus the
boundary energy term has the form

Gb ¼
c1xþ k1x

2 _x>0

c2xþ k2x
2 _x< 0

�
ð3Þ

where k is the effective spring constant of the impurities,
c is the energy associated with cell rearrangement and
the two branches of the function occur because the
behavior of the material is not the same when the field is
increasing and variant 1 is growing as it is when the field
is decreasing and variant 1 is shrinking. It is noted that
this expression has the same form as the hardening
function employed by Keifer and Lagoudas (2004) on
the basis of shape memory arguments.
For the solenoid transducer shown in Figure 1, both

the applied stress and applied field are in the axial
direction. Using the geometry specified in Figure 4,
substitution of (2) and (3) into (1) yields

Gðr,H,T ¼ constÞ ¼  v1 �
1

2�
Sv1
yy �

2
y

þ x �
1

2�
�Syy �

2
y �

�0Ms

�
Hy

� �

þ
c1xþ k1x

2 _x>0

c2xþ k2x
2 _x<0

(
ð4Þ

where the � operator refers to the difference between
the two variants and � ¼ 0 since the Helmholtz
energies of the two variants are identical. Having
now derived an expression for the free energy,
expressions for various thermodynamic quantities can
be developed. The particular relation of interest comes
about through the Clausius–Duhem version of the
second law of thermodynamics, which states that for a
reversible process

�x ¼ �s�y � �
@G

@x
ð5Þ

where �x ¼ �Yx is the condition for the onset of twin
variant motion and �s is the saturation strain.
Differentiation of (4) and substitution into (5) yields
the force balance

�Yx ¼ �s�y �
1

2
�Syy �

2
y � �0MsHy � �

c1 þ 2k1x

c2 þ 2k2x

�
ð6Þ

for the respective cases f _x>0g and f _x<0g. Expression
(6) can then be solved for the volume fraction,

x¼
A1ð�s�yþ

1

2
�Syy�

2
y þ�0MsHy��c1�YxÞ _x>0

A2ð�s�yþ
1

2
�Syy�

2
y þ�0MsHy��c2þYxÞ _x<0

8><
>:

ð7Þ

which is dependent on the applied field Hy and axial
stress �y. Here, A1 ¼ 1=ð2�k1Þ and A2 ¼ 1=ð2�k2Þ.
To facilitate the implementation, expression (7) is
rewritten as

x ¼

A1

�
�s�y þ

1

2
�Syy �

2
y þ �0MsHy � �c1 � Yx

�
xs

A2

�
�s�y þ

1

2
�Syy �

2
y þ �0MsHy � �c2 þ YxÞ

8>>><
>>>:

ð8Þ

for the respective cases f _H>0 and x<xsg, fx>xsg and
f _H<0 and x<xsg. The strain is related to the volume
fraction by

� ¼ x�th, ð9Þ

with �th the maximum theoretical strain which would
occur if a single boundary swept through the entire
material, thus producing a change in x from 0 to 1.
Hence, for the case where the twin boundaries are
restrained by impurities, x will be limited to a much
smaller range. Parameters that need to be identified in
this model include k1, k2, �s, �Syy, Ms, c1, c2, and Yx.

Stochastic Homogenization

Relation (8) provides a model for the strain generated
by single crystal Ni–Mn–Ga with its twin boundaries

Homogenized Strain Model for Ni–Mn–Ga 685



partially restrained by impurities, exposed to collinear
magnetic fields and external stresses. The limitations of
the model and a sensitivity analysis relating model
accuracy with parameter selection were discussed by
Faidley et al. (2005). The most critical sources of error in
this model include:

(i) The sample is assumed to consist of only two
variants with a single boundary. In reality,
however, Ni–Mn–Ga has many twin variants
though only two distinct orientations. This implies
that a sample will have numerous twin boundaries
and a potentially large number of impurities to
which the boundaries can attach.

(ii) The impurities are assumed to be homogeneously
distributed throughout the material and each
impurity has the same energy. As discussed by
Marioni et al. (2004), in a physical material the
pinning energies vary over a large range which
translates into a variation of the slopes k1 and k2.
The energy of each site depends on how it
interacts with the surrounding microstructure.
Furthermore, the strength of each site may
depend on the direction of motion of the twin
boundary, effectively providing a source of aniso-
tropy.

(iii) The field is assumed to be uniform throughout the
sample. However, due to short-range interactions,
the magnetic field in Ni–Mn–Ga can be considered
to behave locally in a fashion similar to the Weiss
mean field (Jiles, 1995). Thus, the magnitude of the
field at a given point in the material is not equal to
the applied field but rather, is given by an effective
field which is dependent on the applied field and
the magnetization, He ¼ HþHi ¼ Hþ �M. The
mean field constant � varies from point to point in
the material due to differences in the lattice
structure.

Limiting factors (i)–(iii) are addressed in this article by
considering stochastic homogenization in the sense of
Smith (2005). This approach has proven effective for
modeling polarization hysteresis in the presence of
thermal activation and stresses in ferroelectric materials,
ferromagnetic materials, and shape memory alloys.
Special features of the model include its ability to
address reversible and irreversible behaviors, biased and
unbiased minor loop regimes including accommodation
effects, and relaxation phenomena (Smith and Dapino,
2005; Smith et al., 2006). The effects of polycrystallinity,
material nonhomogeneities, inclusions, textures, and
variable interaction fields are incorporated in the
Smith model for ferromagnetic materials by assuming
that the local coercive field Hc and interaction field
Hi are stochastically distributed with respective
densities �1 and �2, which are chosen to satisfy specific

decay criteria. The resulting macroscopic magnetization
model is given by

MðHÞ ¼

Z 1

0

Z 1

�1

�1ðHcÞ�2ðHiÞ MðHþHi;Hc, xÞ
� �

ðtÞ

� dHidHc, ð10Þ

where the local average magnetization or kernel M
quantifies the hysteresis at the lattice level and yields
macroscopic models only for homogeneous materials
with negligible interaction fields, that is when the
effective field He¼HþHi is simply the applied
field H. In the absence of thermal activation, M has
the form (employing Preisach notation)

MðH;Hc, xÞ
� �

ðtÞ¼

MðH;Hc, xÞ
� �

ð0Þ
�0

�
H�MR

�0

�
HþMR

8>>>><
>>>>:

ð11Þ

for the respective cases f	ðtÞ ¼ 6 0g, f	ðtÞ 6¼ 6 0 and
Hðmax 	ðtÞÞ ¼ �Hcg, f	ðtÞ 6¼ 6 0 and Hðmax 	ðtÞÞ ¼ Hcg.
In this expression,

Hc¼
�

�0
MR�MIð Þ ð12Þ

denotes the coercive field and

	ðtÞ ¼ t 2 ð0, tf�jHðtÞ ¼ �Hc or HðtÞ ¼ Hc

� 	
ð13Þ

denotes transition points. The initial moment
orientation has the form

½MðH;Hc, xÞ�ð0Þ ¼

�0

�
H�MR Hð0Þ � �Hc

x �Hc � Hð0Þ � Hc

�0

�
HþMR Hð0Þ 	 Hc:

8>>><
>>>:

ð14Þ

The local magnetization M, given by equation (14)
versus magnetic field is shown in Figure 5; comparison
between macroscopic magnetization results given by (10)
and experimental data is shown in Figure 6.

MMR
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m0
Mmin= h H+MR

m0
Mmin= h H−MR
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+

−

Figure 5. Local magnetization M given by expression (14) (Smith
et al., 2005).
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As detailed in Smith (2005), model equations (10)–(11)
can be interpreted as providing an energy basis for
certain extended Preisach models, with the kernel M
derived through thermodynamic considerations
providing the Preisach hysterons and the stochastic
densities providing the Preisach weights. However, the
similarities between the Smith model and the Preisach
model are formal rather than conceptual, for several
fundamental differences between the two formulations
can be established. First, the Smith model, is posed
through thermodynamic arguments constructed at the
lattice level involving parameters that can be physically
correlated with properties of the experimental measure-
ments. Due to its thermodynamic origin, in the Smith
model stress and temperature dependencies are incorpo-
rated in the kernel rather than the weights as is the case
with the Preisach model. The model automatically
incorporates these effects without the need for
vector-valued weights. This implies that only one
set of parameters needs to be identified and no
switching between parameter sets is required during
real-time operation of the model, thus significantly
improving the computational speed relative to the
Preisach model.
The strain model for ferromagnetic shape memory

materials presented in this article builds on the Smith
model for hysteresis of ferroic materials but differs
from it in the following aspects. (i) Kernel (8), which
characterizes the martensitic volume fraction, was
developed by considering the rearrangement of twin
variants in martensitic structures and therefore reflects
energy functionals which are different from those found
in magnetization models. While certain commonality
can be established between the proposed model and
previous magnetization models – e.g., in regard to
double-well energy potentials – the difference between
kernels is rooted in the physical differences between

ferromagnetic shape memory and magnetostriction,
which were outlined by O’Handley et al. (2000). (ii) In
this article, the stochastic homogenization is performed
relative to the interaction field Hi and the pinning
energy k2. This implies that suitable distributions to
accommodate these effects can potentially be different
than those employed for interaction and coercive fields
in Smith et al. (2006). Notwithstanding, for the sake
of simplicity, in this article we attempt to exploit
certain commonalities between the phenomenological
behaviors observed in both models. Namely, for the
interaction field we consider a normal distribution
centered at Hi ¼ 0, as in the Smith model, and for the
pinning energy we consider a log-normal distribution
similar to that employed in Smith et al. (2006) for
coercive fields.

The model thus has the form

xðH, �Þ½ �ðtÞ ¼

Z 1

0

Z 1

�1

�1ðHiÞ�2ðk2Þ xðHþHi; �, k2Þ½ �ðtÞ

� dHidk2 ð15Þ

where �1 and �2 are appropriately chosen distributions
and �x is given by expression (8). Since the Weiss
interaction field is known to have both positive and
negative values, one possible distribution is

�1ðHiÞ ¼ c1e
�H2

i
=ð2b2Þ ð16Þ

which is a normal distribution centered at Hi ¼ 0. The
pinning energies were incorporated into the energy
equations as effective mechanical springs. Thus, the
values for k2 will never be negative. To meet this
criterion the distribution over k2 is chosen to be
log-normal,

�2ðk2Þ ¼ c2e
� lnðk2=k2Þ=2cð Þ

2

: ð17Þ

The effect of this distribution on the slopes of the
hysteresis kernels is shown in Figure 7.

Magnetic field (kA/m)

M
ic

ro
st

ra
in

k2

Hi

Figure 7. Family of kernels obtained by varying the pinning strength
k2 following a log-normal distribution (inset) and varying the
interaction field Hi following a normal distribution (inset).
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EXPERIMENTS

A single crystal alloy with composition
Ni50Mn28.7Ga21.3 was tested for strain response under
a [001] sinusoidal magnetic field with an amplitude of
700 kA/m and collinear compressive stresses
�y ¼ �0:0125, �0:13, �0:27, and �0:41MPa. The
single crystal ingot, prepared by the Bridgman method
at Ames Laboratory, was oriented along the [001]
direction and a 0.248 in (0.630 cm) diameter, 0.883 in
(2.243 cm) long rod was cut from the ingot using
electrical discharge machining (EDM). The experiments
were conducted with a collinear magnetic field–stress
pair in the solenoid transducer shown in Figure 8, which
consists of a water-cooled solenoid, pickup coil, and
magnetic steel components integrated to form a closed
magnetic circuit. The solenoid consists of 1350 turns of
AWG 15 magnet wire and has a field rating of 167
Oe/A. Interspersed within the solenoid lies a 0.25
in-diameter copper coil which provides temperature
control within 18F by means of water flow at a rate of up
to 6.35 L/min. The solenoid is driven by two Techron
7790 4 kW amplifiers arranged in series with an overall
voltage gain of 60 and a maximum output current
of 56 A at a nominal solenoid resistance of 3.7�.
The magnetic induction is measured with a pickup coil
made from AWG 33 insulated copper wire wound in
two layers around an aluminum spool. The strain is
measured by a Lucas Shaevitz MHR-025 linear variable
differential transducer (LVDT) attached to the pushrod.
Several Omega thermocouples are used to monitor the
system temperature through a 10-channel Omega signal
conditioner. The system is controlled by a DataPhysics
data acquisition system interfaced through a PC.
Data collected using this apparatus for compressive

loads �y ¼ �0:0125, �0:13, �0:27, and �0:41MPa are
shown in Figure 9, in which the curves have been shifted
vertically in such a way that they share a common
origin and only the relative deformations are shown

(the unshifted measurements can be found in Malla
et al. (2006)). This allows for a direct comparison of
model performance for the various relative deforma-
tions. Only the half of the butterfly curve corresponding
to positive fields is shown; the curves are symmetrical
with respect to the abscissa. The maximum strain is
�0:41%, which is compressive in agreement with the
orientation of the applied field.

MODEL IMPLEMENTATION

The homogenized strain relation (15) was approxi-
mated through a composite four-point Gauss–Legendre
quadrature routine over 26 intervals in both Hi and k2.
Parameters �Syy, Ms and Y
 were obtained from
published data (Kiefer and Lagoudas, 2004). As shown
in Figure 10, three data points provide the following
information: (i) field H1 at the strain turn around point,
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Figure 10. Data points used for identification of model parameters.

Figure 8. Cross-section of the solenoid transducer employed in this
study. Further constructive details are given by Malla et al. (2006). 0 100 200 300 400 500 600 700
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Figure 9. Quasi-static strain vs magnetic field for Ni50Mn28.7Ga21.3 at
various loads.
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(ii) strain �2 at the cross over point, (iii) field H3 at the
onset of saturation, and (iv) saturation strain for each
loading case, �sð�yÞ. Values and expressions for the
various model parameters are given in Table 1.
Coefficients c1 and c2 in Equation (8) were determined
from experimental data following (Kiefer and
Lagoudas, 2004). Distribution parameters k2, b, and c,
and kernel parameter n were determined through
constrained optimization to minimize the total
difference between the time trace strain data and the
output of the model for each of the loading conditions.

As an example, a calculated strain versus magnetic
field curve is compared to data for the
� ¼ �0:0125MPa loading condition in Figure 11(a).
The calculated curve shows a non-physical blocky tip
due to the inclusion of kernels which fall into non-
physical ranges of k1 and Hi. Figure 12 shows an
example of a standard kernel given by relation (8).
In the range of parameters where a large k1 is
combined with a large Hi, non-physical kernels with
a discontinuity at the maximum field will result.
Three methods are considered for addressing this

Table 1. Values of model coefficients.

Change in mechanical compliance between variants �Syy ¼ 0
Saturation magnetization Ms ¼ 622 kA=m
Onset of variant reorientation Yx ¼ 0:2� 106N=m2

Theoretical maximum strain �th ¼ �60000� 10�6

Density � ¼ 1
Cell reorientation energy, variant 1 c1 ¼ �sð�yÞ�y þ

1

2


 �
�Syy�

2
y þ �0MsH1 � Yx J=m3

Cell reorientation energy, variant 2 c2 ¼ �sð�yÞ�y þ
1

2


 �
�Syy�

2
y þ Yx � 2k2

�2ð�yÞ

�th
J=m3

First turnaround point H1 ¼ 10, 750A=m
Coercive field distribution Hi,max ¼ 350 kA=m,Hi,min ¼ 0
Pinning energy distribution k2,max ¼ 2:7� 106, k2,min ¼ 2� 105, k2 ¼ 1:23� 106

Standard deviations b ¼ c ¼ 1� 106
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Figure 11. Comparison of model results and experimental data for the �y ¼ �0:0125MPa loading condition using various implementation
methods: (a) using full distribution; (b) using method (i); (c) using method (ii); and (d) using method (iii).
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anomalous behavior:

(i) Discard the kernels that yield non-physical results
among the set of kernels found through con-
strained optimization and the full distributions (16)
and (17), and calculate relation (15) based on the
reduced set.

(ii) Truncate the distributions (16) and (17) such that
the range of pinning energies and interaction fields
that yield non-physical behaviors are discarded,
identify new parameters through constrained
optimization, and calculate relation (15) based on
the truncated distributions.

(iii) Impose the restriction directly on the bounds
employed in the constrained optimization
algorithms, such that all the resulting kernels are
forced to yield physical results.

The results obtained with these three methods for the
� ¼ �0:0125MPa loading condition are shown in
Figure 11(b)–(d), while the associated model errors are
quantified in Table 2. All three methods yield results
without the non-physical discontinuity at maximum
field. As expected, the error is greatest for the first
method where the non-physical kernels are ignored
without recalculating the parameters. The lowest error is

achieved using method (iii), in which the constrained
optimization routine includes the inequality

1

2�k1,max

�
�s�y þ

1

2
�Syy�

2
y

þ�0MsðHmax �Hi, maxÞ � �c1 � Yx

	 p

�s
�th

ð18Þ

which is derived from expression (8) and places limits on
the distribution coefficients and therefore the shape
of the distributions. Parameter p is introduced to control
the percentage of the kernels that are allowed to be non-
physical and thus define both the range of allowable
distribution shapes and how much of each distribution is
truncated. The maximum values for k1 and Hi are found
from expressions (16) and (17),

Hi, max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðbÞ2 lnð0:01Þ

q
ð19Þ

k1,max ¼ nk2e
2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð0:01Þ

p

: ð20Þ

Testing shows that p ¼ 0:1 achieves a suitable balance
between allowable shape of the distributions and the
truncation of those distributions which best minimizes
the error. An example of the truncated distributions that
result from this kernel reduction scheme are shown in
Figure 13. Method (iii) with p ¼ 0:1 is used in the
following section to study the error for all four loading
conditions.

RESULTS

Constrained optimization was used to determine the
parameters for each of the four loading cases based on
the minimization of the total sum of the error between
the modeled and measured time traces of the strain.
These parameters, shown in Table 3, were found to be
within 10% of those necessary to minimize the mean
error in all but two cases. A comparison of the data and
the model for each of these loading cases is shown in
Figure 14 where it is observed that the simulation closely
predicts the data in all cases.

The last column in Table 3 represents the set of
parameters found by minimization of the sum of the
error across all four loading cases. A comparison
between the data and the model results generated with
these parameters is shown in Figure 15. Even though
these simulations are generated from parameters
optimized for overall reduction of error, the predictions
are remarkably similar to those obtained using
parameters optimized for individual cases in Figure 14.
This is an indication that there are multiple minima in
the four parameter optimization problem and hence
various sets of parameters may produce similarly low
values of the error. Figure 15 shows that the optimized
parameters allow good correlation with data for the
lower three load conditions but the model loses

Table 2. Error e associated with each of the methods
used to eliminate the discontinuity at maximum field.

Original Method (i) Method (ii)
Method (iii)
p ¼ 0.1

�e 42,382 130,000 71,818 69,960
hei 52.324 160.64 88.665 86.371
hei/�s(%) 1.3 3.9 2.2 2.1
max(e) 334.15 447.56 361.75 379.94
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Figure 12. Hysteresis kernels produced by relation (8) showing
both physical and non-physical behaviors.
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Table 3. Constrained optimization results for parameters under various loads.

ry¼�0.0125 MPa ry¼�20.13 MPa ry¼�0.27 MPa ry¼�0.41 MPa Overall optimal

n 1.165 1.1417 1.0894 1.0287 1.1207
k 1:0306� 106 0:70091� 106 0:87182� 106 1:3363� 106 0:75325� 106

c 0.80761 1 1 0.99856 0.99901
b 0:010001� 104 0:012166� 104 0:01� 104 0:01� 104 0:010304� 104

Pinning strength, k2 Interaction Field, Hi

(a) (b)

Figure 13. Truncated distributions for (a) pinning strength k2 and (b) interaction field Hi.
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Figure 14. Constrained optimization fits to data for various loads: (a) �y ¼ �0:0125MPa; (b) �y ¼ �0:13MPa; (c) �y ¼ �0:27MPa;
and (d) �y ¼ �0:41MPa.
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accuracy at the higher load case. This is because the
error increase is much steeper for overestimation than
for underestimation.
A quantitative look at the error calculations for the

constrained optimization for various loading conditions
is provided in Table 4. The error measurements
calculated include the sum of the error which was the
basis for the constrained optimization, the mean of
the error, the percent error of the mean with respect to
the maximum strain, and the maximum error. The error
was calculated as the absolute value of the difference
between the data and model at each point. The diagonal
of Table 4 indicates the smallest error for all loading
values and represents the cases in which the parameters
were optimized for the same loading case as that being
simulated, which corresponds to the plots shown in
Figure 14. The off-diagonal values indicate the error for
the cases in which the model parameters were optimized
for a load other than the one used in the model. The
errors are much larger below the diagonal where
parameters for a higher load are used to simulate
a lower load than above the diagonal where the reverse
is true.

The rightmost column of Table 4 presents the sum of
the errors for all four loading conditions for each set
of parameters. For all four individually optimized cases
the sums of the errors show only an 8% deviation.

The bottom row of the table shows the model error
when the set of parameters that minimizes the overall
error is used. This total is 12.5% lower than the average
sum for the individually optimized cases. In addition,
the sum of the error for each loading condition using
these overall optimized parameters is within 20% of the
minimum sum of the error found for the individually
optimized parameters. The maximum is 18% for the
�y ¼ �0:41MPa loading condition which corresponds
to the observation made earlier with regard to the
decrease in accuracy of the simulations shown in
Figure 15 for the higher loading condition. The small
differences between the simulations using the four-case
optimization parameters and those using the individu-
ally optimized parameters highlights the ability of the
homogenized model to quantify – from a single set of
parameters – the strain produced by Ni–Mn–Ga for
various loading conditions.

CONCLUDING REMARKS

Due to exhibiting reduced demagnetization effects
and reduced eddy current losses, solenoid transducers
can potentially lead to faster and more energy efficient
Ni–Mn–Ga devices and systems than their
electromagnet counterpart. The design and control of
such transducers requires models that are both accurate

0 200 400 600 800

−4000

−3000

−2000

−1000

0

M
ic

ro
st

ra
in

Magnetic field (kA/m)

0 200 400 600 800

−4000

−3000

−2000

−1000

0

M
ic

ro
st

ra
in

Magnetic field (kA/m)

0 200 400 600 800

−4000

−3000

−2000

−1000

0

M
ic

ro
st

ra
in

Magnetic field (kA/m)
0 200 400 600 800

−4000

−3000

−2000

−1000

0

M
ic

ro
st

ra
in

Magnetic field (kA/m)

Data
Model

Data

Model

Data

Model

Data

Model

(a)

(d)(c)

(b)

Figure 15. Overall optimized simulation of strain compared to data for various loads: (a) �y ¼ �0:0125MPa; (b) �y ¼ �0:13MPa;
(c) �y ¼ �0:27MPa; and (d) �y ¼ �0:41MPa.
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and computationally efficient. With mean errors of under
3%, the proposed modeling technique shows promise as
a design and control tool that, in addition, can be used
for interpretation of certain physical aspects of Ni–Mn–
Ga devices. In particular, the model can provide insight
on the interaction between magnetic and elastic proper-
ties of Ni–Mn–Ga alloys in cases when the motion of
twin boundaries is restrained. The model is constructed
on the tenet that pinning sites due to impurities provide
the restoring force necessary for bidirectional actuation.
While the presence of impurities in Ni–Mn–Ga has been
established in the literature, the exact distribution of
pinning sites in the alloy investigated is not well under-
stood. For this reason, a phenomenological approach has
been utilized based on the identification of Gaussian
distribution parameters from experimental data. This
method is sufficiently accurate and general for control
applications and will motivate the quantification of
statistical distributions more closely related to physical
properties of the material in future investigations.
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