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A single-crystal Ni–Mn–Ga sample �AdaptaMat, Ltd.� is first compressed from its longest shape to
a given bias strain and subsequently subjected to a slowly alternating magnetic field while being
prevented from deforming. The tests are repeated for several bias strains. The available blocking
stress, or maximum field-induced stress relative to the bias stress, is critical for quantifying the work
capacity of a material. The largest available blocking stress for this material is 1.47 MPa at a bias
strain of 3% and field amplitude of 640 kA /m. The work capacity calculated as the area under the
available blocking stress versus bias strain curve is 72.4 kJ /m3. An existing continuum
thermodynamics model for Ni–Mn–Ga sensors is augmented by incorporating the magnetoelastic
energy as a source of stress generation when the material is mechanically blocked. The strain and
magnetization are described by fixing the variant volume fraction. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2904893�

I. INTRODUCTION

Due to their relatively large strain and broad frequency
bandwidth, ferromagnetic shape memory alloys in the
Ni–Mn–Ga system are mainly studied for actuation. Consid-
erable experimental and modeling work has been done to
describe this effect �see, e.g., review papers Refs. 1 and 2�.
Recently, the sensing behavior of Ni–Mn–Ga was experi-
mentally investigated,3 and a continuum thermodynamics
model was presented to simultaneously describe the sensing
and actuation effects.4,5 The actuation effect is described by
the dependence of strain and magnetization on magnetic field
at constant stress, and the sensing effect is described by the
dependence of stress and magnetization on strain at constant
magnetic field.

The force generated by a Ni–Mn–Ga sample under par-
tially blocked conditions during actuation measurements was
presented by Henry6 and O’Handley et al.7 Their measure-
ments suggest the presence of significant magnetoelastic
coupling: as the transverse magnetic field was increased be-
low the field required to initiate twin boundary motion, the
measured stress increased even though the sample and spring
remained undeformed. Because a spring was used to precom-
press the sample in the axial direction, some amount of de-
twinning was allowed and hence, the blocking stresses were
not measured. Further, no model for magnetization was pre-
sented. Force measurements under completely mechanically
blocked conditions at different bias strains were presented by
Jaaskelainen et al.8 and recently by Couch and Chopra.9 Nei-
ther magnetization measurements nor analytical models were
included. Likhachev et al.10 presented an expression for the
thermodynamic driving force induced by magnetic fields act-
ing on the twin boundary. This force depends on the deriva-
tive of the magnetic energy difference between the hard axis

and easy axis configurations. Although this force is useful in
modeling the strain versus field and stress versus strain, its
origin is not well understood. This force is independent of
the volume fraction, and thus it cannot accurately model the
stress versus field behavior in which the net generated stress
varies with bias strain �see Fig. 4�.

The available blocking stress, defined as the maximum
field-induced stress relative to the bias stress, is critical for
quantifying the work capacity of an active material. In this
study we characterize and model the magnetic-field-induced
stress and magnetization generated by a commercial Ni–
Mn–Ga sample �AdaptaMat, Ltd.� when it is prevented from
deforming. We refer to this type of mechanical boundary as a
“mechanically blocked condition.” The material is first com-
pressed from its longest shape to a given bias strain �which
requires a corresponding bias stress� and is subsequently sub-
jected to a slowly alternating magnetic field while being pre-
vented from deforming. The tests are repeated for several
bias strains.

A previous continuum thermodynamics model4 is used
to model the dependence of stress and magnetization on the
applied field and bias strain. The magnetic Gibbs energy is
used as a thermodynamic potential with contributions from
Zeeman, anisotropy, magnetostatic, and elastic strain ener-
gies. The microstructure of Ni–Mn–Ga is included in the
thermodynamic framework by means of the internal state
variables variant volume fraction, domain fraction, and mag-
netization rotation angle. The invariance of the strain under
mechanically blocked conditions is modeled by fixing the
variant volume fraction. The magnetoelastic energy is not
considered while evaluating the domain fraction and magne-
tization rotation angle because it is around 1000 times
smaller than the Zeeman, magnetostatic, and anisotropy en-
ergies. On the other hand, the magnetoelastic energy be-
comes significant as it is the sole source of stress generation
when field-induced deformations are prevented.
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II. EXPERIMENT

Our experimental setup consists of a custom-made elec-
tromagnet and a uniaxial stress stage. A 6�6�10 mm3

Ni–Mn–Ga sample �AdaptaMat, Ltd.� is placed in the center
gap of the electromagnet. The sample exhibits a free
magnetic-field-induced deformation of 5.8% under a trans-
verse field of 700 kA /m. The material is first converted to a
single field-preferred variant by applying a high transverse
field and is subsequently compressed to a desired bias strain.
The sample is then subjected to a sinusoidal transverse field
of amplitude 700 kA /m and frequency of 0.25 Hz. A 1
�2 mm2 transverse Hall probe placed in the gap between a
magnet pole and the face of the sample measures the flux
density from which the magnetization inside the sample is
obtained after accounting for demagnetization fields. The
compressive force is measured by a 200 pounds of force �lbf�
load cell, and the displacement is measured by a linear vari-
able differential transducer. This process is repeated for sev-
eral bias strains ranging between 1 and 5.5%.

III. MODELING

The presented model builds on an existing sensing
model4 which uses the continuum thermodynamics approach
to describe the dependence of stress and magnetization on
external strain at constant bias field. To model the stress-
associated magnetoelastic coupling in mechanically blocked
condition, the model is modified by adding magnetoelastic
energy and assuming constant variant volume fraction. Fig-
ure 1 shows an ideal two-variant Ni–Mn–Ga microstructure11

consisting of a field-preferred variant ��� and a stress-
preferred variant �1−��. In each variant, the magnetic do-
mains �� ,1−�� are generated to minimize the net magneto-
static energy. The applied magnetic field is oriented in the x
direction, and the magnetization vectors in the field-preferred
variant are oriented either in the direction of the field or
opposing it. However, the magnetization vectors in the
stress-preferred variants can rotate by an angle �, which is
equal and opposite in the two domains. The complete model

development is given in Ref. 4. The key components of the
model and essential modifications to account for the magne-
toelastic coupling are given here.

The Clausius–Duhem inequality states that the rate of
change of entropy is greater than or equal to the entropy
increase rate due to the specific heat supply rate minus the
entropy decrease rate due to the heat flux vector. When com-
bined with the first law of thermodynamics, the Clausius–
Duhem inequality takes the local form

− ��̇ − ���̇ + P · Ḟ + 	0H� · M�̇ −
1

�
q · grad � 
 0, �1�

where � is the specific Helmholtz energy, � is the density of
the material in referential coordinates, � is the specific en-
tropy, � is the absolute temperature, P is the first Piola
Kirchoff stress tensor, F is the deformation gradient tensor,
and q is the heat flux vector representing the heat leaving the

system. The term P · Ḟ represents the stress power, or the rate
of work done on the material by external mechanical forces.

The term 	0H� ·M�̇ represents the rate of work done on the

material by a magnetic field,12 with H� denoting the applied

magnetic field vector and M� the net magnetization vector.
For the case under consideration, the externally applied

bias strain � and engineering stress � are oriented along the
longitudinal �y� axis of the sample. The applied field H and
net magnetization M are oriented along the transverse �x�
axis of the sample. As in the sensing case,4 the applied field
H is an independent variable. Therefore, a magnetic Gibbs
energy potential 
 is defined through the Legendre transform

�
 = �� − 	0HM . �2�

Assuming isothermal conditions ��̇=0 and grad �=0� and
using Eqs. �1� and �2�, a modified Clausius–Duhem inequal-
ity is obtained,

− �
̇ + ��̇ − 	0ḢM 
 0. �3�

The total magnetic Gibbs energy is the sum of the mechani-
cal and magnetic �Zeeman, magnetostatic, and anisotropy�
contributions of the two variants,

�
 =
1

2
E�e

2 + ��− 	0HMs� + 	0HMs�1 − ��

+
1

2
	0N�Ms� − Ms�1 − ���2� + �1 − ��

��− 	0HMs sin � +
1

2
	0NMs

2 sin2 � + Ku sin2 �� ,

�4�

where Ms is saturation magnetization. The parameters
needed for quantification of the mechanical energy are ob-
tained from the experimental stress versus strain curve at
zero bias field. The total strain ��� is considered as the sum
of elastic ��e� and detwinning ��tw� components; the latter is
given by �0�1−��, with �0 being the lattice distortion �5.8%�.
The elastic modulus E is the average of the minimum and
maximum moduli, which are obtained with the material in

FIG. 1. Simplified two-variant Ni–Mn–Ga microstructure.
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single variant preferred by field and stress, respectively. Pa-
rameter N is the difference between the transverse and lon-
gitudinal demagnetization factors.4,13 The anisotropy con-
stant Ku is evaluated experimentally as the difference in the
area of the easy axis and hard axis magnetization curves,
since it represents the energy associated with pure rotation of
the magnetization vectors. Following the classical Coleman–
Noll procedure, Eq. �3� takes the form

�� −
���
�

��
��̇ + �− 	0M −

���
�
�H

�Ḣ + ���̇ + ���̇

+ ���̇ 
 0, �5�

where the terms ��=−���
� /��, ��=−���
� /��, and ��=
−���
� /�� represent thermodynamic driving forces associ-
ated with internal state variables �, �, and �, respectively.
This leads to the constitutive equations

� =
���
�

��
= E�� − �tw� , �6�

M = −
1

	0

���
�
�H

= Ms��2� − 1�� + sin ��1 − ��� . �7�

Because the easy and hard axis magnetization curves of Ni–
Mn–Ga show negligible hysteresis, the evolution of the do-
main fraction ��� and rotation angle ��� is assumed to be
reversible. Hence, the driving forces are zero; ��=0 and
��=0. This gives closed form solutions for the variables �
and �,

� =
1

2
+

H

2NMs
, �8�

� = arcsin� 	0HMs

	0NMs
2 + 2Ku

� . �9�

The Clausius–Duhem inequality, Eq. �5�, is thus reduced to

���̇ 
 0. �10�

In the actuation and sensing model, the volume fraction is
numerically evaluated by using a critical yield function �cr

which represents the energy barrier to initiate detwinning.4,5

Since in this study the sample is prevented from deforming,
it is assumed that the volume fraction remains unchanged
after the initial compression when the field is applied. The
amount of twin reorientation that may occur is assumed to be
negligible. The initial volume fraction and stress at zero field
and given bias strain are calculated using the sensing model.4

The magnetoelastic coupling is often ignored in the
modeling of actuation and sensing in Ni–Mn–Ga, in which
the strains due to variant reorientation are considerably larger
than the magnetostrictive strains. This has been experimen-
tally confirmed by Heczko14 and Tickle and James.15 The
magnetoelastic energy is also ignored in the calculation of
the magnetic parameters through Eqs. �8� and �9�, as its con-
tribution is around 3 orders of magnitude smaller than the
other magnetic energy terms. However, the contribution of
the magnetoelastic coupling toward the generation of stress
in mechanically blocked conditions is significant: twin

boundary motion is completely suppressed and the magneto-
elastic energy is the sole source of stress generation when a
magnetic field is applied. The magnetoelastic energy is pro-
posed as

�
me = B1�y�1 − ���− sin2 �� + �0�y��− sin2 �� . �11�

Here, B1 represents the magnetoelastic coupling
coefficient,13 obtained by measuring the maximum stress
generated when the sample is biased by 5.5% �when �=0�,
and �y represents the magnetorestriction in the y direction.
The first term represents the magnetoelastic energy contribu-
tion due to magnetic fields, which is nonzero only in the
stress-preferred variant �1−��. The second term represents
the energy contribution due to the initial compressive stress
�0. The applied field leads to increase of energy in stress-
preferred variants, whereas the stress leads to increase of
energy in field-preferred variants. The stress generated by
magnetoelastic coupling thus has the form

�me�H� = �B1�1 − �� + �0���− sin2 �� . �12�

IV. RESULTS

Figure 2 shows experimental and calculated stress versus
applied field curves at varied bias strains. Hysteresis is not
included in the model. The significance of magnetoelastic
coupling is evident as the stress starts increasing as soon as
the field is applied, with the rotation of magnetization vec-
tors. The increase in stress is directly related to the angle of
rotation ��� predicted by the magnetization model. On the
contrary, the variant reorientation process is typically associ-
ated with a high amount of coercive field that increases with
increasing bias stress.4,16 The absence of a coercive field, and
of discontinuity in stress profiles, confirms the magnetoelas-
tic coupling rather than twin reorientation as the origin of the
stress.

Figure 3 shows the magnetization dependence on ap-
plied field at varied bias strains. The negligible hysteresis is
typical of single-crystal Ni–Mn–Ga when the volume frac-
tion is approximately constant. Thus, the model assumption

FIG. 2. �Color online� Stress vs magnetic field at several bias strains. Dots:
experiment; solid line: model.
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of reversible evolution of � and � is validated along with the
assumption of constant volume fraction. A good agreement is
observed between the experimental results and model simu-
lations. The model parameters are E=3 GPa, N=0.2, Ms

=605 kA /m, Ku=1.67�105 J /m3, and B1=1 MPa.
Figure 4 shows the blocking stress �bl �stress at

700 kA /m in Fig. 2�, minimum stress �0 �stress at zero field
in Fig. 2�, and available blocking stress �bl−�0 as a function
of bias strain. The largest available blocking stress is 1.47
MPa at 3% bias strain and field of 700 kA /m. At 3% strain,
the material consists of an almost equal contribution of the
two variant volume fractions.

V. DISCUSSION

Our mechanically blocked measurements and thermody-
namic model for constant volume fraction describe the stress

and magnetization dependence on field and provide a mea-
sure of the work capacity of Ni–Mn–Ga. The work capacity,
defined as the area under the �bl−�0 curve, is 72.4 kJ /m3

for this material. This value compares favorably with that of
Terfenol-D and PZT �18–73 kJ /m3, Ref. 17�. However, the
work capacity of Ni–Mn–Ga is strongly biased toward high
deformations at the expense of low generated forces, which
severely limits the actuation authority of the material.
Terfenol-D exhibits a measured stress of 8.05 MPa at a field
of 25 kA /m and prestress of −6.9 MPa.18 The lower block-
ing stress of 1.47 MPa produced by Ni–Mn–Ga is attributed
to a low magnetoelastic coupling.

The maximum available blocking stress is observed at a
bias strain of 3%, though the maximum blocking stress oc-
curs, as expected, when the sample is completely prevented
from deforming. Due to the competing effect of the stress-
preferred and field-preferred variants, the stress is highest
when the volume fractions are approximately equal ��=0.5�.

The magnetoelastic energy in Ni–Mn–Ga is considerably
smaller than the Zeeman, magnetostatic, and anisotropy en-
ergies. The magnetostrictive strains in Ni–Mn–Ga are of the
order of 50–300 ppm,14,15 which are negligible when com-
pared to the typical 6% deformation that occurs by twin-
variant reorientation. The contribution of magnetoelastic
coupling can thus be ignored when describing the sensing
and actuation behaviors in which the material deforms by a
several percent strain. In the special case of field application
in mechanically blocked condition, twin-variant reorientation
is completely suppressed and the magnetoelastic coupling
becomes significant as it remains the only source of stress
generation. This is validated from the experimental stress
data as there is no coercive field associated with the twin-
variant rearrangement. In summary, the magnetoelastic cou-
pling in Ni–Mn–Ga is relatively low but becomes significant
when the material is prevented from deforming.
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FIG. 3. �Color online� Magnetization vs field at several bias strains. Dashed
line: experiment; solid line: model.

FIG. 4. �Color online� Experimental blocking stress �bl, minimum stress �0,
and available blocking stress �bl−�0 vs bias strain.
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