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Structural Magnetic Strain Model for Magnetostrictive
Transducers

Marcelo J. Dapino, Ralph C. Smith, and Alison B. Flatau

Abstract—This paper addresses the modeling of strains gener-
ated by magnetostrictive transducers in response to applied mag-
netic fields. The measured strains depend on both the rotation of
moments within the material in response to the field and the elastic
properties of the material. The magnetic behavior is characterized
by considering the Jiles–Atherton mean field theory for ferromag-
netic hysteresis in combination with a quadratic moment rotation
model for magnetostriction. Elastic properties must be incorpo-
rated to account for the dynamics of the material as it vibrates.
This is modeled by force balancing, which yields a wave equation
with magnetostrictive inputs. The validity of the resulting trans-
ducer model is illustrated by comparison with experimental data.

Index Terms—Hysteresis, magnetomechanical model, magne-
tostrictive transducer.

I. INTRODUCTION

T HE phenomenon of magnetostriction is characterized by
the changes in shape that occur in certain materials when

the materials are subjected to magnetic fields. For rare-earth
alloys such as Terfenol-D (TbDy Fe ), the generated
strains and forces are sufficiently large to prove advantageous
in transducer design. Initial investigations have demonstrated
the utility of such transducers in applications ranging from
ultrasonic transduction to vibration control in heavy structures.

This paper addresses the modeling of strains generated by
magnetostrictive materials when employed in transducer design.
To illustrate, we consider the prototypical broad-band trans-
ducer depicted in Fig. 1 and detailed in [1]. While transducer de-
sign will vary according to specific requirements, this design is
typical for control applications and illustrates the various phys-
ical components that must be modeled to fully utilize the magne-
tostrictive actuator capabilities. The primary components of the
actuator consist of a cylindrical Terfenol-D rod, a wound wire
solenoid, an enclosing permanent magnet, and a prestress mech-
anism. The rod is manufactured so that magnetic moments are
primarily oriented perpendicular to the longitudinal axis. The
prestress mechanism increases the distribution of moments per-
pendicular to the rod axis and allows the transducer to be oper-
ated in compression. Application of current to the solenoid then
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produces a magnetic field that causes the moments to rotate so
as to align with the field. The resulting strains and forces pro-
vide the actuator capabilities for the transducer. The capability
for attaining bidirectional strains and forces is provided by a
magnetic bias generated by either the surrounding permanent
magnet or an applied dc current to the solenoid.

To illustrate the nature of the magnetic and mechanical phe-
nomena, experimental data collected from the transducer de-
picted in Fig. 1 are plotted in Fig. 2. In Fig. 2(a), it is observed
that the relationship between the input magnetic fieldand
magnetization is nonlinear with significant saturation and
is irreversible due to hysteresis. These effects must be incor-
porated when modeling the magnetic regime. The relationship
between the magnetization and strain , plotted in Fig. 2(b),
also exhibits hysteresis and nonlinear features, which must be
modeled when characterizing the mechanical properties of the
system. An important feature of the magnetoelastic model con-
sidered here is that it incorporates the observed hysteresis in
the strain whereas previously considered models yielded single-
valued strain outputs.

For control applications, it is necessary to accurately quantify
the relationship between the current applied to the solenoid
and the strains generated by the transducer. This necessi-
tates modeling the electric, magnetic, mechanical, and thermal
regimes within the system. While all four regimes are fully cou-
pled, we focus here on the magnetic and mechanical aspects of
the system with nearly constant temperatures maintained to re-
duce thermal effects.

Initial models quantifying the magnetomechanical coupling
were based on the linear constitutive piezomagnetic equations

(1a)

and

(1b)

which are derived from thermodynamic principles in combina-
tion with empirical laws. In these relations,and denote the
longitudinal strain and axial stress in the material, whilede-
notes the mechanical compliance at a fixed field strength.
Additionally, and , respectively, denote the magnetic flux
and permeability at constant stress while
and are magnetoelastic coupling coeffi-
cients. It is noted in (1a) that the generated strains are depen-
dent upon both the elastic properties of the material (modeled
by the term ) and magnetic inputs (modeled by ).
Equation (1b) incorporates the direct magnetostrictive effect in
which magnetic flux is generated by stresses in the material.
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Fig. 1. Cross-section of a prototypical Terfenol-D magnetostrictive transducer.

(a) (b)

Fig. 2. Relationship in experimental data between (a) the magnetic fieldH and the magnetizationM and (b) the magnetizationM and the generated strainse.

This latter property provides the magnetostrictive materials with
their sensor capabilities.

While the linear model (1) is commonly employed in mag-
netostrictive transducer applications, the relations are accurate
only at low operating levels. They do not provide mechanisms
for incorporating the hysteresis and nonlinearities observed in
the data in Fig. 2 at higher drive levels and will be highly de-
ficient in such regimes. For example, the permeabilityis not
only nonconstant for the data but is in fact a multivalued map
depending on both and . As detailed in [2] and [3], the as-
sumption of a constant Young’s modulus and corresponding
compliance is also invalid for large field fluctuations, and a
variable Young’s modulus and compliance
must be employed to attain accurate models.

There are numerous approaches for extending the magne-
tomechanical term in (1a) to include the nonlinear dy-
namics and hysteresis observed at moderate to high drive levels.
However, most previous investigations have focused on spe-
cific magnetic or magnetostrictive components of the system,
and few results are currently available that address the cou-
pled magnetoelastic properties of highly magnetostrictive ma-

terials. For the magnetic regime, modeling techniques include
micromechanical characterizations [4], phenomenological and
Preisach approaches [5]–[7], the inclusion of specific nonlinear
effects [8], [9], and domain theory based upon mean field equi-
librium thermodynamics [10]–[12]. The modeling of strain ef-
fects due to the magnetostriction has received less attention and
is less developed than the theory for magnetization. Current
magnetostriction models are typically based upon either energy-
based theories that quantify the interaction between atomic mo-
ments in a crystal lattice [13]–[16] or polynomial expansions
constructed to quantify the phenomenological behavior of the
magnetostriction [17], [18]. With suitable assumptions, both ap-
proaches yield models in which the magnetostriction is char-
acterized in terms of even powers of the magnetization (such
a relation can be observed in the experimental data of Fig. 2).
To extend (1a) to a nonlinear model that characterizes strains in
terms of input fields, it is necessary to quantify the coupled mag-
netic, magnetostrictive, and elastic properties of the material.
Certain aspects of this problem are considered in [16], [19], and
[20] for magnetostrictive materials and [21] for electrostrictives.
Models and corresponding numerical methods appropriate for
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quantifying strains generated by magnetostrictive transducers in
general control applications are still lacking, however, and it is
this problem that we address here.

To model the relationship between the input current and
output strains , we consider the magnetic, magnetostrictive,
and elastic components in the system. To model the first, the
Jiles–Atherton mean field theory for ferromagnetic hysteresis
is modified to provide an energy-based relationship between the
current applied to the solenoid and the resulting magnetiza-
tion . A quadratic moment rotation model then yields the
output magnetostriction . This provides a nonlinear and hys-
teretic analog to the linear term in (1a). As demonstrated
in [22], the magnetostriction provides adequate fits to experi-
mental strain data at low to moderate drive levels. At high input
levels, however, it is inadequate since it incorporates only ac-
tive contributions to the strain and neglects material or passive
strain effects. To model these effects, force balancing is used
to derive a dynamic partial differential equation (PDE) model
quantifying the rod dynamics. This PDE model has the form of a
wave equation with magnetostrictive inputs and boundary con-
ditions which model the prestress mechanism and mechanical
load path. The solution to this system provides the rod displace-
ments and corresponding total strains. A comparison between
the strain relations employed in this model and the linear rela-
tion (1a) is provided in Section IV.

Due to the generality of the PDE model, it is not possible to
obtain an analytic solution specifying the rod displacements. To
address this issue, we present in Section V appropriate numer-
ical methods for approximating the spatial and temporal compo-
nents of the PDE model. We consider a Galerkin finite-element
discretization in space, which reduces the PDE to a matrix ODE
system that evolves in time. The dynamics of the ODE system
are approximated through a finite difference discretization to
obtain a discrete time system having the measured current to the
solenoid as input. The validity of the model and approximation
method are illustrated in Section VI through comparison with
experimental data. It is demonstrated that the model character-
izes the inherent magnetic hysteresis and accurately quantifies
the strains and displacements output by the transducer.

II. M AGNETIZATION AND MAGNETOSTRICTIONMODELS

The magnetization and magnetostriction models that we em-
ploy are based upon domain and domain wall theory for fer-
romagnetic materials. In ferromagnetic materials such as Ter-
fenol-D, moments are highly aligned in regions termed domains
at temperatures below the Curie point. The transition regions be-
tween domains are termed domain walls. Magnetization in such
materials can then be described through quantification of do-
main configurations, while magnetostriction can be character-
ized through the determination of the deformations that occur
when moment configurations change.

A. Magnetization Model

The model that is employed for the magnetic component of
the system is based upon the thermodynamic mean field theory
of Jiles and Atherton [10]–[12]. In this approach, hysteresis-free
(anhysteretic), irreversible, and reversible components of the

magnetization are quantified and used to characterize the total
magnetization generated by an input magnetic field. The an-
hysteretic magnetization is attributed to moment rotation
within domains and is completely reversible. Such magnetiza-
tion curves are rarely observed in laboratory materials, however,
due to the presence of crystal defects or second-phase materials
which provide minimum energy states that impede domain wall
movement and subsequent bulk moment reorientation. These in-
clusions or defects are often referred to as pinning sites. The ef-
fects of pinning on domain wall movement are quantified via the
theory of Jiles and Atherton through consideration of reversible

and irreversible components of the magnetization.
For low field variations about an equilibrium level, the magne-
tization is reversible since the domain walls bulge but remain
pinned at the inclusions. At higher input levels, the walls at-
tain sufficient energy to detach from pinning sites (move out
of the minimum energy state) and reattach at remote pinning
sites. This leads to an irreversible change in magnetization and
provides a significant mechanism for hysteresis. The reader is
referred to [10], [13], and [23] for additional details and dis-
cussion of other experimental phenomena, such as Barkhausen
discontinuities, which are attributed to domain wall effects. This
approach was initially employed in [22], [24], and [25] to model
magnetostrictive transducers. We summarize here pertinent de-
tails and indicate extensions from the original model.

To quantify , and , it is necessary first to
determine the effective field , which acts upon magnetic
moments in the Terfenol rod. As detailed in [10] and [11],
is dependent upon the magnetic field generated by the solenoid,
magnetic moment interactions, crystal and stress anisotropies,
temperature, and transducer architecture (e.g., end effects).
In [10] and [22], it is illustrated that for large prestresses,
stress anisotropies dominate crystalline anisotropies; hence
for this model, crystalline anisotropies are neglected. Under
the assumption of fixed temperature and quasi-static operating
conditions, the effective field is then modeled by

where denotes the longitudinal coordinate. Here is the
field generated by a solenoid with turns per unit length,

quantifies the field due to magnetic interactions between
moments, and is the field due to magnetoelastic domain
interactions. The parameter quantifies the amount of in-
terdomain interaction. For the prestress mechanism under
consideration, it is demonstrated in [22] that the approximation

provides an adequate average
of the stress contributions to the effective field. Here
and , respectively, denote the saturation magnetostriction
and magnetization, is the free space permeability, and

is the prestress. The magnetic interactions and stress
coefficient can then be combined into the single coefficient

, which must be experimentally
determined for a given system.

Empirical studies have indicated that under a variety of op-
erating conditions, a reasonable approximation to the effective
field is provided by

(2)
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where is the current to the solenoid and is an empiri-
cally determined function which incorporates transducer anom-
alies, such as end effects, that produce nonuniform field char-
acteristics along the length of the rod. It should be noted that
while the expression (2) is time dependent, it must be restricted
to low frequencies since the present model does not incorporate
ac losses. The extension of this model to incorporate eddy cur-
rent losses is under investigation.

For a computed effective field , Boltzmann statistics are
used to quantify the anhysteretic magnetization in terms of the
Langevin function

(3)

The constant , where is Boltzmann’s
constant, denotes the domain density, and represents
the Boltzmann thermal energy, is treated as a parameter to be
identified since is unknown.

As detailed in [10] and [11], quantification of the energy re-
quired to break pinning sites yields the expression

(4)

for the time rate of change of the irreversible magnetization
curve. The constanthas the form ,
where is the average density of pinning sites, is the av-
erage energy for 180walls, is a reversibility coefficient, and

is the magnetic moment per unit volume of a typical domain.
The parameter provides a measure of the average energy re-
quired to break pinning sites and is also treated as a parameter
to be estimated since and are unknown. The param-
eter is defined to have the value1 when and

1 when to guarantee that pinning always opposes
changes in magnetization.

The reversible magnetization quantifies the degree to which
domain walls bulge before attaining the energy necessary to
break the pinning sites. To a first approximation, the reversible
magnetization is given by

(5)

(see [11]). The reversibility coefficientcan be estimated from
the ratio of the initial and anhysteretic differential susceptibili-
ties [12] or through a least squares fit to data.

The total magnetization is then given by

(6)

where and are defined in (4) and (5) and the an-
hysteretic magnetization is given by (3). For implementation
purposes, it is necessary to numerically integrate the expression
(4) to obtain . For the results in Section IV, this was ac-
complished via Euler’s method. If higher accuracy is required,
methods such as a trapezoid rule or Runge–Kutta method can
be employed.

B. Magnetostriction Model

The second magnetomechanical component to be modeled is
the deformations that occur when moment configurations are
altered by an applied field . These deformations are typically
quantified through either an energy formulation [13]–[16] or a
phenomenological series expansion involving even powers of
the magnetization [17], [18].

In the first case, general relations quantifying the material
deformations are obtained through the minimization of various
energy functionals. For example, one choice is the total energy
expression

(7)

where the magnetoelastic energy quantifies the interac-
tions between atomic magnetic moments in a crystal lattice,
denotes the elastic energy, and is the crystal anisotropy
energy. As detailed in [13] and [15], minimization of (7) yields
a general expression for the anisotropic magnetostriction. The
situation is simplified in the regime considered here since the
magnetic moments are essentially perpendicular to the applied
field due to the manner of rod solidification and the compres-
sion provided by the prestress mechanism. In this case, energy
minimization yields the isotropic single-valued relation

(8)

between the magnetization and magnetostriction.
A second approach for modeling the magnetostriction is to

employ the symmetry about to formulate a series ex-
pansion

(9)

which empirically relates the magnetization and magnetostric-
tion [17], [18]. The series is typically truncated after or

to obtain a model that can be efficiently implemented.
Note that the constant term yields elastic strains while
yields the quadratic term obtained in (8) through an energy for-
mulation.

The use of the quadratic expression (8) or a truncation of (9)
in a transducer model requires the identification of the physical
constants or the empirical constants .
As will be observed in the experimental results of Section V,
the saturation magnetization varies little between samples
of Terfenol-D, and values identified for the transducer are very
close to published material specifications. The saturation mag-
netostriction exhibits more dependence on operating condi-
tions due to its dependence on the initial orientation of moments;
hence it must be estimated for each transducer configuration.
For the remainder of this discussion, the quadratic magnetostric-
tion model (8) is employed.

III. STRAIN MODEL FOR THETERFENOLROD

Equation (8) quantifies the magnetostriction that occurs when
moments within the material reorient in response to an applied
field. This provides a generalization of the term in (1a) to
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Fig. 3. (a) Unstressed rod, (b) end displacementu = L� =E due to a
prestress� , and (c) time-dependent end displacementsu(t; L) andu(t; L) =
u(t; L) � u .

accommodate the nonlinear dynamics inherent to the material
at moderate to high drive levels. It ignores, however, the elastic
properties of the material that are quantified in (1a) by the term

. In this section, we build on prior work [22] to address this
issue through consideration of a PDE model for the Terfenol
rod, which employs the field-induced magnetostriction
as input. This provides a partially coupled model that incorpo-
rates both structural dynamics and magnetic hysteresis.

For modeling purposes, we consider the Terfenol rod, pre-
stress mechanism, and end mass from the transducer depicted in
Fig. 1. The rod is assumed to have length, cross-sectional area

, and longitudinal coordinate. The density, Young’s mod-
ulus, and internal damping coefficient are denoted by and

, respectively. The left end of the rod is assumed
fixed while the right end is constrained by the spring washer,
which is modeled by a linear translational spring having stiff-
ness and damping coefficient . It is noted that due to the
compression bolt and spring washers, the rod is subjected to
a prestress . Finally, the attached end mass is modeled by a
point mass .

The displacements of the rod at a pointand time can be
specified relative to either the unstressed state or the equilibrium
state attained by the material after a prestressis applied. The
longitudinal displacements relative to the unstressed and pre-
stressed equilibrium states are denoted by and ,
respectively. To relate the two, it is noted that when the prestress

is applied, the free end of the rod displaces by an amount

as illustrated in Fig. 3. Under the assumption of homogeneous
material properties and a uniform cross-sectional area, this pro-
duces a displacement

for . The time-dependent displacements relative to
the unstressed and prestressed equilibrium states are then related
by the equation

(10)

Note that for a compressive prestress, , and hence
will be negative.

We consider first a dynamic model in terms of the displace-
ment at . Under the assumptions of linear elasticity, small

Fig. 4. Orientation of spring forces, edge reactions, and resultants for the
Terfenol rod.

displacements, and Kelvin–Voigt damping, the stress at a point
, is given by

(11)

where is given by (8). When integrated across the rod, this
yields the inplane resultant

(12)

Force balancing then yields the wave equation

as a model for the internal rod dynamics.
To obtain appropriate boundary conditions, it is first noted

that the fixed end of the rod satisfies the condition .
At the end , we consider an infinitesimal section having
the orientation depicted in Fig. 4. Force balancing then yields
the boundary condition

(13)

(a more general discussion regarding the derivation of general
elastic boundary conditions can be found in [26]). Note that
when and , the boundary
condition (13) reduces to the equilibrium condition

The combination of the wave equation, boundary conditions,
and initial conditions yields the strong form of the model

(14)
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It is noted that the initial conditions incorporate the equilibrium
displacement due to the prestress .

To define a weak or variational form of the model, the
state is considered in the state space , and
the space of test functions is taken to be

. Multiplication by test functions
followed by integration then yields the weak form

(15)

for all . The consideration of the prestress as a distributed
input rather than a boundary condition follows from integra-
tion by parts. This formulation illustrates that if the prestress
is negated by a constant input magnetostriction , the
system has the equilibrium solution . Conversely,
the retention of the prestress as a boundary condition illustrates
that in the absence of an applied current and resulting magne-
tostriction, the system will have the solution
and hence retain the initial offset for all time.

For many applications, the offset due to the prestress
is not consistent with strain or displacement data measured

from the equilibrium prestressed state. For such cases, it is ad-
vantageous to consider the system satisfied by the perturbed dis-
placement . Substitution of (10) into (11) yields the stress
relation

(16)

while substitution into (12) and (13) yields the strong form of
the model

(17)

The initial displacement in this case is since
denotes displacements from the prestressed equilibrium state.

TABLE I
TIME-DEPENDENT MODEL QUANTIFYING

THE MAGNETIZATOIN M(t; x), THE OUTPUT MAGNETOSTRICTION�(t; x),
AND ROD DISPLACEMENTSu(t; x)

The corresponding weak form of the model is

(18)

for all . The solution to (17) or (18) provides
the longitudinal displacements of the rod from the perturbed
state produced by the prestress. In the absence of an
applied input , the system (18) will have the equilib-
rium solution as compared with the offset solution

, which satisfies (15). Hence the model (18)
and corresponding stress relation (16) are preferable when data
are measured relative to the prestressed state. This structural
model is summarized along with the previously defined magne-
tization and magnetostriction models in Table I. Note that in the
weak form (18), displacements and test functions are differen-
tiated only once compared with the second derivatives required
in the strong form. This reduces the smoothness requirements
on the finite-element basis when constructing an approximation
method.

IV. COMPARISON WITH THELINEAR MODEL

The stress relation (16) generalizes the linear constitutive law
(1a) to include both Kelvin–Voigt damping and hysteretic and
nonlinear magnetomechanical inputs. To verify this, it is noted
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that in this regime, and so that (16) can
be reformulated as

To illustrate that provides the active strain contributions mod-
eled by in the linear model (1a), we take
and employ (8) to obtain

Linearization about a biasing magnetization level then
yields the strain expression

(19)

To express the magnetization and resulting strain in terms
of the applied magnetic field, it is noted that in the absence of
hysteresis, the magnetization satisfies the anhysteretic relation

To linearize, the high-order terms in the Taylor expansion are
neglected to obtain

which implies that

Hence (19) can be written as

(20)

where is the magnetic field required to produce the bias mag-
netization .

As depicted in Fig. 5, the total strainis composed of a bias
due to the biasing magnetization and bidirectional strains
about . To specify and , we reformulate (20) as

where and

(Note that when .) With the definitions

Fig. 5. Linearization about the biasing magnetizationM and the resulting
bias straine , bidirectional strain�e, and total straine = e +�e.

the bidirectional strains are then given by

which is equivalent to the original linear expression (1a) when
it is used to model bidirectional strains about a preset magneti-
zation level .

We conclude this section by noting that the reader can find
further details regarding the decomposition of strains into pas-
sive components due to elastic properties of the material and
nonlinear active components due to magnetostriction in [19, p.
180].

V. APPROXIMATION METHOD

To approximate the solution of (18), we consider a Galerkin
discretization in space followed by a finite-difference approxi-
mation of the resulting temporal system. To this end, we con-
sider a uniform partition of the interval with points

and step size , where denotes
the number of subintervals. The spatial basis is com-
prised of linear splines, or “hat functions,” of the form

otherwise

otherwise

(see [27] for details). A general basis functionand final basis
function are plotted in Fig. 6.

The solution to (18) is then approximated by the ex-
pansion

in the subspace . It should be noted that
through the construction of the basis functions, the approximate
solution satisfies and allows arbitrary displace-
ments at .

A semidiscrete matrix system is obtained by considering the
approximate solution in (18) with the basis functions
employed as test functions (this is equivalent to projecting the
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Fig. 6. Linear basis functions (a)� (x) and (b)� (x).

system (18) onto the finite dimensional subspace). This
yields the second-order time-dependent vector system

(21)

where . The mass, stiffness, and
damping matrices have the components

and

and

and

and

and

and

while the force vector is defined by

(here denotes a spatial derivative). With the definitions
and

the second-order system (21) can be posed as the first-order
system

(22)

where the 2 1 vector denotes the projection of the initial
conditions into the approximating space.

The system (22) must be discretized in time to permit numer-
ical or experimental implementation. The choice of approxima-
tion method is dictated by accuracy and stability requirements,
storage capabilities, sample rates, etc. A trapezoidal method can
be advantageous for experimental implementation since it is
moderately accurate, is A-stable, and requires minimal storage
when implemented as a single step method. For temporal step
sizes , a standard trapezoidal discretization yields the itera-
tion

(23)

where and approximates . The matrices

need only be created once when numerically or experimentally
implementing the method. This yields approximate solutions
having accuracy. For applications in which data
at future times are unavailable, the algorithm (23) can be
replaced by the modified trapezoidal iteration

While this decreases the temporal accuracy slightly, for large
sample rates with correspondingly small step sizes, the ac-
curacy is still commensurate with that of the data.

VI. EXPERIMENTAL VALIDATION

As summarized in Table I, the magnetization model (6), mag-
netostriction model (8), and PDE (18) can be combined to yield
time-dependent displacement values of the Terfenol rod for all
points along its length in response to an input current to
the solenoid. This model incorporates magnetic hysteresis, non-
linear strain properties, and the coupling between the external
strains generated by the material and the dynamics of the rod. In
its present form, however, the model is not fully coupled since it
does not yet incorporate the dynamic stress effects on the effec-
tive field and ensuing magnetization. This topic is under current
investigation.

For the results that follow, experimental data were collected
from a broad-band transducer developed at Iowa State Univer-
sity (the general configuration of the transducer can be noted
in Fig. 1). A solid Terfenol-D (Tb Dy Fe ) rod having a
length of 115 mm (4.53 in) and diameter of 12.7 mm (0.5 in)
was employed in the transducer. Mechanical prestresses to the
rod were generated by a variable prestress bolt at one end of
the transducer and Belleville washers fitted at the opposite end
of the rod. The results reported here were obtained with a pre-
stress of 1.0 ksi ( ksi). Surrounding the rod were two
coils consisting of an inner single-layer 150-turn pickup coil
and a multilayer 900-turn drive coil. A current control ampli-
fier (Techron 7780) provided the input to the drive coil to pro-
duce an applied ac magnetic field and dc bias as necessary. The
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Fig. 7. Empirical function'(x) used to qualify transducer effects.

reference signal to this amplifier was provided by a Tektronix
spectrum analyzer, and the applied magnetic fieldgenerated
by the drive coil had a frequency of 0.7 Hz and magnitude up to
70 kA/m.

A cylindrical permanent magnet surrounding the coils pro-
vided the capability for generating additional dc bias if neces-
sary. This permanent magnet was constructed of Alnico V and
was slit to reduce eddy current losses. Note that for the exper-
iments reported here, biases generated in this manner were un-
necessary and the permanent magnet was demagnetized to ob-
tain unbiased data.

To determine a function [see (2)] that characterizes
transducer anomalies such as end effects, an axial Hall effect
probe connected to an F.W. Bell Model 9500 gaussmeter was
used to map the flux density and corresponding field along
the length of the rod. The resulting function is plotted in
Fig. 7 with the predominance of end effects readily noted.

The measured output from the transducer during operation
included the current and voltage in the drive coil, the voltage in-
duced in the pickup coil, and the rod displacement. The current

was used to compute the field ap-
plied to the rod. From the induced voltage in the pickup coil, the
Faraday–Lenz law was used to compute the temporal derivative
of the magnetic induction . Integration then yielded the in-
duction and magnetization . Both the field
and magnetization were numerically filtered to remove the small
biases due to instrumentation. A Lucas LVM-110 linear vari-
able differential transformer, based upon changing reluctance,
was used to measure the displacement of the rod tip. Corre-
sponding strains at this point were then computed by dividing by
the rod’s length. The experimental data collected in this manner
are plotted in Figs. 8–10. Throughout the experiments, temper-
ature was monitored using two thermocouples attached to the
Terfenol-D sample and maintained within 5C of the ambient
temperature (23C).

To employ the magnetization and structural model sum-
marized in Table I, appropriate parameters must be as-
certained. These include the magnetization parameters

, the structural parameters , the

Fig. 8. ExperimentalM–H data (– – –) and model dynamics (——) at
x = L with the magnetizationM computed using filtered magnetic field data
H(t; x) = nI(t)'(x).

spring constants , and the end mass . The values used
here are summarized in Table II. The magnetization parameters
were estimated through a least squares fit to data, as detailed
in [22]. The values of and are published specifications for
Terfenol-D, while the damping parameters and were
chosen within a range typical for the material. The spring stiff-
ness coefficient was measured through a compression test,
while the end mass was measured directly. We note that
while the specification of parameters in this manner provided
adequate model fits, they are not optimal. To obtain optimal
parameters and corresponding model fits, it is necessary to
estimate all parameters through a least squares fit to data.

A. Magnetization Model

The domain wall model discussed in Section II-A and sum-
marized in Table I provides a characterization of the magnetiza-
tion generated by an applied magnetic field. The perfor-
mance of the model under quasi-static (0.7 Hz) operating condi-
tions is illustrated in Fig. 8. It is observed that while the model
accurately characterizes the measured magnetization over most
of the range, certain aspects of the transducer behavior are not
completely quantified at low field levels. The constricted be-
havior in the magnetization at low field levels has been observed
by other researchers [23], [28] and is hypothesized to be due to
180 domain rotations. While quantification of this effect is ulti-
mately desired, the accuracy and flexibility of the current mag-
netization model are sufficient for control applications in this
operating regime.

B. Strain Model

The model summarized in Table I characterizes two aspects of
the strain in the Terfenol rod. The magnetostrictionquantifies
the external or active component of the strain while
provides the total strain in the rod. The relationship between
the two can be noted in the stress expressions (11) or (16). The
total strain incorporates both the elastic properties of the
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(a) (b)

Fig. 9. ExperimentalM -strain data (– – –) and model solution (——) with the magnetizationM computed using filtered magnetic field dataH(t; x) =
nI(t)'(x). (a) Total straine(t; L) and (b) magnetostriction�(t; L).

(a) (b)

Fig. 10. ExperimentalH-strain data (– – –) and model solution (——) computed using filtered magnetic field dataH(t; x) = nI(t)'(x). (a) Total strain
e(t; L) and (b) magnetostriction�(t; L).

TABLE II
PHYSICAL PARAMETERS AND DIMENSIONSEMPLOYED IN THE MAGNETIZATION

AND STRUCTURAL MODELS

material and the magnetomechanical effects due to domain ro-
tation; hence it is the quantity that models the strains generated
by the transducer during experiments.

The modeled strain at the rod tip
is plotted with experimental data in Figs. 9(a) and 10(a). For
comparison, the magnetostriction given by (8) is plotted with
experimental data in Figs. 9(b) and 10(b). Recall that while the
magnetic field, magnetization, and strains are time dependent,
data were collected at a sufficiently low frequency (0.7 Hz) to
avoid ac losses and harmonic effects. It is observed in Fig. 9 that
some discrepancy occurs in both the strain and magnetostric-
tion due to limitations in the quadratic model (8). The total
strain provided by the dynamic model does, however, include
the hysteresis observed in the experimental data. This is a sig-
nificant advantage over the modeled magnetostriction, which is
single-valued. This leads to the highly accurate model fit ob-
served in Fig. 10, where the relation between the input field
and the output strain at the rod tip is plotted.
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(a)

(b)

Fig. 11. Experimental strain data (– – –) and model solution (——) computed
using unfiltered magnetic field dataH(t) = nI(t) and a scaled saturation
magnetostriction� . (a)M–� relation and (b)H–� relation.

For comparison purposes, we include in Fig. 11 the corre-
sponding model fits obtained when the filtering function
was omitted and an averaged field measurement was used to
compute and . This was the regime considered in [22],
where it was demonstrated that use of magnetostriction rather
than total strain led to an adequate model at low to moderate
drive levels but provided inadequate fits at high input levels.
These conclusions are reinforced by the model fits observed in
Fig. 11. It is noted that even when the saturation magnetostric-
tion was scaled to the maximum experimentally observed value,
the lack of hysteresis in the relation betweenand led to an
inadequate characterization ofin terms of . A comparison
with Figs. 9(a) and 10(a) again indicates the necessity of con-
sidering the total strains.

VII. CONCLUDING REMARKS

This paper addresses the modeling of strains generated by
magnetostrictive materials when employed in high-perfor-

mance transducers. The model extends the classical relation
(1a), which includes elastic effects and a linear magnetome-
chanical component, to the regime in which magnetoelastic
inputs are nonlinear and exhibit significant hysteresis. This is
necessary to accommodate the dynamics observed in current
transducers at high drive levels and to provide a model for
design and control applications in such regimes.

The model was constructed in three steps. In the first, the
mean field theory of Jiles and Atherton was used to quantify the
relation between the current input to the solenoid and the mag-
netization produced in the rod. This component of the model
incorporates both inherent magnetic hysteresis and saturation
effects at high field levels. In the second step, the magnetostric-
tion due to the rotation of moments was quantified through con-
sideration of a quadratic model posed in terms of the magnetiza-
tion. When combined with the mean field magnetization model,
this provided a means for extending the linear magnetoelastic
relation (1a) to include the nonlinear dynamics and hysteresis
observed at high field levels. Finally, force balancing provided
a PDE model that quantified material displacements due to the
magnetostriction. For a given input current, the solution to the
PDE yields the displacements and strains produced by the rod.

While the PDE has the form of a wave equation, the nature of
the boundary conditions modeling the prestress mechanism and
end mass precluded analytic solution. Hence we approximated
the solution through a finite-element discretization in the spatial
variable followed by a finite difference discretization in time.
This yielded a vector system that could be iterated in time with
the measured electric current or magnetic field data employed
as input.

The examples illustrated that the resulting model yields the
hysteresis observed in experimental strain data when plotted as a
function of the magnetization. This is a significant improvement
over the magnetostriction, which is modeled as a single-valued
function of the magnetization. Finally, the accuracy of the model
is reflected in the full relation between the input field and
strains produced by the transducer.
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