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Structural Magnetic Strain Model for Magnetostrictive
Transducers

Marcelo J. Dapino, Ralph C. Smith, and Alison B. Flatau

Abstract—This paper addresses the modeling of strains gener- produces a magnetic field that causes the moments to rotate so
ated by magnetostrictive transducers in response to applied mag- as to align with the field. The resulting strains and forces pro-
netic fields. The measured strains depend on both the rotation of \;iqe the actuator capabilities for the transducer. The capability

moments within the material in response to the field and the elastic f ttaining bidirecti | strai df . ided b
properties of the material. The magnetic behavior is characterized Or attaining bidirectional strains and forces IS provided Dy a

by considering the Jiles—Atherton mean field theory for ferromag- Magnetic bias generated by either the surrounding permanent
netic hysteresis in combination with a quadratic moment rotation magnet or an applied dc current to the solenoid.

model for magnetostriction. Elastic properties must be incorpo- o illustrate the nature of the magnetic and mechanical phe-
rated to account for the dynamics of the material as it vibrates. nomena, experimental data collected from the transducer de-

This is modeled by force balancing, which yields a wave equation . R A . -
with magnetostrictive inputs. The validity of the resulting trans- picted in Fig. 1 are plotted in Fig. 2. In Fig. 2(a), it is observed

ducer model is illustrated by comparison with experimental data.  that the relationship between the input magnetic figldand
magnetizationV is nonlinear with significant saturation and

is irreversible due to hysteresis. These effects must be incor-
porated when modeling the magnetic regime. The relationship
between the magnetizatidd and straire, plotted in Fig. 2(b),

. INTRODUCTION also exhibits hysteresis and nonlinear features, which must be

HE phenomenon of magnetostriction is characterized Hjyodeled when characterizing the mechanical properties of the
T the changes in shape that occur in certain materials whdgtem. An important feature of the magnetoelastic model con-
the materials are subjected to magnetic fields. For rare-eaftfered here is that it incorporates the observed hysteresis in
alloys such as Terfenol-D (FbDyo7Fe o), the generated the strain whereas previously considered models yielded single-

strains and forces are sufficiently large to prove advantaged{@ued strain outputs.

in transducer design. Initial investigations have demonstrated™0r control applications, itis necessary to accurately quantify
the utility of such transducers in applications ranging frofffie relationship between the currdiit) applied to the solenoid
ultrasonic transduction to vibration control in heavy structuregnd the straing(#) generated by the transducer. This necessi-
This paper addresses the modeling of strains generated!®§S modt_alir_1g the electric, mggnetic, mechanical, and thermal
magnetostrictive materials when employed in transducer desif#gimes within the system. While all four regimes are fully cou-
To illustrate, we consider the prototypical broad-band tranBled, we focus here on the magnetic and mechanical aspects of

ducer depicted in Fig. 1 and detailed in [1]. While transducer d1€ system with nearly constant temperatures maintained to re-
sign will vary according to specific requirements, this design fuce thermal effects.
typical for control applications and illustrates the various phys- INitial models quantifying the magnetomechanical coupling
ical components that must be modeled to fully utilize the magrn#ere based on the linear constitutive piezomagnetic equations
tostrictive actuator capabilities. The primary components of the "
actuator consist of a cylindrical Terfenol-D rod, a wound wire c=s"o+dgsH (12)
solenoid, an enclosing permanent magnet, and a prestress mggi-
anism. The rod is manufactured so that magnetic moments are
primarily oriented perpendicular to the longitudinal axis. The B=dj;0+p"H (1b)
prestress mechanism increases the distribution of moments per-
pendicular to the rod axis and allows the transducer to be op@fich are derived from thermodynamic principles in combina-
ated in compression. Application of current to the solenoid théi@n with empirical laws. In these relationsando denote the
longitudinal strain and axial stress in the material, whifede-
, _ _ notes the mechanical compliance at a fixed field strerfgth
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Fig. 1. Cross-section of a prototypical Terfenol-D magnetostrictive transducer.
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Fig. 2. Relationship in experimental data between (a) the magneticHieddd the magnetizatioh and (b) the magnetizatiah/ and the generated straias

This latter property provides the magnetostrictive materials witarials. For the magnetic regime, modeling techniques include
their sensor capabilities. micromechanical characterizations [4], phenomenological and
While the linear model (1) is commonly employed in magPreisach approaches [5]-[7], the inclusion of specific nonlinear
netostrictive transducer applications, the relations are accurafiects [8], [9], and domain theory based upon mean field equi-
only at low operating levels. They do not provide mechanisnfisrium thermodynamics [10]-[12]. The modeling of strain ef-
for incorporating the hysteresis and nonlinearities observedfatts due to the magnetostriction has received less attention and
the data in Fig. 2 at higher drive levels and will be highly déds less developed than the theory for magnetization. Current
ficient in such regimes. For example, the permeabijliig not magnetostriction models are typically based upon either energy-
only nonconstant for the data but is in fact a multivalued mdgased theories that quantify the interaction between atomic mo-
depending on botlif ando. As detailed in [2] and [3], the as- ments in a crystal lattice [13]-[16] or polynomial expansions
sumption of a constant Young’s modulB$’ and corresponding constructed to quantify the phenomenological behavior of the
compliances’ is also invalid for large field fluctuations, and amagnetostriction [17], [18]. With suitable assumptions, both ap-
variable Young's modulu€’(H, «) and compliances(H, ) proaches yield models in which the magnetostriction is char-
must be employed to attain accurate models. acterized in terms of even powers of the magnetization (such
There are numerous approaches for extending the magaeelation can be observed in the experimental data of Fig. 2).
tomechanical termls3 H in (1a) to include the nonlinear dy- To extend (1a) to a nonlinear model that characterizes strains in
namics and hysteresis observed at moderate to high drive levidsms of input fields, it is necessary to quantify the coupled mag-
However, most previous investigations have focused on spetic, magnetostrictive, and elastic properties of the material.
cific magnetic or magnetostrictive components of the syste@ertain aspects of this problem are considered in [16], [19], and
and few results are currently available that address the c¢20] for magnetostrictive materials and [21] for electrostrictives.
pled magnetoelastic properties of highly magnetostrictive mitodels and corresponding numerical methods appropriate for
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quantifying strains generated by magnetostrictive transducersiagnetization are quantified and used to characterize the total
general control applications are still lacking, however, and it magnetization generated by an input magnetic field. The an-
this problem that we address here. hysteretic magnetizatiof,,, is attributed to moment rotation

To model the relationship between the input curgny and  within domains and is completely reversible. Such magnetiza-
output straing(¢), we consider the magnetic, magnetostrictivajon curves are rarely observed in laboratory materials, however,
and elastic components in the system. To model the first, ttae to the presence of crystal defects or second-phase materials
Jiles—Atherton mean field theory for ferromagnetic hysteresighich provide minimum energy states that impede domain wall
is modified to provide an energy-based relationship between tim@vement and subsequent bulk moment reorientation. These in-
current/(¢) applied to the solenoid and the resulting magnetizatusions or defects are often referred to as pinning sites. The ef-
tion M(t). A quadratic moment rotation model then yields thécts of pinning on domain wall movement are quantified via the
output magnetostrictioh(t). This provides a nonlinear and hys-theory of Jiles and Atherton through consideration of reversible
teretic analog to the linear terdas H in (1a). As demonstrated M.,..,, and irreversibleM;,.. components of the magnetization.
in [22], the magnetostriction provides adequate fits to expefror low field variations about an equilibrium level, the magne-
mental strain data at low to moderate drive levels. At high inptization is reversible since the domain walls bulge but remain
levels, however, it is inadequate since it incorporates only gunned at the inclusions. At higher input levels, the walls at-
tive contributions to the strain and neglects material or passitan sufficient energy to detach from pinning sites (move out
strain effects. To model these effects, force balancing is usaidthe minimum energy state) and reattach at remote pinning
to derive a dynamic partial differential equation (PDE) modsiites. This leads to an irreversible change in magnetization and
quantifying the rod dynamics. This PDE model has the form offgovides a significant mechanism for hysteresis. The reader is
wave equation with magnetostrictive inputs and boundary camferred to [10], [13], and [23] for additional details and dis-
ditions which model the prestress mechanism and mechanicassion of other experimental phenomena, such as Barkhausen
load path. The solution to this system provides the rod displa@iscontinuities, which are attributed to domain wall effects. This
ments and corresponding total strains. A comparison betwesgrproach was initially employed in [22], [24], and [25] to model
the strain relations employed in this model and the linear relaagnetostrictive transducers. We summarize here pertinent de-
tion (1a) is provided in Section IV. tails and indicate extensions from the original model.

Due to the generality of the PDE model, it is not possible to To quantify M,,,, M,..,, and M;,.,., it is necessary first to
obtain an analytic solution specifying the rod displacements. @ietermine the effective field. s, which acts upon magnetic
address this issue, we present in Section V appropriate nunmaements in the Terfenol rod. As detailed in [10] and [1H],; ¢
ical methods for approximating the spatial and temporal compie-dependent upon the magnetic field generated by the solenoid,
nents of the PDE model. We consider a Galerkin finite-elememiagnetic moment interactions, crystal and stress anisotropies,
discretization in space, which reduces the PDE to a matrix OD&mperature, and transducer architecture (e.g., end effects).
system that evolves in time. The dynamics of the ODE systdm [10] and [22], it is illustrated that for large prestresses,
are approximated through a finite difference discretization 8iress anisotropies dominate crystalline anisotropies; hence
obtain a discrete time system having the measured current tofitiethis model, crystalline anisotropies are neglected. Under
solenoid as input. The validity of the model and approximatiahie assumption of fixed temperature and quasi-static operating
method are illustrated in Section VI through comparison witbonditions, the effective field is then modeled by
experimental data. It is demonstrated that the model character-
izes the inherent magnetic hysteresis and accurately quantifies ~ Hesf(t, ©) = H(t, z) + aM(t, x) + Ho(t, z)

the strains and displacements output by the transducer. where x denotes the longitudinal coordinate. Hefie is the

field generated by a solenoid with turns per unit length,
Il. MAGNETIZATION AND MAGNETOSTRICTIONMODELS aM quantifies the field due to magnetic interactions between

The magnetization and magnetostriction models that we efioments, and,, is the field due to magnetoelastic domain
ploy are based upon domain and domain wall theory for feflteractions. The parameter quantifies the amount of in-
romagnetic materials. In ferromagnetic materials such as T&fdomain interaction. For the prestress mechanism under
fenol-D, moments are highly aligned in regions termed domaifgnsideration, it is demonstrated in [22] that the approximation
attemperatures below the Curie point. The transition regions Hés = 9As00M/(2u0M7) provides an adequate average
tween domains are termed domain walls. Magnetization in sugh the stress contributions to the effective field. Heke
materials can then be described through quantification of d@d A/,, respectively, denote the saturation magnetostriction
main configurations, while magnetostriction can be charactéf?d magnetizationy, is the free space permeability, and

ized through the determination of the deformations that occ@ie IS the prestress. The magnetic interactions and stress
when moment configurations change. coefficient can then be combined into the single coefficient

& = a+ 9\;a0M/(210M2), which must be experimentally
determined for a given system.

Empirical studies have indicated that under a variety of op-

The model that is employed for the magnetic component gfting conditions, a reasonable approximation to the effective
the system is based upon the thermodynamic mean field theggyy is provided by

of Jiles and Atherton [10]-[12]. In this approach, hysteresis-free
(anhysteretic), irreversible, and reversible components of the H.s4(t, z) = nI(t)p(x) + aM(t, z) (2)

A. Magnetization Model
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wherel(¢) is the current to the solenoid agdzx) is an empiri- B. Magnetostriction Model
cally determined function which incorporates transducer anom-tna second magnetomechanical component to be modeled is

alies, such as end effects, that produce nonuniform field chgfz jeformations that occur when moment configurations are

acteristics along the length of the rod. It should be noted thgtereq by an applied field. These deformations are typically

while the expression (2) is time dependent, it must be restricigdy vrified through either an energy formulation [13]-[16] or a

to low frequencies since the present model does nOt'ncorporﬁffenomenological series expansion involving even powers of

ac losses. The extension of this model to incorporate eddy Ciya magnetization [17], [18].

rent losses is under investigation. o In the first case, general relations quantifying the material
For a computed effective fiell. ; s, Boltzmann statistics are qeformations are obtained through the minimization of various

used to quantify the anhysteretic magnetization in terms of t@ﬁergy functionals. For example, one choice is the total energy
Langevin function expression

Heps(t, )
a

a

Man(t, .T) = MS |:C0th< ) — :| . (3) E= Ernag + Eel + Eanis (7)
Hepp(t,z)

. . where the magnetoelastic energly,,, quantifies the interac-

The constant, = (NV'kpT/poMs;), wherekp is Boltzmann's tions between atomic magnetic moments in a crystal latficg,

constant, denotes the domain density, ahgT represents denotes the elastic energy, afig,.;, is the crystal anisotropy

the Boltzmann thermal energy, is treated as a parameter toelﬁ‘:érgy. As detailed in [13] and [15], minimization of (7) yields

identified since\” is unknown. a general expression for the anisotropic magnetostriction. The

As detailed in [10] and [11], quantification of the energy regjy ation is simplified in the regime considered here since the
quired to break pinning sites yields the expression

magnetic moments are essentially perpendicular to the applied

OM;,, dI field due to the manner of rod solidification and the compres-
5 (@)= o e@) sion provided by the prestress mechanism. In this case, energy
Mo (t,z) — My (t, 2) minimization yields the isotropic single-valued relation
. an b rr b 4)
~ dMirr ( 3 )\S
ké — Oé[Man(t,.’L') - MZ”(t,.’E)] dM )\(t, .’L’) = 5 MSQ .2\42(t7 .’L’) (8)

for the time rate of change of the irreversible magnetizatigsetween the magnetizatidd and magnetostrictioa.
curve. The constartthas the formk = (p)(e~)/(2muo(1—c)), A second approach for modeling the magnetostriction is to

where(p) is the average density of pinning sités;) is the av- employ the symmetry abou/ = 0 to formulate a series ex-
erage energy for 180walls, c is a reversibility coefficient, and pansion

m is the magnetic moment per unit volume of a typical domain.

The parametek provides a measure of the average energy re- - %

quired to break pinning sites and is also treated as a parameter Alt, ) = Z WMt x) ©)

to be estimated sinc@), ¢ and{s,) are unknown. The param- =0

eteré is defined to have the valuel whendH/dt > 0 and which empirically relates the magnetization and magnetostric-

—1whendH/dt < 0 to guarantee that pinning always opposetson [17], [18]. The series is typically truncated after= 1 or

changes in magnetization. ¢ = 2 to obtain a model that can be efficiently implemented.
The reversible magnetization quantifies the degree to whiblote that the constant term yields elastic strains white 1

domain walls bulge before attaining the energy necessaryyields the quadratic term obtained in (8) through an energy for-

break the pinning sites. To a first approximation, the reversibteulation.

magnetization is given by The use of the quadratic expression (8) or a truncation of (9)
in a transducer model requires the identification of the physical
Myeo(t, ©) = c[Man(t, ®) — Mipr(t, x)] (5) constantsM,, A, or the empirical constantso, 71, - .., Y-

As will be observed in the experimental results of Section V,
(see [11]). The reversibility coefficiertcan be estimated from the saturation magnetizatial, varies little between samples
the ratio of the initial and anhysteretic differential susceptibilpf Terfenol-D, and values identified for the transducer are very
ties [12] or through a least squares fit to data. close to published material specifications. The saturation mag-
The total magnetization is then given by netostriction\, exhibits more dependence on operating condi-
tions due to its dependence on the initial orientation of moments;
hence it must be estimated for each transducer configuration.
where M;,.,. and M,..,, are defined in (4) and (5) and the an{?g;trzi;eerraén?:reﬁ: tT(')S 250u53|on,thequadratlc magnetosiric-
hysteretic magnetization is given by (3). For implementation ®) ployed.
purposes, it is necessary to numerically integrate the expression
(4) to obtainM,,.... For the results in Section IV, this was ac-
complished via Euler's method. If higher accuracy is required, Equation (8) quantifies the magnetostriction that occurs when
methods such as a trapezoid rule or Runge—Kutta method caoments within the material reorient in response to an applied

be employed. field. This provides a generalization of the tedg@ H in (1a) to

M(tv .’L’) = Mre'v(tv .’L’) + Mirr(tv .’L’) (6)

I1l. STRAIN MODEL FOR THETERFENOLROD
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@ )
-~ U< 0
® _ J<o,<0
—0(t,L)

—u(t,L)

Fig. 3. (a) Unstressed rod, (b) end displacement= Lo,/E due to a
prestress,, and (c) time-dependent end displacemaitts L) andu(t, L) =
u(t, L) — Wo.

Fig. 4. Orientation of spring forces, edge reactions, and resultants for the

. . . Terfenol rod.
accommodate the nonlinear dynamics inherent to the material

at moderate to high drive levels. It ignores, however, the elasgﬁ;placements and Kelvin—Voigt damping, the stress at a point
properties of the material that are quantified in (1a) by the term ’ '

s . In this section, we build on prior work [22] to address this”’ 0 << Lisgivenby

issue through consideration of a PDE model for the Terfenol o(t, x) = E@ (t, ) + CDi (t, ) — EX(t, 2)  (11)
rod, which employs the field-induced magnetostrictiqn, =) ’ dz 7 dzot ’

as input. This provides a partially coupled model that incorpavhere X is given by (8). When integrated across the rod, this

rates both structural dynamics and magnetic hysteresis. yields the inplane resultant

U

For modeling purposes, we consider the Terfenol rod, pre- . 9
stress mechanism, and end mass from the transducer depictedin =~ Ntot(t, ) = EA5- (t, )
Fig. 1. The rod is assumed to have lengtltross-sectional area * 92
A, and longitudinal coordinate. The density, Young’s mod- +epA—(t, x) — EAXt, z). (12)

ulus, and internal damping coefficient are denoteghby’ and . . Ot .
¢p, respectively. The left end of the rdd = 0) is assumed Force balancing then yields the wave equation
fixed while the right end is constrained by the spring washer, % ONy

which is modeled by a linear translational spring having stiff- P52 = “ar

nessk;, and damping coefficient. . It is noted that due to the 55 3 model for the internal rod dynamics.

compression bolt and spring washers, the rod is subjected terg optain appropriate boundary conditions, it is first noted
a prestres®,. Finally, the attached end mass is modeled bytfat the fixed end of the rod satisfies the conditig, =) = 0.
point massM.. At the endx = L, we consider an infinitesimal section having

The displacements of the rod at a painand timet can be  the grientation depicted in Fig. 4. Force balancing then yields
specified relative to either the unstressed state or the equilibrigqa poundary condition

state attained by the material after a prestegsis applied. The P
longitudinal displacements relative to the unstressed and pré;,, (¢, L) + kr[u(t, L) — uo] + cL_u (t, L) 4+ 0pA
stressed equilibrium states are denoted:iby x) andu(t, x), ot o

respectively. To relate the two, it is noted that when the prestress =M 0%

== (
oo is applied, the free end of the rod displaces by an amount ot

(a more general discussion regarding the derivation of general
T — £U elastic boundary conditions can be found in [26]). Note that
T E™ whenu(t, L) = %o anddu/ot = §*u/t? = 0, the boundary

as illustrated in Fig. 3. Under the assumption of homogeneo(fjosndltlon (13) reduces to the equilibrium condition

material properties and a uniform cross-sectional area, this pro- Niot(t, L) = —0oA.
duces a displacement

t, L) (13)

The combination of the wave equation, boundary conditions,

_ _z and initial conditions yields the strong form of the model
up(z) = Uor .
A82U _ ONyo
for 0 < =z < L. The time-dependent displacements relative to P T o

the unstressed and prestressed equilibrium states are then related [ @(¢, 0) = 0

by the equation o 9u
Ntot(tv L) = _kL[E(tv L) - EO] - CLE (tv L)
u(tv ‘T) = E(tv ‘T) - EO(‘T) (10) 82_
. — My (t L) — 00
Note that for a compressive prestress %y, and hencéio(x) at?
will be negative. (0, z) = To(x)
We consider first a dynamic model in terms of the displace- 9a (14)

ment at(t, «). Under the assumptions of linear elasticity, small 9t (0, z) = 0.
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It is noted that the initial conditions incorporate the equilibrium TABLE |
; TIME-DEPENDENT MODEL QUANTIFYING
dlsplacemenﬁo(x) due to the. preStreSS)' THE MAGNETIZATOIN M(t, x), THE OUTPUT MAGNETOSTRICTIONA(t, ),
To define a weak or variational form of the model, the AND ROD DISPLACEMENTS (%, )

statew is considered in the state spage = L?(0, L), and
the space of test functions is taken to be= H; (0, L) =

{¢ € H(0, L)| $(0) = 0}. Multiplication by test functions 2z =nlihplz)
followed by integration then yields the weak form Hopslt, o) = H(t,2) + 8M(t,2)
o Hepp(t, ) a
L 5 Magnetization Manltiz) = My {coth ( a ) - <H2/f(t’z))]
U Modet O, a1 Mant,2) — Mirc(t,)
/0 2 ¢ dx e B = ) S T A 2) — My (8, 2)) Beire

ou 2 b5) Mreo(t,) = c[Man(t,) — Mirs(t, )]

9"u ¢
— [ BAY 1Al _Eart oA 2
/0 { gz T PG ~ AN T o0A| F o dw

M, z) = Mreu(t, z) + M (£, 2)

_ au
— |:I€L [U(t, ) U/O] +cr— ot (t L) Magnetostric- 3
tion Model Mo z) = §WM (t,2)
o%u

+ML atg (ta L) d)(L) (15) L s ou 5 qu
Structural /0 pAW¢dz = 7/0 [EAa +09Am—EA)\} F
Dynamics of

. . S Terfenol rod [chu(t e, L)+MLaZ(t L)} #(L)
forall¢ € V.The consideration of the prestress as a distributed E o

input rather than a boundary condition follows from integra-
tion by parts. This formulation illustrates that if the prestress
is negated by a constant input magnetostrictios o/ E, the
system has the equilibrium solutiar{¢, ) = 0. Conversely,
the retention of the prestress as a boundary condition illustrates

The corresponding weak form of the model is

that in the absence of an applied current and resulting magne- L 82
tostriction, the system will have the soluti@ft, =) = @o(z) / oz ¢ dz
and hence retain the initial offset for all time. 9 920 9
- u ¢
For many applications, the offsat(x) due to the prestress = —/ [EAa Yy } a5 dx
oo IS not consistent with strain or displacement data measured 0 o
from the equilibrium prestressed state. For such cases, it is ad- [kLu(t L)+cp— (¢, L)
vantageous to consider the system satisfied by the perturbed dis- -~ ot
placement(¢, x). Substitution of (10) into (11) yields the stress
relation M 5E ot? (* L)} L) (18)
ol 2) Eau o) 4 e O 92u _EXt.2) 1o (16) forall ¢ € V. The solutionu(¢, =) to (17) or (18) provides

the longitudinal displacements of the rod from the perturbed
statewy(x) produced by the prestress. In the absence of an

applied inputA(¢, z), the system (18) will have the equilib-
while substitution into (12) and (13) yields the strong form &y solutionu(t, x) = 0 as compared with the offset solution

Oz Oxdt

the model u(t, ) = To(x), which satisfies (15). Hence the model (18)
and corresponding stress relation (16) are preferable when data
9?u  ON,yy are measured relative to the prestressed state. This structural
92 =~ or model is summarized along with the previously defined magne-
u(t, 0) = 0 tization and magnetostriction models in Table I. Note that in the
weak form (18), displacements and test functions are differen-
Nyop(t, L) = —kpu(t, L) — cr, Ou (t, L) tiated only once compared with the second derivatives required
a in the strong form. This reduces the smoothness requirements
Y @ t, L) on the finite-element basis when constructing an approximation
Lggz V" method.
u(0, ) =0
I (17)
ot (0, z) = IV. COMPARISON WITH THE LINEAR MODEL

The stress relation (16) generalizes the linear constitutive law
The initial displacement in this case gz, 0) = 0 sincew  (1a) to include both Kelvin—Voigt damping and hysteretic and
denotes displacements from the prestressed equilibrium stateonlinear magnetomechanical inputs. To verify this, it is noted
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that in this regimes” = 1/E ande = du/9z so that (16) can

be reformulated as

Cp .
e:sH(rf—Uo)—i—)\—fDe.

To illustrate that\ provides the active strain contributions mod-
eled bydsz H in the linear model (1a), we takg, = o9 = 0

and employ (8) to obtain

3 A
_ JH 0 As
c=3s O’—|—2 52

M2,

5561

Strain
\ !

 Linearization

Ae

Magnetization M,

Linearization about a blasmg magnetization leve, then Fig. 5. Linearization about the biasing magnetizatigip and the resulting

yields the strain expression

3 A
_ H 9 As
€= 0+2M§

To express the magnetization and resulting strain in terms

(2M Mo — M3). (19)

bias straire,, bidirectional straim\e, and total straire = ¢, + Ae.

the bidirectional strains are then given by

Ac = sfo + dssAH

of the applied magnetic field, it is noted that in the absence of

hysteresis, the magnetization satisfies the anhysteretic relati

M =M, {CO‘Gh(M) — L}
a Heff

o, (Peir Lo Hlry .
3a a®

Which is equivalent to the original linear expression (1a) when
it is used to model bidirectional strains about a preset magneti-
zation leveliM,.

We conclude this section by noting that the reader can find
further details regarding the decomposition of strains into pas-
sive components due to elastic properties of the material and
nonlinear active components due to magnetostriction in [19, p.

To linearize, the high-order terms in the Taylor expansion a#&0].

neglected to obtain

M, .
M=""(H+aM
5, H +aM)

which implies that
M
=—" _H.
3a — Mo
Hence (19) can be written as

H 3 )\s < M9

C=5 0tz \Ba- Moa

1
whereH, is the magnetic field required to produce the bias mag- (@) = hoO,

netizationiMg.

As depicted in Fig. 5, the total strainis composed of a bias
¢o due to the biasing magnetizatidif, and bidirectional strains
Ac abouteq. To specifyeg andAe, we reformulate (20) as

SHO'—|—

c =

3, M,
M2 \3a— M,a

§A5< M,

)2 Ho(H — Ho)]

whereeg = 3/2 (\,/M2) (M, /3a — M,&)?Hy and

3 M
M2 \ 3a — M.&
(Note thatAe = s7 o whenH = H,.) With the definitions
Bh. [ M, \?

ds3 = M2 <3a - Ma) Ho

AH =H — Hy,

Ae=sTg+

>2H0(H — Hy).

2
) Crm-nR) @)

V. APPROXIMATION METHOD

To approximate the solution of (18), we consider a Galerkin
discretization in space followed by a finite-difference approxi-
mation of the resulting temporal system. To this end, we con-
sider a uniform partition of the intervd, L] with pointsz; =
th,i=0,1, ..., N and step sizé = L/N, whereN denotes
the number of subintervals. The spatial basis}Y ; is com-
prised of linear splines, or “hat functions,” of the form
Tl f <z
T L x < Tyl
otherwise

(x — 1),
(Tig1 — ),

i=1...,N—1

_ 1 f@—-2nv1), snv 1 f2< 0N
ovle) =73 {0, otherwise
(see [27] for details). A general basis functignand final basis
function ¢ are plotted in Fig. 6.
The solutionu(¢, x) to (18) is then approximated by the ex-
pansion

W 1) = 3 s (0)6()

in the subspacé/V = span{¢;},. It should be noted that
through the construction of the basis functions, the approximate
solution satisfies,™¥ (¢, 0) = 0 and allows arbitrary displace-
ments att = L.

A semidiscrete matrix system is obtained by considering the
approximate solution™ (¢, ) in (18) with the basis functions
employed as test functions (this is equivalent to projecting the
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The system (22) must be discretized in time to permit numer-
01 (X) ical or experimental implementation. The choice of approxima-
tion method is dictated by accuracy and stability requirements,
storage capabilities, sample rates, etc. A trapezoidal method can
be advantageous for experimental implementation since it is
moderately accurate, is A-stable, and requires minimal storage

when implemented as a single step method. For temporal step
(a) sizesAt, a standard trapezoidal discretization yields the itera-
tion
NG i1 = Wi + 5 FIF () + F(tj40)]
Yo =1(0) (23)
wheret,; = jAt andy; approximateg/(t,). The matrices
AN-1 XN -1
W= [I_HW} [HHW}
) 2 2
At 17t
Fig. 6. Linear basis functions (&) (=) and (b)¢x (). F=Aat)\I- 9 w

system (18) onto the finite dimensional subspa£¥). This _need only _be created once Wh_en numerically or experimentally
yields the second-order time-dependent vector system implementing the method. This yields approximate solutions
havingO(h?, (At)?) accuracy. For applications in which data

Qu(t) + Cu(t) + Ka(t) = f(2) (21) at future timest;4; are unavailable, the algorithm (23) can be
replaced by the modified trapezoidal iteration

whered(t) = [ui(¥), ..., un(¢)]. The mass, stiffness, and
damping matrices have the components Tir1 =Wij; + J—“ﬁ(tj)
4 L 2
/ pAdid; i #nandj #n oo =70
[Qli; = o, While this decreases the temporal accuracy slightly, for large
/ pA¢i¢;dz + My i=nandj=n sample rates with correspondingly small step sizésthe ac-
»Jo curacy is still commensurate with that of the data.
f /L EA(/J’i(/)Q d i £nandj £n VI. EXPERIMENTAL VALIDATION
(K)i; = 0, As summarized in Table I, the magnetization model (6), mag-
/ EAHd, de+k;, i=nandj=n netostriction model (8), and PDE (18) can be combined to yield
\ Jo time-dependent displacement values of the Terfenol rod for all
points along its length in response to an input cur&mnj to
L y . . the solenoid. This model incorporates magnetic hysteresis, non-
/0 ep Agy ) da i#Fnandj #n linear strain properties, and the coupling between the external
[C)is = L strains generated by the material and the dynamics of the rod. In
/0 cpAdiddr+cp i=nandj=n its present form, however, the model is not fully coupled since it

does not yet incorporate the dynamic stress effects on the effec-

while the force vector is defined by tive field and ensuing magnetization. This topic is under current

N L , investigation.
[f(B)) = / EAXt, x)¢i(x) dx For the results that follow, experimental data were collected
) ) 0 o . o from a broad-band transducer developed at lowa State Univer-
(here genc%tes a spatial derivative). With the definitiofis) = gy (the general configuration of the transducer can be noted
[i(t), ©(t)]" and in Fig. 1). A solid Terfenol-D (Th3Dyo.7Feyo) rod having a
0 I _ 0 length of 115 mm (4.53 in) and diameter of 12.7 mm (0.5 in)
W= - g PO = “1F i i
—Q 'K -Q7lC —Q L f(t) was employed in the transducer. Mechanical prestresses to the

i rod were generated by a variable prestress bolt at one end of
the second-order system (21) can be posed as the first-Ofler ansducer and Belleville washers fitted at the opposite end
system of the rod. The results reported here were obtained with a pre-

gty = Wit) + ﬁ(t) stress of 1.0 ksidy = —1.0 ksi). Surrounding the rod were two

7(0) = iy 22) coils consi_sting of an inner _single_—layer 150-turn pickup C(?i|

- - and a multilayer 900-turn drive coil. A current control ampli-
where the 2V x 1 vectorij, denotes the projection of the initial fier (Techron 7780) provided the input to the drive coil to pro-
conditions into the approximating space. duce an applied ac magnetic field and dc bias as necessary. The
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Filter Value

e
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6
Fig. 7. Empirical functions(z) used to qualify transducer effects. H (A/m) x 10
Fig. 8. ExperimentalM/—H data (——-) and model dynamics (——) at
reference signal to this amplifier was provided by a Tektronik= L with the magnetization4 computed using filtered magnetic field data
. . H(t, x) = nlI(t)p(x).
spectrum analyzer, and the applied magnetic fiéldenerated

by the drive coil had a frequency of 0.7 Hz and magnitude up to
70 KA/m. spring constants;,, c;,, and the end mask;,. The values used

A cylindrical permanent magnet surrounding the coils Ior(;1_ere are summarized in Table Il. The magnetization parameters

vided the capability for generating additional dc bias if nece$/€reé estimated through a least squares fit to data, as detailed

sary. This permanent magnet was constructed of Alnico V afftil22]- The values op and £ are published specifications for

was slit to reduce eddy current losses. Note that for the exp&f/fenol-D, while the damping parameters and c;, were

iments reported here, biases generated in this manner were@i2S€n Within a range typical for the material. The spring stiff-

necessary and the permanent magnet was demagnetized td'§6S coefficient;, was measured through a compression test,
tain unbiased data. while the end masd/; was measured directly. We note that

To determine a functionp(z) [see (2)] that Characterizeswhile the specification of parameters in this manner provided

transducer anomalies such as end effects, an axial Hall effddfduate model fits, they are not optimal. To obtain optimal
probe connected to an F.W. Bell Model 9500 gaussmeter 'ameters and corresponding model fits, it is necessary to
used to map the flux density and corresponding field a|or§-g<,:t|mate all parameters through a least squares fit to data.
the length of the rod. The resulting functigriz) is plotted in
Fig. 7 with the predominance of end effects readily noted.
The measured output from the transducer during operationThe domain wall model discussed in Section II-A and sum-
included the current and voltage in the drive coil, the voltage ifParized in Table | provides a characterization of the magnetiza-
duced in the pickup coil, and the rod displacement. The currdi@h M generated by an applied magnetic fi¢ld The perfor-
I(t) was used to compute the fiel(¢, ) = nl(t)p(z) ap- Mance of the model under quasi-static (0.7 Hz) operating condi-
p“ed to the rod. From the induced Vo|tage in the p|Ckup Coi|, tH@nS iS i”ustrated in F|g 8. It iS Observed that Wh|le the model
Faraday-Lenz law was used to compute the temporal derivatifecurately characterizes the measured magnetization over most
of the magnetic inductio3. Integration then yielded the in- Of the range, certain aspects of the transducer behavior are not
duction and magnetizatioh/ = (1/10) B — H. Both the field completely quantified at low field levels. The constricted be-
and magnetization were numerically filtered to remove the sm&gvior in the magnetization at low field levels has been observed
biases due to instrumentation. A Lucas LVM-110 linear varRy other researchers [23], [28] and is hypothesized to be due to
ab|e differentia| transformer’ based upon Changing re'uctanégp) domain I’OtationS. Wh"e quantiﬁcation Of thIS ef‘feCt iS ulti'
was used to measure the displacement of the rod tip. Corf@ately desired, the accuracy and flexibility of the current mag-
sponding strains at this point were then computed by dividing Wtizat_ion mo.del are sufficient for control applications in this
the rod’s length. The experimental data collected in this manrfgi€rating regime.
are plotted in Figs. 8-10. Throughout the experiments, temper- .
ature was monitored using two thermocouples attached to fhe Strain Model
Terfenol-D sample and maintained withirf& of the ambient  The model summarized in Table | characterizes two aspects of
temperature (23C). the strain in the Terfenol rod. The magnetostrictiogquantifies
To employ the magnetization and structural model surthe external or active component of the strain while du/dz
marized in Table |, appropriate parameters must be gwovides the total strain in the rod. The relationship between
certained. These include the magnetization parameténs two can be noted in the stress expressions (11) or (16). The
&, ¢, k, a, As, Ms, the structural parameters, E, c¢p, the total straindu/Ox incorporates both the elastic properties of the

A. Magnetization Model
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Fig. 9. Experimentall/-strain data (— ——) and model solution (——) with the magnetizafibrcomputed using filtered magnetic field dat&(t, ) =
nl(t)p(x). (@) Total straire(t, L) and (b) magnetostrictiok(t, L).
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Fig. 10. ExperimentaH -strain data (— ——) and model solution (——) computed using filtered magnetic fieldiiatar) = nI(t)e(x). (a) Total strain
e(t, L) and (b) magnetostrictioA(¢, L).

TABLE 1l
PHYSICAL PARAMETERS AND DIMENSIONS EMPLOYED IN THE MAGNETIZATION
AND STRUCTURAL MODELS

Magnetization Parameters

Structural Parameters

Spring and End Mass

Dimension

M, =7.65x 10° A/m
As = 1005 x 1078
a=7012 A/m

k'= 4000 A/m

&= —0.01

c=0.18

p = 9250 kg/m®
E =3x 10" N/m®

¢p = 3 x 108 Ns/m*

Mg =05kg
kp = 2% 10° N/m
¢r =1 x10% Ns/m
00 = 1.0 ksi

L =115 mm
d =12.7 mm

The modeled strair(t, L) = (u(t, L))/L) at the rod tip

is plotted with experimental data in Figs. 9(a) and 10(a). For
comparison, the magnetostriction given by (8) is plotted with
experimental data in Figs. 9(b) and 10(b). Recall that while the
magnetic field, magnetization, and strains are time dependent,
data were collected at a sufficiently low frequency (0.7 Hz) to
avoid ac losses and harmonic effects. It is observed in Fig. 9 that
some discrepancy occurs in both the strain and magnetostric-
tion due to limitations in the quadratic model (8). The total
strain provided by the dynamic model does, however, include
the hysteresis observed in the experimental data. This is a sig-
nificant advantage over the modeled magnetostriction, which is

material and the magnetomechanical effects due to domain &gle-valued. This leads to the highly accurate model fit ob-
tation; hence it is the quantity that models the strains generatggved in Fig. 10, where the relation between the input fiéld
by the transducer during experiments.

and the output straia(¢, L) at the rod tip is plotted.
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mance transducers. The model extends the classical relation
(1a), which includes elastic effects and a linear magnetome-
chanical component, to the regime in which magnetoelastic
inputs are nonlinear and exhibit significant hysteresis. This is
necessary to accommodate the dynamics observed in current
transducers at high drive levels and to provide a model for
design and control applications in such regimes.

The model was constructed in three steps. In the first, the
mean field theory of Jiles and Atherton was used to quantify the
relation between the current input to the solenoid and the mag-
netization produced in the rod. This component of the model
incorporates both inherent magnetic hysteresis and saturation
effects at high field levels. In the second step, the magnetostric-
tion due to the rotation of moments was quantified through con-
sideration of a quadratic model posed in terms of the magnetiza-
tion. When combined with the mean field magnetization model,
this provided a means for extending the linear magnetoelastic
relation (1a) to include the nonlinear dynamics and hysteresis
observed at high field levels. Finally, force balancing provided
a PDE model that quantified material displacements due to the
magnetostriction. For a given input current, the solution to the
PDE yields the displacements and strains produced by the rod.

While the PDE has the form of a wave equation, the nature of
the boundary conditions modeling the prestress mechanism and
end mass precluded analytic solution. Hence we approximated
the solution through a finite-element discretization in the spatial
variable followed by a finite difference discretization in time.
This yielded a vector system that could be iterated in time with
the measured electric current or magnetic field data employed
as input.

The examples illustrated that the resulting model yields the
hysteresis observed in experimental strain data when plotted as a
function of the magnetization. This is a significantimprovement
over the magnetostriction, which is modeled as a single-valued
function of the magnetization. Finally, the accuracy of the model
is reflected in the full relation between the input fielfl and

Fig.11. Experimental strain data (— ——) and model solution (—) compute4rainse produced by the transducer.
using unfiltered magnetic field dat&(¢t) = nI(t) and a scaled saturation

magnetostriction\ ;. (a) M-\ relation and (b)H -\ relation.

Magnetostriction

Magnetostriction
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