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ABSTRACT

This thesis presents recent advances in the design and characterization of hybrid

transducers incorporating both piezoelectric and magnetostrictive elements. The

complementary properties of the two smart materials can be actively employed in

the transducer to exhibit unique attributes and advantages over conventional smart

structures. In order to analyze and validate the properties inherent to these hybrid

concepts, a transducer is designed and constructed through a mechanical series ar-

rangement of a PMN-PT stack and a Terfenol-D rod. This configuration provides a

double resonant frequency response that can be tuned for a variety of applications.

Of particular interest in this study is the use of the device as a Tonpilz sonar trans-

ducer achieving maximum bandwidth on the 1-6 kHz range. The primary focus of

this investigation is the development of linear and nonlinear system models that com-

pletely describe the electrical and mechanical regimes of the transducer as well as

the interaction among regimes. The linear model accurately simulates the transducer

output at low drive levels, while the nonlinear model is applicable for all operating

regimes. In addition, by addressing the constitutive nonlinearities and hysteresis in

the piezoelectric and magnetostrictive processes, the nonlinear model facilitates de-

sign optimization and model-based control with a degree of efficacy which the linear

model does not. Experimental data is collected from the test transducer and used to

validate and improve the overall system models at the material level.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Research

Conventional smart structures employ a single active material for actuation, sens-

ing, or control. Recent advances have shown that hybrid systems containing multiple

smart materials can exhibit unique attributes and advantages over those containing a

single material. Each material element can have different electrical, mechanical, and

thermal regimes, as well as unique coupling interactions among regimes. The comple-

mentary properties of certain classes of active materials can be employed effectively

to design hybrid systems which augment the performance characteristics of or add

functionality to any one individual material. Previous research on hybrid designs has

targeted two specific metrics for improvement, energy efficiency [17] and frequency

bandwidth [3]. Energy efficiency gains stem from the fact that more mechanical out-

put can be achieved with less electrical input if a system’s available energy is shared

between different active elements with complementary electrical properties. In prac-

tice, these gains have not been fully realized in hybrid designs. The work on frequency

bandwidth has led to novel designs for broadband transducers that can be tuned for

a variety of applications.
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One particular device that benefits greatly from enhancing the bandwidth is that

of a Tonpilz sonar transducer such as those installed on naval ships. This transducer

typically utilizes a single piezoelectric element, but recent U.S. Navy research has been

aimed at enhancing the bandwidth of high power Tonpilz transducers through hybrid

piezoelectric / magnetostrictive architectures [3]. It has been demonstrated that such

architectures can produce increased velocity output in the low frequency range when

compared with conventional devices. Because of the constitutive nonlinearities of the

active materials and the coupling among the electric, magnetic, elastic, and ther-

mal regimes, the efficient design and control of these hybrid transducers necessitates

detailed material and system models.

The focus of this investigation is the development of linear and nonlinear models

for broadband transducers employing the complementary electrical and mechanical

properties of Terfenol-D (Tb0.73 Dy0.27 Fe1.95) and lead magnesium niobate - lead

titanate (PMN0.65-PT0.35). These models allow for the transducer bandwidth, and

the variables that affect it, to be characterized to a further degree than previously

attained by the Navy. The linear model is developed first to describe the transducer

output at particular operating conditions. The nonlinear model is then needed for the

more general case where all of the transducer properties are variable. By addressing

hysteresis effects and the multi-regime coupling, these nonlinear models facilitate

design optimization and model-based control with a degree of efficacy which linear

models do not. In addition, such models could provide new design criteria for the

implementation of the high energy efficiencies thought to be achievable with hybrid

structures. In order to analyze and validate the properties of the model, a test
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transducer is designed and constructed to provide the necessary data to optimize the

overall system model at the material level.

1.2 Smart Materials

A smart material by definition is one that exhibits a characterizable change in

some physical property under the influence of external stimuli. These variable ma-

terial properties cover the microscopic as well as macroscopic mechanical, electrical,

and thermal regimes. The different stimuli that can induce these changes include

combinations of electric and magnetic field, stress, and heat. A wide range of smart

materials are found in engineering practice today, and so a brief overview of the more

common ones follows.

Piezoelectrics are ceramic or polymer materials that convert electrical to mechan-

ical energy, and vice versa. These materials will strain under the application of an

electric field (converse effect), and produce electric charge under the application of

mechanical stress (direct effect) [4, 16, 20]. These two effects make piezoelectrics

suitable as either actuators or sensors. For actuation, if the material is poled in

a certain direction, applying field in this same direction will induce a quasi-linear

length increase on the order of 0.1%. In general piezoceramics can operate over a

large frequency range and are used in a wide variety of applications. Commonly

these materials are produced as cylindrical stacks that extend axially for use in force

or position applications. Thin sheets can be attached to or embedded in beams for

bending actuation, vibration damping, and shape optimization. Piezoelectric ma-

terials have inherent hysteresis losses that typically must be accounted for through

advanced modeling.
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Electrostrictives are another class of electric materials that are similar in function

to piezoelectrics but produce more strain and have a nonlinear strain to field depen-

dence [4, 14, 27]. These materials also exhibit less hysteresis, implying a more efficient

actuation. One concern with electrostrictives, however, is that their behavior is very

dependent on operating temperature and applied stress. A popular electrostrictive,

lead magnesium niobate (PMN), is often doped with a piezoceramic such as lead

titanate (PT) to create a composite ceramic such as that used in this project. Under

certain compositions and operating conditions this material can exhibit qualities of

either class of smart material.

Magnetostrictives follow a similar behavior to electrostrictives but obviously re-

spond to magnetic fields rather than electric. Both the converse and direct effects are

present, i.e. the material will strain under a magnetic field and produce magnetic flux

under stress [7, 18, 22]. The effect of the applied field on strain is highly nonlinear

and hysteretic but they can generate more strain (0.2%) and force than piezoelectrics.

Typically driven by a magnetic coil, these materials can exhibit a response over a large

frequency range, but can have issues with heating in the drive coil. Terfenol-D is the

most popular of this class of material, and as such is used in this research.

Electrorheological and magnetorheological fluids contain micro particles suspended

in an inert carrier fluid that algin with an applied electric or magnetic field, respec-

tively. These particles join to form semi-rigid chains that can significantly alter the

fluid properties like viscosity, yield stress, and plasticity. These effects are complex

but reversible, making these materials useful in a range of devices such as clutches,

dampers, valves, and suspensions.
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Shape memory alloys are metals that can display large recovery strains (up to

10%) and forces through a martensitic-austenitic phase change. The transformation

from one phase to the other is typically brought about via a combination of heat

and stress, but some shape memory materials are activated magnetically. Shape

memory materials suffer from large hysteresis effects and slow response times, but

are quite popular because of the memory effect for which they are named. If an

alloy is deformed at relatively low temperature while martensitic, the material can

recover its original shape when raised above a certain transformation temperature.

This process can be repeated through further temperature changes. This behavior is

quite interesting and has led to numerous new technologies being developed.

All of these materials, and others not mentioned, show promise in future tech-

nological applications. Their high power capabilities, “clean” transduction, compact

and efficient design, and ability to actuate and sense through a unified manner are

heavily desired in all engineering systems. The fact that each smart material has an

intrinsic multi-regime coupling creates possibilities for new designs to maximize the

potential of these materials.

1.3 Fundamental Concepts of Electricity and Magnetism

In order to properly characterize smart materials, the underlying physics of the

system must be understood. This section, borrowed heavily from Halliday [13], will

review some general ideas from electromagnetism that are useful in modeling both

Terfenol-D and PMN-PT.

5



1.3.1 The Electric Charge and Field

Electric charge is a fundamental property of all materials. Charge can be either

positive or negative, with a balance or equality of the two being called electrically

neutral. The atomic particles that are associated with charge are the positive proton

and negative electron, which form orbital pairs. Protons are generally fixed but the

electrons can often move, inducing a positive charge on the atom it left and a negative

charge wherever it ends up. The general rule for electric charge is that alike charges

repel each other while opposites attract. The strength of this force is quantified by

Coulomb’s Law

F =
1

4πε0

|q1||q2|
r2

, (1.1)

where ε0 is the free space permittivity, q1 and q2 are charge magnitudes, and r is the

distance between charges. The presence of this force is due to the existence of an

electric field in the space surrounding each charge.

The electric field is a vector field quantity which exists around all electric charges

consisting of both magnitude and direction at each point in space. When another

charge is placed in this field, a force acts on it according to equation (1.1). It is often

helpful to visualize electric field lines emanating from a charged particle (Figure 1.1).

These lines extend away from positive charge and toward negative charge, and clearly

show the repulsive and attractive nature of the like and opposite particles.

The concepts of charge and field are not constrained to particles but are applicable

to any geometry. Of particular interest is a charged plate where field lines extend

perpendicularly outward from the face. Near the boundaries of the plate the field will

fringe, but for points near the surface and in the center the field appears uniform.
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(a) (b)

Figure 1.1: Electric field lines for (a) two like charges and (b) two opposite charges.

If two oppositely charged plates are brought close to each other, the space between

them will be filled almost perfectly with an electric field orthogonal to both surfaces,

as shown in Figure 1.2. This geometry is important because the PMN-PT stack used

in the test transducer is activated by two charged electrodes like those shown, with

the material itself lying in the space between the two plates.

1.3.2 Electric Flux and Gauss’ Law

Suppose that an arbitrarily shaped object is placed in an electric field. Depending

upon the location of this object relative to the field, lines will be passing through

the surface of the object as shown in Figure 1.3. The rate of this “flow” through the

surface, known as the flux, is determined from

Φ =
∑

~E · 4 ~A (1.2)
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Figure 1.2: Electric field for oppositely charged plates [13].

Figure 1.3: Electric field through a Gaussian surface [13].
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where Φ is the net flux, ~E is the electric field vector, and 4 ~A is the normal vector

to each finite piece of surface area. Gauss’ law relates the net flux of an electric

field through a closed surface to the net charge qenc that is enclosed by that surface.

Assuming that the flux approaches a differential limit and becomes an integral, then

(1.2) becomes

κε0

∮
~E · d ~A = qenc, (1.3)

where κ is known as the dielectric constant and is a scaling factor for the permittivity

based on the type of surrounding medium.

Gauss’ law states that any closed surface surrounding a net positive charge will

have some net flux flowing outward, while one surrounding a net negative charge will

have an inward flux. An object enclosing no charge or zero net charge will have zero

net flux, which means as many field lines enter the object as leave it.

1.3.3 Polarization

The electric dipole consisting of two oppositely charged particles has a correspond-

ing moment vector ~p, which points in the direction from negative to positive. When

this dipole is placed in an electric field, a torque will be generated acting to align the

moment with the field vector ~E. An example of this effect is shown in Figure 1.4.

The magnitude and direction of the torque vector can be found from

~τ = ~p× ~E,

with the right hand rule applying as usual. When the dipole is completely aligned

with the applied field it has no torque and is in equilibrium.

Ideal dipoles made from discrete particles are convenient but unrealistic. In real

materials dipoles exist at the atomic level due to the inherent charges and positions of

9



Figure 1.4: Electric dipole moment [13].

the protons and electrons. Normally the centers of the positive nucleus and negative

electron shell spatially coincide and thus no dipole moment is set up. In the presence

of an external electric field, the electrons can alter their relative position and spin to

separate the centers of the positive and negative charges, as in Figure 1.5. This shift

induces a dipole moment that points in the direction of the field, and the atom is said

to be polarized. If the applied field is removed the induced moment and corresponding

polarization disappear as well.

The polarization ~P of a material is defined as the volume density of the electric

dipole moments,

~P =
~p

V
, (1.4)

with V representing the volume of material [4]. In any realistic system there will be

a limit to how many dipole moments can be induced by an applied field, and this
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Figure 1.5: Atomic electric dipole induced by applied field [13].

behavior is characterized by the saturation polarization Ps. The polarization will

increase in proportion with higher field levels until all available parts are polarized,

at which point it will reach the saturation value Ps. This process is illustrated in

Figure 1.6, which also depicts the inherent hysteresis.

Figure 1.6: Polarization versus electric field for a typical piezoceramic.
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1.3.4 The Magnetic Field

For all of the previously discussed electric phenomena, there are analogous mag-

netic phenomena that must be reviewed. The fundamental connection between elec-

tricity and magnetism is that an electric charge in motion, known as a current, gen-

erates a magnetic field in a surrounding medium. Like the electric field, the magnetic

field is a vector quantity with a defined magnitude and direction at each point in

space. The direction of the field is defined by the right hand rule, with the thumb

pointing in the direction of the current and the curl of the fingers showing the mag-

netic field path. Consequently, a field loop is formed around a straight conductor as

shown in Figure 1.7(a). However, more useful fields are generated when the current

travels in a circular loop. Stacking these loops into a long coil creates a solenoid that

is very commonly used in magnetically activated systems. In addition to currents,

permanent bar magnets create magnetic fields due to their inherent magnetization.

Figure 1.7 shows the magnetic fields generated by various wire shapes and a perma-

nent magnet.

The intensity of the magnetic field due to an electric current can be determined

from the Biot-Savart law,

d ~H =
1

4πr2
id~l × ~u, (1.5)

where ~H is the magnetic field, i is the current, d~l is a length of conductor, and r is

the distance to the point in space where the field is being calculated in the direction

of unit vector ~u. This equation can be used to calculate the fields produced by coils

operating in real transducers as part of a dynamic magnetic circuit [8]. Figure 1.8

shows the application of the Biot-Savart law to a single current carrying coil.
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Figure 1.7: Magnetic field lines from: (a) straight line current, (b) single wire loop,
(c) solenoid, and (d) permanent bar magnet [8, 19].
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Figure 1.8: Biot-Savart law applied to a single circular coil [8].

The magnetic circuit in this investigation is generated from a solenoid like that

depicted in Figure 1.7(c). While the Biot-Savart law can be used to calculate the

magnetic field intensity along the axis of a solenoid, off-axis calculations generally

lead to equations without closed form solutions. For this reason, thin solenoid ap-

proximations are often employed. Assuming a thin solenoid of length L and N turns

of wire, the magnetic field is found to be

H =
Ni

L
= ni. (1.6)

The field is considered uniform along the length of the solenoid which is an approxi-

mation since physical solenoids exhibit leakage and end effect losses. A thick solenoid

refers to one with more than one layer of coils, which is useful for generating larger

magnetic fields. Magnetic field models for the thick solenoid are usually constructed
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from Maxwell’s equations in combination with finite element solution approximations.

A simpler treatment of thick solenoid has been given by Jiles [18]; for a solenoid of

length L, inner radius a1, and outer radius a2, two parameters are defined that char-

acterize the geometry of the system, α = a2/a1 and β = L/2a1. The field along the

axis of the coil is given by

~H =
Ni

L

[
F (α, β)

α− 1

]
,

where F (α, β) has the form

F (α, β) = β

[
arcsinh

(
α

β

)
− arcsinh

(
1

β

)]
.

The above expression is the most general case for a solenoid, and can be simplified

to other familiar cases, e.g. equation (1.6), when certain limits are applied.

1.3.5 Magnetic Induction and Flux

While a magnetic field ~H is generated whenever an electric charge is in motion,

the magnetic induction ~B quantifies the response of a medium to the applied field [8].

All media respond to a magnetic field with some induction, the strength of which is

related by the permeability µ. The constitutive law that relates magnetic field and

magnetic induction is

~B = µ ~H. (1.7)

It is noted that the permeability is actually a variable property dependent on several

factors such as the intensity of the field, applied stress, and temperature. For cal-

culation purposes involving experimental data the differential permeability is often

used,

µ =
dB

dH
.
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It is useful in some cases to express the permeability as a relative strength com-

pared with the nominal value of µ0 = 4π×10−7 H/m for free space. Thus the relative

permeability is defined as

µr =
µ

µ0

.

The physical implication of µr is how much magnetic flux will be induced in a material

compared with free space or air (µr,air ≈ 1). For example, iron has a maximum

relative permeability of 5200 and thus a solenoid wrapped around it would generate

5200 times more magnetic flux than the same solenoid operating in air.

The connection between magnetic induction and magnetic flux φ is that the in-

duction is the flux density in the material. Physically the flux lines always close, as

in Figure 1.7, but in some areas they will be more densely packed than in others.

Therefore, another expression for B can be written as

B =
φ

A
, (1.8)

where A is the cross-sectional area through which the flux lines traverse.

One relation between magnetism and electricity lies in that an electromotive force

is induced in a coil when the magnetic flux through it changes. The Faraday-Lenz

law states that the voltage induced in a coil is proportional to the rate of change of

flux through the coil and that the direction of the induced voltage opposes the flux

change producing it. This is written as

V = −N dφ

dt
, (1.9)

where N is the number of turns in the coil. From equations (1.8)-(1.9), the magnetic

induction can be expressed as

B = − 1

NA

∫
V dt, (1.10)
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which can be used for measuring the induction in a medium. Typical transducer

design incorporates a thin pickup coil wrapped around a magnetic core from which

the voltage induced by changing magnetic flux can be read. This voltage signal can

then be integrated to obtain B.

1.3.6 Magnetization

Magnetization in a material is due to the development of magnetic moments on

the atoms, with the net magnetic moment ~m being a combination of both orbital

and spin magnetic moments. These moments are analogous to those induced by

electric dipoles, as they will align with an externally applied induction. The equation

quantifying the torque ~τ on a moment induced by a magnetic field with induction B

is given by

~τ = ~m× ~B.

The magnetization ~M of a magnetic material is defined as the volume density of

magnetic moments,

~M =
~m

V
, (1.11)

where V is the volume of material [8]. In the absence of an external magnetic field,

such as in a permanent bar magnet with an internal magnetization, induction will

still be generated in the material due solely to ~M . Assuming a medium of air, this is

found to be

~B = µ0
~M, (1.12)

which is analogous to (1.7). The total magnetic induction then consists of two con-

tributions, one from the applied field and one from the magnetization. The vector
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Figure 1.9: Magnetization versus magnetic field for a typical ferromagnetic material.

sum of these quantities yields the expression

~B = µ0

(
~H + ~M

)
.

As the magnetization increases in a material, the magnetic moments will further

align with the applied field until all the magnetic moments are aligned parallel. This

state is termed the saturation magnetization Ms and is achieved when the entire

material has converted to a single magnetic domain. An example of the relation

between the magnetization and magnetic field, along with the effects of hysteresis

and saturation, is shown in Figure 1.9.

1.3.7 Maxwell’s Equations

A set of equations developed by James Maxwell provide a complete unified de-

scription of all electromagnetic phenomena. The description is based on the work of

18



Gauss, Ampère, Faraday, and Lenz. Maxwell’s own contribution is the concept of

“displacement currents,” which generalizes Ampère’s law to include high frequency

wave propagation.

The formulation of Maxwell’s equations concisely relate the fundamental electro-

magnetic fields: the electric field ~E, electric flux density ~D, magnetic field ~H, and

magnetic induction ~B. The four differential equations are

∇ · ~D = q (Gauss’ law for electric flux)

∇ · ~B = 0 (Gauss’ law for magnetic flux)

∇× ~E = −∂ ~B
∂t

(Faraday-Lenz law of induction)

∇× ~H = ~J + ∂ ~D
∂t

(Maxwell’s form of Ampère’s law)

where ~J is the surface current density that generates the magnetic field, and ∇ is the

vector derivative operator.

The first equation is a different expression for Gauss’ law, equation (1.3), but is

mathematically and physically equivalent. The second equation is Gauss’ law applied

to magnetic flux, which states that lines of magnetic flux always close and thus that

flux is conserved. This is readily verified by looking at the lines in Figure 1.7. This is

particularly important for magnetic circuits because it implies that applying a field to

one component in the system will magnetize all other components as the flux moves

through.

Maxwell’s third equation is a reinterpretation of the Faraday-Lenz law from (1.9).

It states that the curl of the electric field is determined by the rate of change of the

magnetic induction and that it points in the opposite direction. The last equation

contains the “displacement current” term ∂ ~D
∂t

which is negligibly small at low to

moderate frequencies. In this case, the equation simplifies to Ampère’s circuital law
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which in integral form is expressed as

∮
∂Ω

~Hd~l = Ni, (1.13)

where there are N conductors, each carrying current i, within the boundary ∂Ω. This

law is equivalent to the Biot-Savart relation (1.5), and this is easily seen in the case

of a long thin solenoid where equation (1.13) reduces to H = Ni/L, identical to the

form derived in (1.6).

1.4 Fundamental Concepts of Electric Circuits

The previous section detailed concepts from electric and magnetic fields but ig-

nored the overall scheme in which they are generated. For this an overview is pre-

sented (based on Rizzoni [29]) of electric circuits and how each component fits into

the overall smart material system.

1.4.1 Resistance, Capacitance, and Inductance

An electric circuit is a closed path consisting of an energy source (typically voltage)

connected to a combination of loads, the three types of which are the resistor, capac-

itor, and inductor. Each is governed by a distinct expression quantifying the relation

between voltage across and current through that element. The resistor relationship

is defined by Ohm’s law,

V = iR, (1.14)

whereR is the resistance, V is the voltage potential across the load, and i is the current

flowing through it. Resistance is present in all practical circuit components, including

the wire path and any practical sources, and represents the energy dissipation in the

circuit.
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The ideal capacitor is a device that stores energy in the form of an electric charge

potential, with the value of the capacitance C being the proportionality between

voltage and charge, q = CV . The fact that the current is the rate of change of charge

converts this into the more useful circuit form

i(t) = C
dV

dt
. (1.15)

The capacitance value itself depends only upon the geometry of the device, with the

form of primary interest being two parallel plates like those of Figure 1.2. Using

Gauss’ law the charge on either plate can be written as q = κε0EA with area A,

and by definition the voltage and electric field are related by V = Ed where d is

the distance between the plates. Combining these expressions with the definition of

capacitance yields

C =
κε0A

d
, (1.16)

where κ is once again the dielectric constant of the material located between the two

plates.

The ideal inductor is a wound wire device that can store energy in a magnetic

field, with the value of inductance L being the measure of flux linkage produced per

unit current. This takes the form L = Nφ/i, where N is the number of turns, and φ

and i are magnetic flux and current as previously defined. Combining this definition

of inductance with the Faraday-Lenz law (1.9) yields the useful circuit expression

V (t) = L
di

dt
. (1.17)

The duality between capacitance and inductance is recognizable by comparing equa-

tions (1.15) and (1.17).
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Like the capacitance, the inductance value is dependent only on the geometry of

the component. The most common form for an inductor is a solenoid wrapped around

a metal core, for which the inductance can be derived using earlier concepts. To this

end, equation (1.8) can be used for the flux φ and N is simply the turns ratio n times

the length Le. The magnitude B is defined by (1.7), with H of a solenoid taken from

(1.6). Substituting these expressions into the definition of inductance yields L of a

solenoid,

L = µn2ALe. (1.18)

1.4.2 Impedance

When a combination of resistors, capacitors, and inductors are in a circuit, all

of the voltages and currents of interest can be found by implementing the relations

(1.14), (1.15), and (1.17). An alternate approach with widespread applicability to

this research is to utilize the complex impedance. Rewriting Ohm’s law in the form

V = iZ, (1.19)

Z is now a generalized impedance and all three variables can be complex. This

defines Z of any electric circuit component to be the ratio of its voltage and current.

Looking first at the resistor, the identical form of equations (1.14) and (1.19) allows

the impedance of the ideal resistor to be easily written as

Z = R. (1.20)

For the two energy storage elements the differential relations in (1.15) and (1.17)

need to be converted into a more useful form. Applying the Laplace transform to the
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capacitance equation allows for conversion into the frequency domain,

£

{
i(t) = C

dV

dt

}
⇒ I(s) = CsV (s),

where I(s) is the transform of i(t), V (s) is the transform of V (t), and s is the Laplace

derivative operator jω. With this expression the impedance of a capacitor is by

definition

Z =
1

Cs
. (1.21)

Repeating the above procedure for an inductor yields

£

{
V (t) = L

di

dt

}
⇒ V (s) = LsI(s),

from which the impedance is written as

Z = Ls. (1.22)

Because each device’s impedance has a different frequency proportionality, most elec-

trical devices can be characterized as either resistive, capacitive, or inductive based

on its measured impedance.

The usefulness of this impedance notation comes from the fact that various loads

of all types can be easily combined using two basic rules. Impedances in series, which

share a common current, sum normally to a single equivalent,

Zeq =
N∑

n=1

Zn.

The other possible configuration is when the impedances are arranged in parallel and

subjected to the same voltage. These combine using the relation

1

Zeq

=
N∑

n=1

1

Zn

.

Any circuit with various series and parallel loads can be easily analyzed by combining

impedances wherever necessary.
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1.5 Fundamental Concepts of Dynamic Systems

Dynamic systems in general contain energy storage elements from one or more

regime, and react to applied inputs with some output response [25]. Electrical, me-

chanical, thermal, and hydraulic systems can all behave in a similar manner. This

thesis is focused on the mechanical regime which will be used to describe the trans-

ducer vibrations.

1.5.1 Mechanical Systems

Mechanical systems, just like the electric circuit, can be analyzed through three

types of elements: inertias (masses of rotational moments), dampers (energy dissipa-

tors), and compliances (stiffnesses). The basic mechanical system shown in Figure

1.10(a) contains all three of these components. The one end of the spring and damper

are considered fixed, while the mass m is constrained to move only in the x direction.

The free body diagram in Figure 1.10(b) shows the components broken down into

their applied forces. To analyze this system, Newton’s second law is applied,

∑
~F = m~a, (1.23)

with ~F the individual vector force contributions, m the mass (inertia) of the object,

and ~a the acceleration. Applying (1.23) to the system in Figure 1.10, the following

equations are generated,

∑
F = Fapplied + Fspring + Fdamper = Fapplied − kx− bv = ma, (1.24)

where the force directions are determined from sign convention.

Rewriting equation (1.24) in terms of x(t) and its derivatives gives

mẍ+ bẋ+ kx = Fapplied, (1.25)
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(a) (b)

Figure 1.10: One degree of freedom mechanical system as (a) schematic and (b) free
body diagram.

which is known as the differential equation of motion for the system [21]. Using

standard mathematical techniques, this differential equation can be solved for the

displacement x(t) for any input forcing function.

It is possible to relate the equation of motion (1.25) with an electric circuit if

some parallels are drawn. The current flow in a circuit is analogous to the mechanical

velocity while the driving voltage potential is analogous with the externally applied

force. In this context, the mechanical impedance can be defined as F/v, just as the

electrical impedance is defined as V/i. Taking the Laplace transform yields

ms2X(s) + bsX(s) + kX(s) = F (s),
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from which the impedance can be written as

Zmech =
F

v
(s) =

F

sX
(s) = ms+ b+

k

s
.

The last step in completing the electrical-mechanical analogy is recognizing that Zmech

is equivalent to an electrical impedance consisting of a series combination of an in-

ductor, resistor, and capacitor. Thus it is concluded that m is analogous to L, b to

R, and k to 1
C
. The benefit of this comparison is that in multi-regime devices both

electrical and mechanical components can be described by complex impedances and

combined in the same manner.

The presence of the s2 term in the transformed equation of motion means that this

is known as a second-order system. Typically this will result from the inclusion of two

different energy storage elements, in this case the mass and the spring. Regardless of

the energy regime, any second-order system like equation (1.25) can be rewritten in

the standard form

(
1

ω2
n

s2 +
2ζ

ωn

s+ 1

)
X =

F

k
, (1.26)

where ωn =
√
k/m is the resonance frequency and ζ = b/2ωn is the dimensionless

damping factor. The resonant frequency is the frequency at which the system would

naturally oscillate if allowed to so so freely, whereas the damping coefficient controls

how these oscillations die out. The physical connotations of these terms are discussed

in the next section.

1.5.2 Frequency Response

Complete dynamic systems as well as individual components are characterizable

by an input-output relationship called a transfer function. This description relates
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the system output to the input driving function by a ratio of frequency domain

equations. For example, if in (1.26) the force F is considered the input and the

displacement X the output, then the transfer function is X
F

(s), which can easily be

solved for algebraically. A transfer function is a mathematical model of the dynamic

characteristics of a physical system, and is a property of that system independent of

the nature of the input and output [25]. If the transfer function of a system is known

then the response to any distinct input signal can be calculated.

Recognizing that s = jω, the transfer function is a complex function of frequency

containing both a real and imaginary part, or alternatively a magnitude and phase.

The basic form examined thus far is

G(s) =
X

F
(s) =

1
1

ω2
n
s2 + 2ζ

ωn
s+ 1

,

which in terms of frequency is

G(jω) =
1

1−
(

ω
ωn

)2
+ j2ζ ω

ωn

. (1.27)

This expression is a measure of the system response to an excitation of frequency ω

which is why G(jω) is called the frequency response function. Utilizing the concept

of the complex conjugate Ḡ(jω) and complex algebra, the frequency response can be

expressed in terms of magnitude,

|G(jω)| = 1√[
1−

(
ω
ωn

)2
]2

+
(

2ζω
ωn

)2
, (1.28)

and phase,

φ(ω) = arctan

 2ζω
ωn

1−
(

ω
ωn

)2

 . (1.29)
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Insight into system behavior can be obtained by examining both the magnitude

and phase functions with respect to frequency [21]. From the denominator of equa-

tion (1.28), as ω approaches ωn, the real term goes to zero and the denominator

is a minimum, implying that the total magnitude |G(jω)| is a maximum. Thus at

resonance the system responds with a maximum output, seen as the peak in Figure

1.11(a). This figure also shows how the relative magnitude achieved at this point is

determined by ζ, as more damping will result in a wider and flatter peak output.

Finally, the points ω1 and ω2 are the half power point frequencies, where the magni-

tude is
√

2/2 times that at resonance which correlates to half the power output. In

real systems where the damping ratio is difficult to calculate, the half power points

provide an approximate measure of ζ and the related quality factor Q through the

expression

ζ ' 1

2Q
' ω2 − ω1

2ωn

. (1.30)

As for the phase, resonance is the point where the system response shifts from being

in phase (φ ∼ 0) to out of phase (φ ∼ 180◦) with the excitation, as shown in Figure

1.11(b). Note that at the resonant frequency ωn, the phase is exactly 90◦. Once again,

an increase of damping in the system results in a more dispersed phase transition.

For a multi-degree of freedom system, natural vibration implies not only a res-

onance frequency but also a natural configuration of the masses. Such system will

possess several different equations of motion, each typically being a second-order

system itself. Therefore the overall multi-degree of freedom structure will have as

many natural modes as degrees of freedom, where each mode consists of a resonance

frequency and mass configuration [21].
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(a) (b)

Figure 1.11: Frequency response of G(jω) as (a) magnitude and (b) phase.

Modal analysis is the technique of identifying the natural modes through the

eigenvalues and eigenvectors. When the multitude of equations of motion are written

in matrix form, there will be distinct mass M and stiffness K matrices that contain

all of the physical constants of the system. The total system is then described by

[M ]ẍ+ [K]x = 0

without damping and external forces. Applying the Laplace transform and rearrang-

ing terms gives

λx = [M ]−1[K]x,

where this expression is called the characteristic equation and the conversion λ = ω2

is used. The solutions of this are known as the eigenvalues λi from which the various

natural frequencies are found by ωn,i =
√
λi. Substituting these frequencies back into

the system equations allows the corresponding mode shapes, or eigenvectors ~u, to
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be found by solving for x. The benefit of this is that the values in each eigenvector

represent the relative directions of each mass in that natural mode, meaning that the

eigenvector defines the mode shape.

Overall the concepts of resonance, vibration modes, and frequency response are

vital to the design and modeling of a broadband transducer. The universality of the

impedance method for characterizing both electrical and mechanical devices is also

necessary in allowing for an elegantly concise description of the multi-regime coupling.

These ideas will be fully developed in Chapters 2 and 3.
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CHAPTER 2

LINEAR TRANSDUCER MODEL

2.1 Material Background and Constitutive Relations

The electric field-actuated smart material used in the hybrid transducer is lead

magnesium niobate - lead titanate, (Pb Mg 1
3

Nb 2
3

O3)0.65 - (Pb Ti O3)0.35, known

as PMN-PT. The complementary magnetic field-actuated smart material is the mag-

netostrictive compound terbium-iron-dysprosium (Tb0.73 Dy0.27 Fe1.95). In order to

design and model a system using these materials, is it necessary to understand the

basic concepts of piezoelectricity and magnetostriction.

2.1.1 Piezoelectric and Ferroelectric Materials

Piezoelectricity is defined as the electric polarization produced in a material by

an applied mechanical stress. Closely related to this is the converse effect where a

piezoelectric crystal is deformed when electrically polarized. Both are manifestations

of the same fundamental property. The direct effect was discovered by the Curie

brothers in 1880 [4, 15, 16, 20] while investigating temperature related effects (pyro-

electricity) in combination with mechanical pressure on various crystals. In the year

following their discovery, Lippmann predicted the existence of the converse effect,
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and the Curie brothers soon verified this phenomenon as well [4]. For several years

after these discoveries, piezoelectricity was largely ignored by the scientific commu-

nity until the first world war, when it was demonstrated that quartz crystals could be

used in oscillatory applications ranging from sonar to radio transmitters [20]. In all

of these cases, a single crystal was typically used since more advanced manufacturing

techniques were not available. By the late 1940’s the process of poling was introduced

which allowed for polycrystalline compounds such as ceramics to be used in piezo-

electric applications [16]. The most popular piezoceramic still in wide use today is

lead zirconate titanate (PZT), of which several grades and compositions exist.

The nature of the piezoelectric phenomenon is dependent on the ability of the

crystal to respond in the direction of the applied stress or field and to be reversible

upon their removal. For the piezoelectric interaction to exist it is necessary that

the medium intrinsically possess a directionality in its crystallographic structure,

referred to as anisotropy [16]. Such crystallographic ordering allows for the reversal

of strain with alternating fields and distinguishes piezoelectricity from electrostriction.

Electrostriction is similar to the converse piezoelectric effect, but the deformation is

proportional to the square of the applied field rather than linearly dependent, and

thus it is independent of the field direction.

More recent studies have revealed the benefit of combining relaxor ferroelectrics

with piezoceramics to create a new class of material [30]. Ferroelectricity is defined as

the presence of a spontaneous electric dipole moment in a crystal that can change its

orientation between distinct directions by an externally applied field [16]. A material

can be made to exhibit this behavior through the process of poling, which is the con-

cept that bridges classical single crystal piezoelectrics to the modern piezoceramics.
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A polycrystalline material such as a ceramic is an agglomeration of small crystals

that are grown in random orientations during manufacturing. The method of poling

a material consists of applying a very strong electric field such that the random polar

axes are reoriented along easy polarization axes closest to the field direction. The

resultant crystallographic structure resembles a single piezoelectric crystal with a net

dipole moment and responds as such to stress and field inputs. There exists a depolar-

izing threshold in both stress and field, but so long as the material is never subjected

to these thresholds it will remain poled practically forever. Ferroelectric properties

are quite sensitive to thermal effects and often must be operated in a narrow band

about room temperature.

In many applications, polycrystalline ferroelectric piezoceramics have replaced

single crystal compounds. Lead zirconate, the basis for PZT, is an example of a “nor-

mal” ferroelctric ceramic produced with the poling technique. Relaxor ferroelectrics

are a class of materials that exhibit a broad and dispersive phase transition [30].

The largest family of such materials is the complex lead based perovskites, of which

PMN is a member. When these materials are combined with lead titanate (PT), the

resultant crystal structure will vary based on the volume fraction of each compound

present. Ferroelectric ceramics have been shown to exhibit anomalously large piezo-

electric and dielectric properties at compositions near a morphotropic phase bound-

ary (MPB), which is the transition where the crystallographic structure changes from

rhombohedral to tetragonal [26]. Each of these crystal structures has a different easy

axis, [0 0 1] for the tetragonal and [1 1 1] for the pseudo-cubic rhombohedral phase

[16]. An example of the morphotropic phase boundary is shown in Figure 2.1, where

the crystallographic phases are detailed for both PZT and PMN-PT compounds.
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Figure 2.1: Ternary phase diagram of PZT and Relaxor-PT piezoceramics showing
morphotropic phase boundaries [26].

The axes separating the three ferroelectric ceramics represent fractional amounts in

blends between them (not to scale). Most PZT compounds come from the region

near the MPB, as do relaxor based materials such as PMN-PT. The compositions

near the MPB have good properties as a result of enhanced polarizability arising

from the coupling between the tetragonal and rhombohedral states, allowing efficient

reorientation during the poling process [26].

Now the focus is placed solely on the PMN-PT. Figure 2.2 is a detailed plot

showing the dependence of the morphotropic phase boundary with PT content and

temperature. The transducer employed in this study is operated exclusively at room

temperature so thermal effects are ignored. Figure 2.2 shows that pure PMN is

electrostrictive in nature but becomes increasingly piezoelectric as it nears the MPB
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Figure 2.2: Phase diagram showing the morphotropic phase boundary region for the
(1-x)PMN-(x)PT solid solution system [30].

at 33% PT. The 35% PT compound used in this investigation is purely piezoelectric

with strong properties due to its proximity to the morphotropic phase boundary.

2.1.2 Linear Piezoelectric Modeling

The direct and converse piezoelectric effects are often modeled as a pair of linear

equations which account for the superposition of elastic, electric, and thermal effects

on the strain and electric flux density. The assumed linear relationship between the

variables is accurate for low to moderate levels of stress and electric field but does

break down at higher regimes. In addition, piezoceramic materials exhibit hysteresis

effects, which in linear models can be partially addressed only through laborious
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experimental look-up tables. The differential first order form of the model is

dε =

(
∂ε

∂σ

)
E,T

dσ +

(
∂ε

∂E

)
σ,T

dE +

(
∂ε

∂T

)
E,σ

dT

dD =

(
∂D

∂σ

)
E,T

dσ +

(
∂D

∂E

)
σ,T

dE +

(
∂D

∂T

)
E,σ

dT,

where ε is the strain, D is the electric flux density, E is the applied field, T is

the absolute temperature, and σ is the axial stress [20]. Neglecting the effects of

temperature and expressing the partial derivatives as real coefficients leads to

ε =
σ

EE
y

+ d33E (2.1)

D = d∗33σ + εσ0E, (2.2)

where EE
y is the Young’s modulus at constant field, εσ0 is the permittivity at constant

stress, and d33 and d∗33 are the electroelastic coupling coefficients. The strain equation

contains both Hooke’s law for elastic materials σ = εEy and the converse piezoelectric

effect d33E. The second equation characterizes the electric flux density as the sum of

the direct piezoelectric effect d33σ and the inherent electrical component ε0E. It is

typically assumed that d33 = d∗33. Equations (2.1)-(2.2) are used as a foundation for

the full transducer model presented in Section 2.2.5 and in Chapter 3.

2.1.3 PMN-PT Transducers

In this investigation, the system consists a broadband sonar transducer incor-

porating a prebuilt PMN-PT stack actuator connected in mechanical series with a

magnetostrictive rod. One major benefit of the conventional cylindrical stack configu-

ration for piezoceramics is that the material has already been configured for activation

and can be installed without any additional accessories. This stack is made by layering

thin circular discs of ceramic between opposite electrodes wired such that the voltage
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is equal across all layers. When a voltage is applied, the electrodes generate an elec-

tric field that completely and uniformly penetrates the ceramic and induces strain in

the thickness direction (d33 actuation). Stack actuators generally are compact, come

in a variety of sizes, and exhibit high energy densities.

Since each individual ceramic layer is sandwiched between two thin electrodes,

the geometry is identical to that of a parallel plate capacitor (see Chapter 1). The

ceramic inside of the electrodes acts as a dielectric material, modifying the nominal

permittivity ε0 by the constant κ, and the resulting capacitance value is as given

in equation (1.16). The entire stack can be modeled as a single capacitance in the

overall electrical circuit, with the piezoelectric effect providing a means for coupling

the electrical and mechanical regimes.

The mechanical system is also dependent on the PMN-PT stack as it is tradi-

tionally used as the stiffness element in vibratory devices. The actual value of this

stiffness is approximated as

k =
EE

y A

t
(2.3)

for linear elastic behavior, where k is the stiffness, A is the cross-sectional area, and

t is the thickness. This expression is true only for a single ceramic layer but is often

extrapolated out to the entire stack when the stiffness contributions of the electrodes

are negligible. In addition to acting as a stiffness, the stack provides mechanical

damping to the structure through the strain hysteresis. Another mechanical contri-

bution of the piezoceramic stack is that it is responsible for the force generation in

the transducer (along with the Terfenol-D rod) in response to electric fields.

Finally, with some poled materials the inherent directionality requires that fields

be applied only from zero to peak to avoid negative values that could potentially
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depolarize the material. In these cases, if sinusoidal motion is desired, then the

“zero” basis for displacement is often shifted to a positive value by the consistent

application of a DC electric field or DC bias. This is usually done at the external

electric circuit level. In addition, PMN-PT transducers are typically operated under

a compressive prestress. This is done to help keep the material in compression at

all times where its yield strength is much greater than in tension, and to prealign

the dipoles along directions perpendicular to the stack’s 33 direction, leading to more

complete rotations, and thus strains, when a field is applied. The means of applying

this compressive prestress can vary with the setup, but here Belleville spring washers

are used. These springs offer a significant force in a small size, and can be tailored to

have a nonlinear stiffness response that minimizes their extraneous dynamic effects.

2.1.4 Magnetostrictive Materials

The term magnetostriction refers to the fractional change in length (strain) that

occurs in a ferromagnetic material when subjected to magnetic fields. Magnetostric-

tive strain is denoted by λ, and is a component of the total elastic strain ε. The

phenomenon of magnetostriction was first discovered by Joule in 1842 in samples of

iron [8, 13, 19]. Joule noted that when subjected to magnetic fields, these materials

underwent a dimensional change as their magnetization was modified. The Villari

effect is a reciprocal phenomenon where a stress induced dimensional change will al-

ter a magnetostrictive material’s magnetization. Throughout the early to mid 1900’s,

magnetostrictive materials such as iron, nickel, and cobalt were employed in various

electromechanical systems such as telephones and sonar devices. Giant magnetostric-

tion, so named because of the substantial increase in possible strains (λ > 1000µε),
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was discovered in the rare earth elements terbium (Tb) and dysprosium (Dy) but

only at extremely low temperatures [19]. In 1971, the U.S. Navy developed an alloy

of these two rare metals with iron to create Terfenol-D (the name comes from a com-

bination of TER for terbium, FE for iron, NOL for Naval Ordnance Laboratory, and

D for dysprosium), which is a giant magnetostrictive material useable in practical op-

erating conditions. Terfenol-D has been commercially available since the late 1980’s

and has since grown into an international industry.

Magnetostriction results from the alignment of atomic magnetic moments to form

magnetic domains in ferromagnetic materials. The inducing magnetization, and thus

the magnetostriction, can change reversibly or irreversibly with the applied field. The

reversible magnetization changes are energy conserving while the irreversible effects

are dissipative. It is known that the reversible changes exist only at low field levels,

and that as the field is increased a transition is made towards irreversibility. Thus a

full field cycle will have some magnetization hysteresis, as shown in Figure 1.9.

2.1.5 Magnetostrictive Process

The magnetostrictive process discussed here is actually one of two separate types

of magnetostriction. The field induced alignment of magnetic moments occurs only at

temperatures below the Curie point, and is the pertinent effect for this investigation.

The second class is the spontaneous magnetostriction arising from the alignment of

domains when cooling through the Curie temperature [8, 19].

The Terfenol-D rod used in this investigation was manufactured using the free-

stand-zone-melt process, resulting in a cubic crystal structure. This structure features

a large magnetic anisotropy that dictates the material’s preferred magnetic domain
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orientation as a result of energy minimization (Figure 2.3). The group of 〈1 1 1〉 axes

are the easy axes that the magnetostrictive anisotropy favors [8, 19]. Isolating the

analysis to the (1 1̄ 0) plane, one easy axis [1 1 1̄] is closely in line with the overall rod

axis. The magnetic domain rotation into this direction is then what causes most of

the observable length increase. The other easy axis, [1 1 1], is nearly orthogonal to the

rod axis and 90◦ from the first easy axis. If a compressive prestress is applied along

the primary axis of the rod, it will cause the domains to favor the [1 1 1] direction,

from where a 90◦ rotation into the [1 1 1̄] by an applied field will generate maximum

strain. Thus the prestress allows for enhanced performance with respect to structures

in which the initial domains are randomly oriented. An additional use of the prestress

is to ensure that the material does not undergo tensile stresses, as its yield strength

in tension is only 4% of its strength in compression. A final consequence of the 90◦

domain rotation is that a field in either direction along the length of the rod will

generate a positive magnetostriction.

A more detailed look at the magnetostrictive process in Figure 2.4 shows the

material as it progresses from a demagnetized state to a fully saturated one. Panel

(a) shows the initial condition where the Terfenol-D domains collectively sum to

zero net magnetization. With the application of magnetic field H in Panel (b), the

domains more closely aligned with the field grow at the expense of those less favorably

oriented, termed domain wall motion. As the field increases in strength in Panel (c),

the material becomes a single magnetic domain and rotates into the easy [1 1 1̄] axis

nearly aligned with H. Once the field is increased further the domain rotates fully

into alignment with the field in the [1 1 2̄] direction, and saturation has been reached

in Panel (d). At this point if the field is removed but not reversed, then the domains
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Figure 2.3: Crystallographic structure of Terfenol-D [8, 19].

will return to the nearest easy axis of [1 1 1̄] as in Panel (c). A fully reversed field is

required to rotate the domain out of this configuration and generate cyclic strains.

Another graphical representation of this phenomenon is depicted in Figure 2.5.

Both magnetization and magnetostriction slowly increase from zero due to the early

domain wall motion. Once the large magnetic domain rotates into easy axes, a large

increase in both M and λ is seen. The final stage yields little increase from satu-

ration. One consideration when employing practical magnetostrictive materials in
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Figure 2.4: Magnetostriction process arising from the application of field H [8, 19].

transducers is that they exhibit magnetostriction hysteresis, as illustrated in Figure

2.6 for Terfenol-D. Another important issue is that the material properties, and thus

the entire magnetostriction process, are significantly affected by external stress and

temperature.

2.1.6 Linear Magnetostrictive Modeling

Although the magnetostrictive process has been shown to be nonlinear and hys-

teretic, a set of coupled linearized equations are sufficiently accurate to describe the
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Figure 2.5: Simulation of initial (a) magnetization and (b) magnetostriction with
applied field [8, 19].

Figure 2.6: Simulated strain versus magnetic field for Terfenol-D.
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response for low to moderate applied field levels. These relations build on the superpo-

sition of elastic, magnetic, and thermal effects on the strain and magnetic induction.

In differential form they are

dε =

(
∂ε

∂σ

)
H,T

dσ +

(
∂ε

∂H

)
σ,T

dH +

(
∂ε

∂T

)
H,σ

dT

dB =

(
∂B

∂σ

)
H,T

dσ +

(
∂B

∂H

)
σ,T

dH +

(
∂B

∂T

)
H,σ

dT,

where ε is the strain, B is the induction, H is the applied field, T is the absolute

temperature, and σ is the axial stress [8, 19]. Neglecting the effects of temperature,

and expressing the partial derivatives as real coefficients gives

ε =
σ

EH
y

+ q33H (2.4)

B = q∗33σ + µσH, (2.5)

where EH
y is the Young’s modulus at constant field, µσ is the permeability at con-

stant stress, and q33 and q∗33 are the magnetoelastic coupling coefficients. The analogy

between these equations and the piezoelectric constitutive relations (2.1)-(2.2) is em-

phasized. This model is compatible with some fundamental principles, such as the

strain being the superposition of Hooke’s law σ = εEy and a representation of the

magnetostriction λ by the term q33H. In addition, the induction B is seen to be a

combination of the constitutive magnetic law B = µH and a mechanically coupled

term q∗33σ, where it is often assumed that q33 = q∗33. This model will be used later

in this chapter to generate a full linear description of the transducer, while Chapter

3 will expand on this by more accurately accounting for the various physical effects

that are either linearized or ignored in (2.4)-(2.5).
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2.1.7 Terfenol-D Transducers

To take full advantage of the unique properties and energy transduction char-

acteristics of Terfenol-D, this material must be placed in a transducer. Numerous

applications exist where a magnetomechanical system could be of use, but for pur-

poses of this investigation the primary interest is in a broadband sonar transducer. In

this device the Terfenol-D element represents a key component of both the mechanical

and electrical regimes.

Mechanically, the Terfenol-D rod has three fundamental functions in the trans-

ducer: representing the compliance, adding damping, and generating force excitation

internal to the transducer. The rod is placed between two masses and acts as a spring

with a stiffness parameter k defined by

k =
EH

y A

Le

, (2.6)

where A is the cross-sectional area and Le is the length. The masses in this structure

are designed around the Terfenol-D stiffness to result in a specific angular natural

frequency of oscillation ωn (rad/s). The damping coefficient is not as easily defined but

it should be apparent that the hysteresis and irreversibility in the magnetostriction

process will result in a loss of energy that appears as mechanical dissipation. The

final role that the material plays in the mechanical system is that of an excitation

source to generate the desired oscillations of the structure. The magnetostrictive

strain will generate a drive force applied from the rod onto each of the attached

masses and the PMN-PT stack. By controlling the applied magnetic field, and thus

the magnetostriction, a variety of forcing inputs can be applied to the transducer.
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In order to drive the Terfenol-D with a magnetic field, a solenoid is used. By

having a solenoid wrapped around the cylindrical rod, the magnetic field through the

rod will be uniaxial and relatively uniform, as first shown in Figure 1.7. Coupling this

setup to the overall electromechanical system is the fact that the solenoid wrapped

around the metal rod is electrically an ideal inductor in series with a small resistor.

The inductance for this geometry has been already derived in equation (1.18), with

µ being the permeability of the Terfenol-D core.

Another major component in the Terfenol-D transducer is often a permanent

magnet that serves two functions. First, it partially completes the necessary magnetic

circuit through which the magnetic flux passes. Second, it provides a permanent field

that can magnetically bias the material to a nominal operating point. Like in PMN-

PT, this is often necessary when sinusoidal motions are needed from the device.

Looking at Figure 2.5, the linear constitutive model (2.4)-(2.5) provides sufficient

accuracy if the applied field from the solenoid can be kept on the steepest region

of the curve. Shifting the effective field to this region is accomplished in part by a

permanent magnet and partly from a DC current in the solenoid. The field lines for

a cylindrical permanent magnet are shown in Figure 2.7. As a final consideration,

Terfenol-D requires a compressive prestress for the reasons discussed above, which is

applied through the use of Belleville spring washers and adjustable compression bolts.

Figure 2.8 details the general geometry and key components in a typical Terfenol-D

transducer.
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Figure 2.7: Magnetic field lines from a cylindrical permanent magnet like that encas-
ing the Terfenol-D rod [23].

Figure 2.8: Overview of a typical Terfenol-D transducer [6].
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2.2 Linear System Dynamics Model

The broadband transducer under investigation has the Tonpilz sonar configura-

tion shown in Figure 2.9 with the piezoelectric and magnetostrictive elements each

located between two oscillating masses [1, 2]. Rigidly combining these two sections

in mechanical series forms a double resonant system in which the lower resonance

is controlled by the Terfenol-D element and the higher resonance by the PMN-PT

stack. The inductive drive solenoid for the Terfenol-D rod is wired in parallel with the

capacitive PMN-PT stack to create an electrical resonant system as shown in Figure

2.10. The hybrid properties that facilitate broadband operation include an inherent

90◦ phase shift in the velocities of the two sections and a natural difference in the

speed of sound in the active materials [3].

Figure 2.9: Schematic of a Tonpilz broadband hybrid transducer.
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Figure 2.10: Corresponding electrical circuit with the two active sections wired in
parallel.

A linear system model describing the dynamic behavior of the transducer is devel-

oped in three steps. This model incorporates concepts from vibrations, electronics,

acoustics, and smart materials to characterize the complete system response as well

as the interactions between the electrical and mechanical domains. In the first mod-

eling stage, a linear vibrations framework is used to represent the mechanical regime

of the transducer. The second model component utilizes electroacoutics theory to

describe the coupling between the mechanical and electrical regimes and to identify

pertinent physical system parameters. The third step involves the development of

relations between stress, strain, and applied field, as well as the characterization of

material properties. The resulting set of linearized equations is used to quantify the

dependence of material properties with drive and acoustic load conditions, as well as

develop the transducer frequency response functions velocity per voltage and voltage

per current.
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2.2.1 Mechanical Model

The transducer architecture employed here consists of a mechanical series arrange-

ment of piezoelectric and magnetostrictive sections joined through a rigid center mass,

with oscillating head and tail masses at opposite ends. This configuration provides a

double resonant frequency response which is used to facilitate broad frequency band-

width operation. For modeling purposes, each smart material is assumed to behave

mechanically as a tunable compliance arranged in parallel with a damper as described

by the three degree of freedom linear vibratory system shown in Figure 2.11.

This mechanical model is analyzed to determine the ideal mass and stiffness ratios

to achieve the largest bandwidth possible over the 1-6 kHz frequency range, which has

been determined by the U.S. Navy to be of primary interest in hybrid architectures

[3]. To start, the equation of motion for each mass is written and the three equations

Figure 2.11: Transducer modeled as a 3 degree-of-freedom mechanical vibratory sys-
tem.
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are then related in matrix form as

[M ]~̈x+ [C]~̇x+ [K]~x = ~F , (2.7)

in which the structural matrices and vectors are

[M ] =

 m1 0 0
0 m2 0
0 0 m3



[C] =

 r1 −r1 0
−r1 r1 + r2 −r2
0 −r2 r2



[K] =


1
c1

− 1
c1

0

− 1
c1

1
c1

+ 1
c2

− 1
c2

0 − 1
c2

1
c2



~x =

 x1

x2

x3


~F =

 F1

F2 − F1

−F2

 ,
where m represents the mass, r the damping, c the mechanical compliance, x the

displacement, F the force, and subscripts 1, 2, and 3, respectively denote the head,

center, and tail masses, as in Figure 2.11. Consistent with prior work [3], it is deter-

mined that optimum bandwidth is achieved using a head : center : tail mass ratio of

approximately 1 : 2 : 2.5, and having the piezoceramic stack (1/c1) be much stiffer

than the Terfenol-D rod (1/c2). Using these values in eigenvector modal analysis, the

mode shapes and natural frequencies are found to be approximately

~u1 =

 .58
.58
.58

 =

 1
1
1

 ~u2 =

 −.58
−.50
.64

 ≈
 −1
−1
1

 ~u3 =

 .90
−.44
−.03

 ≈
 2
−1
0



ωn1 = 0 Hz ωn2 = 1250 Hz ωn3 = 4000Hz
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(a) (b)

Figure 2.12: Mechanical representation of the simplified (a) high frequency (PMN-
PT) and (b) low frequency (Terfenol-D) vibration modes.

where the zero frequency rigid body translational mode is ignored. The two other

modes dominate the motion of the system, where the lower resonance is controlled

by the Terfenol-D section and is characterized by the head and center masses lumped

together vibrating out of phase with the tail mass. The PMN-PT stack controls the

upper resonance where the tail mass essentially decouples from the system and the

head and center masses are out of phase with each other. Both of these situations

are depicted in Figure 2.12 and are described by the equations

m1ẍ1 + r1ẋ1 +
1

c1
x1 = F1 + r1ẋ2 +

1

c1
x2

m2ẍ2 + r1ẋ2 +
1

c1
x2 = −F1 + r1ẋ1 +

1

c1
x1

for the high frequency mode and

(m1 +m2)ẍ1 + r2ẋ1 +
1

c2
x1 = F2 + r2ẋ3 +

1

c2
x3

m3ẍ3 + r2ẋ3 +
1

c2
x3 = −F2 + r2ẋ1 +

1

c2
x1
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for the low frequency mode, all of which are simplifications of equation (2.7) using

the known mode shapes. Converting to the frequency domain and rewriting in terms

of the velocities yields

m1sv1 + r1v1 +
1

sc1
v1 = F1 + r1v2 +

1

sc1
v2 (2.8)

m2sv2 + r1v2 +
1

sc1
v2 = −F1 + r1v1 +

1

sc1
v1 (2.9)

for the high frequency mode and

(m1 +m2)sv1 + r2v1 +
1

sc2
v1 = F2 + r2v3 +

1

sc2
v3 (2.10)

m3sv3 + r2v3 +
1

sc2
v3 = −F2 + r2v1 +

1

sc2
v1 (2.11)

for the low frequency mode. When the transducer is excited in a broadband fashion

the two modes’ resonant peaks will overlap in the frequency domain to create a

wide, relatively flat region in the head mass velocity response v1, a key criterion

for propagating acoustic energy into a medium. Equations (2.8)-(2.11) are used to

simulate the bandwidth of the two individual modes and the combined system as

shown in Figure 2.13.

The idealization of the vibration modes results in each section inaccurately ig-

noring the dynamic effects of the other section. In reality, broadband excitation of

one section will cause some response in the other which will alter the separate head

mass responses of Figure 2.13. To account for such dynamics, the simplified modes

are ignored and the full system (2.7) is transformed into the frequency domain and

expressed in terms of velocities as follows,

m1sv1 + r1v1 +
1

sc1
v1 = F1 + r1v2 +

1

sc1
v2 (2.12)

m2sv2 + (r1 + r2)v2 + (
1

sc1
+

1

sc2
)v2 = F2 − F1 + r1v1 + r2v3 +

1

sc1
v1 +

1

sc2
v3(2.13)
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Figure 2.13: Head mass velocity response of the complete system and individual
sections calculated from the ideal mode linear mechanical model (2.8)-(2.11).

m3sv3 + r2v3 +
1

sc2
v3 = −F2 + r2v2 +

1

sc2
v2. (2.14)

Since v1 is the primary term of interest, the algebraic system of equations (2.12)-

(2.14) is solved for v1 as a function of the forcing functions F1 and F2. As a means

to fully describe the mechanical regime of the transducer, the transfer function force

per velocity, i.e. the mechanical impedance, can be found for each smart material

section. For the PMN-PT element, the force F2 from the Terfenol-D rod is set to zero

and then F1/v1 is shown to be

Zmech,E =
As4 +Bs2 + C

sc1(m2m3c2s2 + (m2 +m3)(r2c2s+ 1)
, (2.15)

while for the Terfenol-D rod, F1 is set to zero and F2/v1 gives

Zmech,M =
As4 +Bs2 + C

sc2m3(r1c1s+ 1)
. (2.16)
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The subscripts E and M denote electric and magnetic for the PMN-PT and Terfenol-

D elements, respectively. In equations (2.15)-(2.16), the terms A, B, and C are of

the form

A = (m1m2m3c1c2)

B = m3(m1 +m2)c2(r1c1s+ 1) +m1(m2 +m3)c1(r2c2s+ 1)

C = (r1c1s+ 1)(r2c2s+ 1)(m1 +m2 +m3).

Relations (2.15)-(2.16) characterize the output response of the transducer due to

activation of either smart material. For later comparison, the mechanical impedances

for the two idealized modes are found in an identical manner from (2.8)-(2.11) to be

Zm,E =
m1m2c1s

2 + (r1c1s+ 1)(m1 +m2)

m2c1s
(2.17)

for the PMN-PT stack and

Zm,M =
(m1 +m2)m3c2s

2 + (r2c2s+ 1)(m1 +m2 +m3)

m3c2s
. (2.18)

for the Terfenol-D rod.

2.2.2 Electroacoustics Model

For the second modeling step, classical eletroacoustic transduction theory [15] is

considered for purposes of coupling the vibratory model with the electrical regime.

The field of electroacoustics is based on the validated observations that a functional

relationship exists between the variables describing two different energy regimes. Con-

sidering a typical “black box” transducer that couples arbitrary electrical and me-

chanical systems, such as that depicted in Figure 2.14, two coupled equations can be

written that describe the system, one for the electrical side and one for the mechan-

ical side. For operating regimes in which linear models are accurate, the frequency
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Figure 2.14: General representation of an electromechanical transducer.

domain relations that quantify this coupling between the electrical and mechanical

regimes are

V = ZeI + Temv (2.19)

F = TmeI + Zmv, (2.20)

where V is the voltage across the transducer terminals, I is the current flow through

the transducer, v is the velocity, F is the force, Ze and Zm are the blocked electrical

and mechanical impedances, respectively, and Tem and Tme are transduction coeffi-

cients that describe the electromechanical coupling of the system. The subscript em

reads as “electrical due to mechanical”, and vice versa. Simplifying the model to have

no electromechanical coupling (Tem = Tme = 0), equations (2.19)-(2.20) reduce to the

basic definition of blocked impedance for each energy regime.
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Fundamental properties of the electromechanical interaction can be studied by

considering the driving-point impedance at either the electrical or mechanical termi-

nals as fully detailed by Hunt [15]. Due to the easily measurable nature of electric

variables, the electrical impedance is preferred for use in this investigation. The

driving-point impedance is defined as the complex ratio of voltage to current, but

with the added restriction that all other energy sources are suppressed. For a general

system described by the electroacoustic equations (2.19)-(2.20), it is assumed that

the force F acts on a load of impedance ZL, which allows (2.20) to be rewritten in

the form

v =
−TmeI

Zm + ZL

, (2.21)

which upon substitution in (2.19) gives the total electrical impedance,

Zee =
V

I
= Ze +

−TemTme

Zm + ZL

= Ze + Zmot. (2.22)

This impedance is the superposition of the blocked electrical impedance Ze and the

coupled effects of the mechanical motion Zmot, known as the motional impedance. Fig-

ure 2.15 illustrates how the mechanical contributions affect the electrical impedance

of a capacitive PMN-PT stack. The solid line shows the blocked impedance Ze and

the deviation from this line represents the coupled motional effects Zmot.

2.2.3 Electrical Impedance Analysis

The key to using the total electrical impedance Zee in analyzing the transducer is

to plot it on the complex plane as imaginary part versus real part (Nyquist format).

The impedance is frequency dependent due to the presence of s, and thus as the

frequency is changed the tip of the impedance vector will trace out the curve known
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Figure 2.15: Experimental total and blocked electrical impedance magnitude of the
PMN-PT section employed in this investigation.

as a locus. For a typical transducer mechanism this locus will have the form of Figure

2.16, also collected from the PMN-PT stack employed in this investigation. The

circular shape is called the mobility loop caused by the mechanical coupling, since as

frequency increases the locus will divert from the blocked path and circle clockwise.

The value of this approach lies in that the frequency directly opposite the crossover

point on the mobility loop is the transducer’s resonance frequency fr = ωn/2π. Note

that this frequency does not correspond to the relative maximum seen on Figure 2.15

because that graph does not contain phase information. The two points on the circle

at 90◦ from the main diameter are the half power points f1 and f2.

An identical form of analysis is performed on the electrical admittance function,

defined as the inverse of the impedance, Yee = 1/Zee. This relation will likewise have

a corresponding locus such as that shown in Figure 2.17. The inverse relationship
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Figure 2.16: Experimental impedance mobility loop associated with the data in Figure
2.15, showing resonance (fr) and half power point (f1, f2) frequencies.

between impedance and admittance means that this curve is simply a geometric

inversion of the impedance locus with respect to unity. This does not mean, however,

that identical information is present in both. Although the total impedance and

admittance are inverses of one another, the coupled motional effects are not, i.e.

Ymot 6= 1/Zmot. In fact, one important difference is that in the admittance loop the

frequency opposite the crossover point is a measure of the antiresonance frequency

far. Similarly, the points at 90◦ from this are the half power points associated with

antiresonance, fa1 and fa2.

The resonant and antiresonant frequencies are combined in a relation for the

effective coupling between the mechanical and electrical regimes,

k2
eff = 1−

(
far

fr

)2

, if far < fr (2.23)
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Figure 2.17: Experimental admittance mobility loop associated with the data in
Figure 2.15, showing antiresonance (far) and half power point (fa1, fa2) frequencies.

k2
eff = 1−

(
fr

far

)2

, if far > fr (2.24)

depending upon whether far or fr is smaller, respectively. This is required to keep

the coupling less than or equal to one, and will be shown to be dependent upon the

type of smart material and the variables in the electric circuit.

The resonant frequencies are also important in the determination of a variety of

material properties. In conjunction with the known masses, they offer a means of

calculating the stiffness of each smart material element. From the simplified expres-

sions of mechanical impedance, equations (2.17)-(2.18), the stiffness is determined by

setting the imaginary component equal to zero and rearranging, that is

kE
m =

1

c1
=

(2πfr)
2m1m2

m1 +m2

(2.25)
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kH
m =

1

c2
=

(2πfr)
2(m1 +m2)m3

m1 +m2 +m3

(2.26)

respectively for the PMN-PT stack and Terfenol-D rod. The values obtained from

the full impedances (2.15)-(2.16) are mathematically more complex but numerically

equal. Assuming that the material follows linear elastic behavior the Young’s moduli

take the form of (2.3) and (2.6),

EE
y =

kE
mLe,1

A1

(2.27)

EH
y =

kH
mLe,2

A2

, (2.28)

and from them each material’s intrinsic sound speed is

cE =

√√√√EE
y

ρE

cM =

√√√√EH
y

ρM

where ρ is the material density.

Another property that can be found from this analysis is the mechanical quality

factor Q of each section, which from equation (1.30) is an approximate measure of

the amount of damping present in the system,

Qr =
fr

f2 − f1

Qar =
far

fa2 − fa1

.

Both active sections will have two Q values, one from each set of frequencies, with

f1 and f2 being the half power points associated with fr, and fa1 and fa2 those

corresponding to far. In this study, the average value of these two Q’s is used.

Analysis of the mechanical equations of motion shows that the internal damping can
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be respectively estimated as

r1 =
2πfrm1m2

Q(m1 +m2)
(2.29)

r2 =
2πfr(m1 +m2)m3

Q(m1 +m2 +m3)
(2.30)

for the PMN-PT and Terfenol-D sections. This procedure of calculating material

parameters is applied to actual test data collected from the physical transducer and

the results obtained are used as nominal values in the model simulations.

2.2.4 Electroacoustics Model for the Terfenol-D Section

The linear electroacoustic relations and corresponding impedance analysis provide

a framework which is sufficiently general to analyze a variety of electromechanical sys-

tems. However, for purposes of modeling hybrid smart structures, additional physical

details must be considered, especially concerning the active coupling effects inher-

ent to the two smart materials. To this end, the linearized constitutive relations

for the active materials will be converted into a form comparable with equations

(2.19)-(2.20), thus allowing for the blocked impedances and transduction coefficients

to be expressed in terms of properties such as coupling, Young’s moduli, magnetic

or electric parameters, and physical dimensions. While the material behaviors are

in actuality nonlinear and hysteretic, linearized models are sufficiently accurate for

biased, low signal operation in which saturation and frequency-doubling effects are

reduced.
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For a system featuring magnetostrictive transduction, various electroacoustic coef-

ficients can be determined by comparing the constitutive relations (2.4)-(2.5), rewrit-

ten here for convenience

ε =
σ

EH
y

+ q33H

B = q33σ + µσH,

with the transduction equations (2.19)-(2.20) [12]. Assuming that the Terfenol-D rod

is placed inside and completely fills an ideal wire solenoid, then the magnetic field H

and current I are related through H = nI. The solenoid flux linkage is Nφ, where

φ is given by equation (1.8) as BA. The voltage potential across the solenoid is that

of a DC resistance times the current plus the time rate of change of the total flux

linkage. Assuming spatial independence of stress and strain, the strain is related to

the displacement x by definition ε = x/Le, which can then be expressed as a velocity

via a time derivative. Finally, the axial stress in the rod can be compared with the

internal force by ratio of cross-sectional area. These electromechanical relations are

summarized as

H = nI

ε =
v

jωLe,2

σ =
F

A2

V = RI + jωNA2B,

with all of the variables previously defined. Substitution of these expressions into

(2.19)-(2.20) yields

V = (R + jωµσ(1− k2)n2A2Le,2) I +NqkH
m v (2.31)
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F = −NqkH
m I +

kH
m

jω
v, (2.32)

where q = q33 and k2 is the magnetomechanical coupling factor defined as

k2 =
q2EH

y

µσ
. (2.33)

By comparison with the electroacoustic equations it is evident that the blocked

electrical impedance Ze,M for the Terfenol-D section is an ideal resistor in series with

an inductor with the inductance L expressed in terms of material properties,

Ze,M = R + jωµσ(1− k2)n2A2Le,2 = R + jωLblock. (2.34)

The inductance value for this solenoid geometry was independently derived in equa-

tion (1.18) and is found to be equivalent when the fixed (constant strain) perme-

ability is redefined as the permeability at constant stress times the coupling factor,

µε = µσ(1− k2) [12].

Equations (2.31)-(2.32) also present the form of the transduction coefficients Tem

and Tme. These terms describe the coupling between the electrical and mechanical

regimes and have the form

Tem,M = NqkH
m (2.35)

Tme,M = −NqkH
m = −Tem,M . (2.36)

It is noted that they are equal in magnitude while opposite in sign. This antisymmet-

ric relationship, according to Hunt [15], is expected of all magnetostrictive transducers

because of the spatial orthogonality of current and magnetic field.

The final electroacoustic coefficient is the blocked mechanical impedance Zm,M .

By the manipulations done above the resultant term appears as Zm,M = kH
m/jω, which
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contains only a stiffness term. Other dynamic effects such as inertia and damping are

tacitly ignored in the constitutive material relations [12], hence these relations predict

a very inaccurate mechanical impedance. Note, however, that the mechanical part

of the model has already led to a complete formulation of Zm,M in equation (2.16),

hence the stiffness calculated from the constitutive material relations is completely

disregarded and replaced by the detailed term derived previously.

With all of the frequency domain coefficients in the electroacoustics framework

written in terms of measurable or calculable properties it is necessary to combine

these expressions into a complete description of the Terfenol-D section. The total

electrical impedance function (2.22) offers a single expression that includes all relevant

electrical, magnetic, and mechanical effects. Thus the magnetostrictive section can

be described by

Zee,M = Ze,M +
−Tem,MTme,M

Zm,M

, (2.37)

where the blocked electrical impedance is given by (2.34), the transduction coefficients

are given by (2.35)-(2.36), and the mechanical impedance is expressed by (2.16).

2.2.5 Electroacoustics Model for the PMN-PT Section

In this section, relations analogous to those developed in Section 2.2.4 are devel-

oped for the PMN-PT stack. Beginning with the constitutive piezoelectric relations

(2.1)-(2.2), which are rewritten here for convenience with d = d33,

ε =
σ

EE
y

+ dE

D = dσ + ε0E

several electromechanical conversions are performed to relate these to the electroa-

coustics framework. For each individual layer in the stack, the voltage is applied
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across the thickness t of the material, implying that the electric field E is simply

equal to V/t. The electric displacement (flux density) D is defined as charge per area

and is then converted into current through q = I/jω. As before, assuming uniform

stress and strain allows for fundamental relationships between stress and force, and

strain and velocity. These expressions combined explicitly are

E =
V

t

ε =
v

jωt

σ =
F

A1

D =
I

jωA1

.

Substituting the above into (2.19)-(2.20) gives, for N layers,

V =
t

A1jωN(ε0 − EE
y d

2)
I +

−dEE
y

jωN(ε0 − EE
y d

2)
v (2.38)

F =
−dEE

y

jωN(ε0 − EE
y d

2)
I +

ε0E
E
y A1

jωN(ε0 − EE
y d

2)
v, (2.39)

which are in standard electroacoustic form.

From these equations, it is inferred that the blocked electrical impedance of the

PMN-PT stack is purely capacitive,

Ze,E =
t

jωA1N(ε0 − EE
y d

2)
=

1

jωCblock

. (2.40)

The specific formulation of Cblock is not unexpectedly analogous to the previously

derived capacitance of two parallel plates in (1.16), with the permittivity constant

now incorporating some additional terms.
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Additionally, the two transduction coefficients which characterize the electrome-

chanical interaction can be written from equations (2.38)-(2.39) as

Tem,E =
−dEE

y

jωN(ε0 − EE
y d

2)
(2.41)

Tme,E =
−dEE

y

jωN(ε0 − EE
y d

2)
= Tem,E. (2.42)

In contrast with the Terfenol-D section, these coefficients are symmetric, that is they

are identical in both magnitude and sign. This symmetry is consistent with the

electrical nature of the transduction. It was mentioned previously that the velocities

of the two sections are inherently 90◦ out of phase and that this property is useful in

extending bandwidth. This phase shift can be proven by comparing the Tem electrical

to mechanical transduction coefficient of each section,

6

(
TE

em

TM
em

)
= 6

(
−T1

jωT2

)
= 90◦.

This transduction coefficient relates voltage to velocity in the electroacoustics frame-

work. When the two sections are wired in parallel and receive the same applied

voltage, the phase of the velocities will be determined by the Tem’s and thus will

always be 90◦ apart even when moving through resonance.

Just as for the Terfenol-D, the resultant mechanical impedance of this comparison

is solely a compliance term, proven by the 1/jω dependence in the velocity term

of equation (2.39). Due to the lack of the constitutive piezoelectric equations to

properly account for dynamic effects, the expression for the mechanical impedance

derived above is replaced with the more complete Zm,E given by equation (2.15).

Analogous to the Terfenol-D section is the choice of the total electrical impedance

Zee to characterize the multi-regime effects of the PMN-PT stack. This expression
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once again is

Zee,E = Ze,E +
−Tem,ETme,E

Zm,E

, (2.43)

with the electroacoustic coefficients defined in (2.40)-(2.42) and (2.15).

2.2.6 Combined Linear Transducer Model

With relations for the mechanical, electroacoustic, and material regimes of each

smart material section, it is necessary to combine all aspects of the model into an

overall description of the transducer. When the two active sections are physically

combined, they are joined mechanically in series and electrically in parallel in agree-

ment with previous work. Since the smart materials are wired in electrical parallel,

their total electrical impedances including motional contributions sum as normal.

Thus the complete hybrid system’s overall impedance, incorporating both elements’

different electrical and mechanical effects, is

Zee,total =
Zee,E Zee,M

Zee,E + Zee,M

. (2.44)

2.2.7 Determination of Model Parameters

The next step consists of determining the material parameters used in expres-

sions (2.37) and (2.43). The impedance and admittance analysis outlined in Section

2.2.3 is used to produce the resonance, antiresonance, and half power frequencies for

each section. From these it is shown how the material stiffnesses and elastic moduli

are found for substitution into the mechanical impedances. The quality factor and

damping of each element are also calculated and used in Zm,E and Zm,M . The only

remaining unknowns in the mechanical impedances are the masses which are easily

measurable quantities.
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For the remaining parameters, other measurements must be made. Firstly, all of

the physical dimensions of the material elements need to be known. To determine the

linear electroelastic and magnetoelastic coupling coefficients d33 and q33, low frequency

tests are conducted independently on the two materials. In each, the resultant strain

is plotted versus the applied field where the slope gives the desired constant. Note

that these tests are run at the same operating conditions as the final broadband tests

(to be discussed in Chapters 4 and 5) as each material parameter is dependent on the

prestress, temperature, DC bias, and AC field [5, 9, 11].

The effective coupling given in equations (2.23)-(2.24) is a measure of the coupling

of a particular transducer section, not of the material itself. The realities of the

system force the effective coupling to contain contributions from sources other than

the smart material. Specifically, recognizing that each active element is connected

to a corresponding prestress stiffness and that flux leakage exists in the electrical

components, then the actual material coupling has been shown by Hall [12] to be

k2 =
k2

eff (km + kps
m )

kmkL + k2
effk

ps
m
, (2.45)

where km is the section’s stiffness from equation (2.25) or (2.26), kps
m is the prestress

mechanism stiffness, kL is a flux leakage term, and k2
eff is from (2.23) or (2.24). This

coupling is equivalent to that expressed in equation (2.33) and thus is related directly

to the variable material properties.

The last values that need to be obtained are the magnetic permeability µσ and

the electric permittivity ε0. Each of these is directly related to the effective electrical

impedance of their respective elements. While literature values are available for both,

in this investigation it is most accurate to determine these values by back solving from

the actual inductance and capacitance in the transducer. The determination of the
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inductance and capacitance is performed both graphically (from collected electrical

impedance data) and physically (with a multimeter). In general a combination of

these readings is then used in equations (2.34) and (2.40) to calculate the permeability

and permittivity, respectively.

2.2.8 Linear Model Simulations

The last step in the development of the linear model consists of simulating the

electromechanical response of the transducer. It is assumed that the input to the

system will be an applied voltage, while the output of primary interest is the head

mass velocity. In addition, observing the total electrical impedance will reveal and

validate several fundamental concepts that have been discussed to this point.

In calculating the velocity, first the current in each section is found from the

definition of the total electrical impedance (Zee = V/I) to be,

IE =
V

Zee,E

IM =
V

Zee,M

with the same voltage applied due to the sections being wired in parallel. Now the

velocity contribution from each part is determined by (2.21),

vE =
−Tme,E IE
Zm,E + ZL

vM =
−Tme,M IM
Zm,M + ZL

,

where the external load impedance ZL is assumed zero here, but will be explained

further in Chapters 4 and 5. The final step in this simulation is to recognize that the
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mechanical series configuration allows for the superposition of the velocities from the

two halves, resulting in

v = vE + vM . (2.46)

This procedure also allows for the easy comparison of the individual section responses

by graphing just Zee,E and vE or Zee,M and vM . Each set assumes no electrical

input and thus no excitation of the other section but still accounts for the attached

mechanical components.

Plots of the electrical impedance magnitude and head mass velocity response are

shown in Figure 2.18 for the case of driving just the Terfenol-D section. In part

(a), the impedance increases linearly with frequency as expected for an inductive

system, and the coupled motional effects are prevalent around the first resonance

near 1300 Hz. On the head mass velocity response the resonance peak agrees in

terms of frequency with that predicted in the impedance. It is noted that because of

the inductive nature of the electrical system and the antisymmetric transduction of

Terfenol-D, fr is at a lower frequency than far. Although not exactly equal to the

relative maximum and minimum in the impedance, they are in the same progression.

The final thing to notice from these figures is that the full model nicely follows the

idealized modes around the Terfenol-D section’s natural resonance but also depicts

how it excites some response of the inactive PMN-PT stack.

In a similar manner, plots of the electrical impedance magnitude and head mass

velocity response are plotted with just the PMN-PT section being driven in Figure

2.19. Here the blocked electrical impedance Ze is purely capacitive and thus is in-

versely proportional with frequency as shown. Now the coupled motional effects of

Zmot dominate near the high frequency mode at 3900 Hz. With this type of electrical
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(a) (b)

Figure 2.18: Simulated idealized and practical system responses with only Terfenol-D
excitation as (a) total electrical impedance magnitudes and (b) head mass velocity
responses.

impedance and symmetric transduction, the antiresonance is at a lower frequency

than the resonance. From the velocity graph it is again apparent that the full de-

scription accounts for the presence of the unexcited Terfenol-D rod, but due to the

dynamics of the transducer this off-mode response is not exactly the same as it is

with the Terfenol-D section.

The final and most important simulation is to look at the response of the system

to complete excitation from both of the smart materials. Once again the graphs of

choice are the electrical impedance and the velocity response, plotted in Figure 2.20.

Since the two sections are wired together the resulting electrical circuit contains both

an inductor and a capacitor, making it a second-order system with its own resonance

near 2800 Hz. The familiar trends of the two materials, such as the impedance

increasing over the Terfenol-D mode and decreasing through the PMN-PT mode,
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(a) (b)

Figure 2.19: Simulated idealized and practical system responses with only PMN-PT
excitation as (a) total electrical impedance magnitudes and (b) head mass velocity
responses.

(a) (b)

Figure 2.20: Simulated idealized and practical system responses with excitation from
both sections as (a) total electrical impedance magnitudes and (b) head mass velocity
responses.
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are conserved. In Chapter 5 it will be shown how altering the electrical circuit and

shifting the resonance can affect this. In the frequency response of the head mass

velocity it is obvious that the two resonances overlap with a null in between them,

extending the bandwidth to the desired range of 1-6 kHz. It must be noted that in

all of these simulations the peaks have been rather sharp due to the relatively low

damping in the system, a situation which is addressed in future chapters. These

graphs demonstrate only the qualitative features of the various transducer motions;

the full results in Chapter 5 will compare these with actual measurements.
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CHAPTER 3

NONLINEAR TRANSDUCER MODEL

This chapter presents a complete nonlinear model of the hybrid transducer phe-

nomena. The linear model developed in Chapter 2 is accurate only for low to moderate

operating levels and fails to account for the nonlinearities and hysteresis known to be

present in the piezoelectric and magnetostrictive processes. Fully utilizing the capabil-

ities of high power actuators requires modeling and control algorithms that accurately

incorporate electroelastic and magnetoeleastic coupling in a manner consistent with

the physical properties of the transducer. A variety of nonlinear modeling techniques

currently exist for the two classes of smart material [10, 14, 27, 32], each with its own

advantages and implementation issues. This study uses ideas from several of these to

formulate its own overall transducer model.

The model is developed in several steps. First the input electrical energy is used

to formulate expressions for the internal polarization and magnetization in the two

smart materials, taking into account the inherent hysteresis and saturation effects in

each. These values are then used to model the active strain component λ in each

section. As demonstrated in [6], these strains provide adequate fits to experimental

data at lower levels of input but fail at higher values because they do not account for

elastic effects in the materials. To address this behavior in the model, an internal force
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balance is considered that accounts for the elastic dynamics present in the transducer.

The mathematical result of this is a partial differential equation (PDE) that defines

the structural coupling of the active elements. The spatial problem is addressed by

discretizing the two smart material sections and forming a system of time-continuous

ordinary differential equations (ODE), the solutions of which are approximated with

standard numerical techniques. A more detailed explanation of these procedures

follows.

3.1 Unified Hysteresis Model

Hysteresis and saturation are an inherent property of all ferroic materials over a

wide range of operating conditions. The model describing these effects is taken from

Smith [31, 32, 33] and represents a unified method of treating both the PMN-PT

stack and the Terfenol-D rod. This unified approach starts with Helmholtz and Gibbs

energy relations to develop parallel expressions for the polarization and magnetization

in the ferroelectric and ferromagnetic materials. The analogous nature of these results

is ideal for use in hybrid systems where the duality between regimes is not only

conceptually elegant but computationally advantageous as well.

3.1.1 Polarization

Looking first at the PMN-PT element, crystal lattice considerations are used to

construct an internal energy balance dependent on electric dipole effects. Incorporat-

ing all of the general thermodynamic terms results in a complex expression that is
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Figure 3.1: Helmholtz energy ψ and Gibbs energy G for increasing field E [32, 33].

difficult to employ or correlate with data. Based on observations, at fixed tempera-

tures the Helmholtz free energy first order approximation can be written as

ψ(P ) =


1
2
η(P + PR)2 , P ≤ −PI

1
2
η(P − PR)2 , P ≥ PI

1
2
η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI

where ψ is the free energy, P is the polarization, and PI and PR respectively denote

the positive inflection point and minimum polarization based on free energy graphs

like those depicted in Figure 3.1. From this expression the Gibbs free energy can be

written as

G = ψ − EP,

which in the absence of applied stresses describes the energy landscape of homoge-

neous materials with a uniform crystallographic structure.

The next step in the complete model development [33] utilizes Boltzmann prob-

abilities to determine the local average polarization values throughout the crystal
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lattice. The net result of this derivation is the expression

[P (E,Ec, ξ)](t) =


[P (E,Ec, ξ)](0) , τ(t) = 0
E
η
− PR , τ(t) 6= 0 and E(max(τ(t))) = −Ec

E
η

+ PR , τ(t) 6= 0 and E(max(τ(t))) = Ec

(3.1)

where

[P (E,Ec, ξ)](0) =


E
η
− PR , E(0) ≤ −Ec

ξ ,−Ec < E(0) < Ec
E
η

+ PR , E(0) ≥ Ec

denotes the initial orientation. The variable Ec is the coercive field, ξ is an initial

distribution of dipoles, and τ are the designated transition times that mark when

the value switches sides on the hysteresis kernel. Figure 3.2 shows the implicitly

hysteretic shape provided by equation (3.1).

The local polarization expressions hold true only for materials that match the

underlying assumptions of homogeneity and uniform fields, and extra considerations

Figure 3.2: Local polarization P kernel from Equation (3.1) [33].
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are needed to extend these equations to polycrystalline compounds. It is assumed

that the effective field Ee is normally distributed about the applied field E, which

can be modeled by the statistical density function

f(Ee) = c2 exp

(
−(E − Ee)

2

b

)
. (3.2)

Likewise the coercive field values are distributed about the mean Ec through a log-

normal function

f(Ec) = c1 exp

(
− ln(Ec/Ec)

2

2c

)
. (3.3)

The macroscopic polarization model combines (3.2)-(3.3) with the P kernel to yield

[P (E)](t) = C
∫ ∞

0

∫ ∞

−∞
[P (E + E,Ec, ξ)](t)e

−E2/be−ln(Ec/Ec)2/2cdEdEc (3.4)

which can be used to model the polarization in a practical material with input electric

field E(t).

3.1.2 Magnetization

An identical formulation can be derived for the magnetization M of the Terfenol-

D rod incorporating hysteresis and nonuniform fields. Energy diagrams of Terfenol-D

show that magnetic moments have two preferred orientations in the crystal, the easy

axes group 〈111〉. This creates two potential wells that are defined by the piecewise

quadratic Helmholtz energy

ψ(M) =


1
2
η(M +MR)2 ,M ≤ −MI

1
2
η(M −MR)2 ,M ≥MI

1
2
η(MI −MR)

(
M2

MI
−MR

)
, |M | < MI

which is structurally equivalent to the energy of the PMN-PT section. The corre-

sponding Gibbs free energy is

G = ψ −HM.
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The simplifying assumptions used for the polarization are repeated here, resulting

in the hysteretic kernel being defined as

[M(H,Hc, ξ)](t) =


[M(H,Hc, ξ)](0) , τ(t) = 0
H
η
−MR , τ(t) 6= 0 and H(max(τ(t))) = −Hc

H
η

+MR , τ(t) 6= 0 and H(max(τ(t))) = Hc

(3.5)

where

[M(H,Hc, ξ)](0) =


H
η
−MR , H(0) ≤ −Hc

ξ ,−Hc < H(0) < Hc
H
η

+MR , H(0) ≥ Hc.

As before, application of stochastic distributions to the homogeneous model gives

the bulk magnetization for materials exhibiting polycrystallinity, lattice defects, and

internal magnetic interactions. Assuming normally distributed densities the functions

can be written as

f(He) = c2 exp

(
−(H −He)

2

b

)
(3.6)

and

f(Hc) = c1 exp

(
−(Hc −Hc)

2

2c

)
. (3.7)

Finally, the overall equation that characterizes the magnetization in a material ele-

ment is then

[M(H)](t) = C
∫ ∞

0

∫ ∞

−∞
[M(H +H,Hc, ξ)](t)e

−H2/be−(Hc−Hc)2/2cdHdHc, (3.8)

which is exactly analogous to the polarization expression.

3.2 Active Strain Model

The next step in the model development involves the quantification of the active

strain λ generated by each smart material. The strain λ includes components from the
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moment rotation in each element but does not include the elastic material response of

the type given by Hooke’s law σ = εE, which will be incorporated in the next section.

At this point the different natures of the piezoelectric and magnetostrictive processes

result in a temporary deviation from the parallel model structure developed thus far.

Empirical results show that the strain of the PMN-PT element is more linear and

less hysteretic over the same operating range than the magnetostriction of Terfenol-D.

This is partially due to the fact that the Terfenol-D element is being driven much

nearer to saturation than the PMN-PT stack is for the same applied voltage, and

partially due to the intrinsic differences in the materials. The conclusion that is

drawn from this is that the linear constitutive relations for piezoelectric materials

(2.1)-(2.2) are more valid over this operating range than the equivalent expressions

for magnetostrictive materials. Thus it is decided that the linear expressions are

acceptable for modeling the strain in the piezoceramic but not the in magnetostrictive

element.

The actual value of the active strain for the PMN-PT element can be identified

by rewriting the converse piezoelectric effect

ε =
σ

EE
y

+ d33E

and separating it into the elastic component to be considered later and the field-

induced length change λ = d33E. To relate this to the polarization, the expression

P = E
η

is employed which gives

λE(t, x) = d′P (t, x), (3.9)
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where d′ is the resultant coefficient of proportionality determined empirically. Note

that the hysteretic and saturation effects in the polarization will carry through to the

physical strain.

The strain generated by the Terfenol-D rod carries a bit more complexity from

the modeling point of view. The material deflection is typically described through

an energy formulation with contributions from magnetic, elastic, and anisotropic

energies. In the simplified case of an axially applied field and perpendicularly aligned

moments due to the compressive prestress, energy minimization [7, 8, 10] yields the

relationship

λM(t, x) =
3

2

λs

M2
s

M2(t, x) (3.10)

between the magnetization and magnetostriction. It should be noted that this expres-

sion is single-valued when experimental evidence suggests that there is some degree of

hysteresis in the process. As in [10], it is assumed here that the single-valued function

of λ is acceptable and that the hysteretic mechanisms in the process will be accounted

for in the M -H interaction.

3.3 Structural Model

The goal in formulating a structural model of the transducer is to develop a PDE

system that employs field induced strains λE and λM as inputs and couples them

to the internal elastic dynamics of the materials. The resultant output will consist

of the solutions u(t, x) which represent the longitudinal displacements of discrete

points along each active section. The following development is general, and is equally

applicable to either smart material section.
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For modeling purposes, it is easiest to start with a one degree of freedom system

and build up towards a full three degree system. The two smart material elements are

discretized and modeled with the prestress mechanisms and end masses as boundary

conditions. It is assumed that the active material sample has length L, cross-sectional

area A, longitudinal coordinate x, density ρ, Young’s modulus E, and internal damp-

ing cD. For simplicity all of these material properties are treated as constants along

the length. In the most basic one degree of freedom setup, the left end of the rod

(x = 0) is fixed while the right end (x = L) is constrained by the prestress mechanism

stiffness and damping kps and cps, respectively. The end mass ML is added as an ideal

point mass at x = L as well. The resultant orientation of forces at the free end of the

rod are depicted in Figure 3.3.

Under the assumption of linear elasticity the normal stress at a point 0 < x < L

is given by [10]

σ(t, x) = E
∂u

∂x
(t, x) + cD

∂2u

∂x∂t
− Eλ(t, x) + σ0

Figure 3.3: Sign convention for the prestress forces, inplane resultant, and rod de-
flection at boundary condition [10]. The variable ū represents the total deflection as
opposed to the perturbation u employed in the modeling equations.
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where λ is given by equation (3.9) or (3.10) and σ0 denotes the compressive prestress.

Integrating across the face of the material yields the inplane force resultant

Ntot(t, x) = EA
∂u

∂x
(t, x) + cDA

∂2u

∂x∂t
− EAλ(t, x), (3.11)

with u representing the perturbed displacement about the prestress equilibrium po-

sition. Force balancing with the distributed mass elements yields the wave equation

ρA
∂2u

∂t2
=
∂Ntot

∂x
(3.12)

as a model for the internal rod elastic dynamics [10].

Determination of boundary conditions consistent with the physical transducer

design is fundamental to the applicability of this approach. In the one degree of

freedom configuration this is accomplished in part by imposing u(t, 0) = 0. At the

other end where x = L, the infinitesimal section must satisfy the force balance from

the prestress as in Figure 3.3, yielding

Ntot(t, L) = −kpsu(t, L)− cps
∂u

∂t
(t, L)−ML

∂2u

∂t2
(t, L). (3.13)

For initial values the entire system is assumed to be in equilibrium prior to exci-

tation such that u(0, x) = 0 and ∂u
∂t

(0, x) = 0. The wave equation (3.12), boundary

conditions (3.13), and initial conditions combine to give the strong form of the model,

ρA
∂2u

∂t2
=
Ntot

∂x
u(t, 0) = 0

Ntot(t, L) = −kpsu(t, L)− cps
∂u

∂t
(t, L)−ML

∂2u

∂t2
(t, L)

 u(0, x) = 0
∂u

∂t
(0, x) = 0.

(3.14)
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The more convenient weak form is written by scaling (3.14) by test functions φ(x)

that are used in the numerical approximation. From there integration over the length

of the material is performed to get the integral equation containing the boundary

conditions implicitly built in. This development is as follows,

∫ L

0
ρA

∂2u

∂t2
φdx =

∫ L

0

∂Ntot

∂x
φdx

= Ntotφ
∣∣∣L
0
−
∫ L

0
N
∂φ

∂x

= Ntot(t, L)φ(L)−Ntot(t, 0)φ(0)−
∫ L

0
N
∂φ

∂x

= −
[
kpsu(t, L) + cps

∂u

∂t
(t, L) +ML

∂2u

∂t2
(t, L)

]
φ(L)

−
∫ L

0

[
EA

∂u

∂x
+ cDA

∂2u

∂x∂t
− EAλ

]
∂φ

∂x
dx (3.15)

with the end result being the weak form of the model. The solution u(t, x) to equation

(3.15) provides the axial displacement at every point along the material sample. In

the absence of an input λ, the system will have the equilibrium solution u(t, x) = 0.

Before discussing the implementation of this model utilizing the φ(x) test func-

tions, it is helpful to outline the weak form equations for the expanded two and three

degree of freedom models. In the two degree case the fixed end at x = 0 is replaced

with an additional mass and prestress component. The result is that the boundary

condition u(t, 0) = 0 is replaced with a form similar to that of (3.13),

Ntot(t, 0) = kps,0u(t, 0) + cps,0
∂u

∂t
(t, 0) +M0

∂2u

∂t2
(t, 0). (3.16)

This implies that in the derivation of the weak form (3.15) the Ntot(t, 0) term no

longer drops out, yielding the two degree of freedom model
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∫ L

0
ρA

∂2u

∂t2
φdx = −

[
kps,0u(t, 0) + cps,0

∂u

∂t
(t, 0) +M0

∂2u

∂t2
(t, 0)

]
φ(0)

−
[
kps,Lu(t, L) + cps,L

∂u

∂t
(t, L) +ML

∂2u

∂t2
(t, L)

]
φ(L)

−
∫ L

0

[
EA

∂u

∂x
+ cDA

∂2u

∂x∂t
− EAλ

]
∂φ

∂x
dx. (3.17)

The issue remains to fully expand the model to incorporate both smart materials

simultaneously. The best approach is to consider the entire transducer as a two degree

of freedom system like that above, but add the center mass to the midpoint of the

rod and define different material properties on either side of it. This formulation is

fully consistent with the actual design of the transducer, as depicted in Figure 3.4.

By defining a different λ on each half of the system, the various drive configurations

of the real device can be simulated.

3.4 Implementation

A number of implementation issues arise when trying to simulate the transducer

response using the various model components. The mathematical complexity required

to accurately describe hysteresis and nonlinearities makes for complicated algorithms

Figure 3.4: Structural model representation of the complete transducer.
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and slow computation times. This section outlines the improved techniques that are

used to implement the nonlinear system equations.

The expressions for the polarization (3.4) and magnetization (3.8) are initially

computed using a Gaussian quadrature approximation of the double integrals. While

it is algorithmically straightforward to conditionally determine the values of P and

M using the transition times, the number of comparisons needed is quite large. This

significantly diminishes the speed and elegance of the code, and a better approach is

typically used.

An alternative is to redefine the local polarization as

P =
E

η
+ PR∆, (3.18)

where the matrix ∆ contains values of ±1 to determine the transitions between the

upper and lower branches of the kernel. The efficient construction of ∆ will accom-

modate the natural vector forms of the various field values due to the quadrature of

the integrals. As a result, the i× j conditional statements are replaced with a simple

matrix multiplication that drastically improves the algorithm. From Smith [33], the

formal procedure for this is as follows. First, the initial matrices must be defined as

∆init =


−1 . . . −1 1 . . . 1
...

...
...

...
−1 . . . −1 1 . . . 1


Ni×Nj

, Ec =


Ec,1 . . . Ec,1

...
...

Ec,Ni . . . Ec,Ni


Ni×Nj

Ek =


Ek + E1 . . . Ek + ENj

...
...

Ek + E1 . . . Ek + ENj


Ni×Nj

, O =


1 . . . 1
...

...
1 . . . 1


Ni×Nj
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and the weight vectors as

W T =
[
w1e

−E2
1/b, . . . , wNje

−E2
Nj/b

]
1×Nj

V T =
[
v1e

−(ln(Ec1/Ec)/2c)2 , . . . , vNie
−(ln(EcNi/Ec)/2c)2

]
1×Ni

where Ek is the kth value of the input field. The polarization Pk is then specified by

∆ = ∆init

P̂ = PRO + 1
η
Ec

for k = 1 : Nk

P = 1
η
Ek + PR∆

dE = Ek − Ek−1

∆ = sgn((Ek − sgn(dE)Ec). ∗ (P − sgn(dE)P̂ ). ∗ P )
P = 1

η
Ek + PR∆

Pk = CW TP
T
V

end

where sgn denotes the signum function and .* indicates individual component multi-

plication. As expected, the above process is directly applicable to the magnetization

model as well. This algorithm operates at a level of efficiency significantly higher than

the original, allowing it to be potentially employed in real-time control applications.

To characterize all of the numerical parameters in both the P and M equations, the

simulated curves are optimally fit to experimental data.

With the polarization and magnetization curves the active strain components

are calculated from equations (3.9)-(3.10). Determination of the constants in the

expressions are based on a combination of values collected from literature and physical

data. The time dependence is carried through from the input fields but the spatial

considerations, particularly the variations along the Terfenol-D rod, are ignored.

Structurally there are implementation issues as well. In order to approximate the

solution to the weak form models, a spatial Galerkin discretization is used followed

by a temporal finite difference approximation [10]. On a single smart material the
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Figure 3.5: Linear test functions φ0(x), φ(x), and φN(x).

interval [0, L] can be divided up into partitions with points xi and step size h = L/N ,

where N denotes the number of subintervals (implying N + 1 points). The spatial

bias test functions φi(x) take the form of linear splines,

φi(x) =
1

h


(x− xi) , xi−1 ≤ x < xi

(xi+1 − x) , xi ≤ x ≤ xi+1

0 , otherwise

i = 1, . . . , N − 1

φN(x) =
1

h

{
(x− xN−1) , xN−1 ≤ x ≤ xN

0 , otherwise

which are plotted in Figure 3.5. This form of φ(x) ignores calculation at the one end

of the rod because it is designed for the one degree of freedom setup with the fixed

end at x = 0. To account for the other designs another function must be added,

φ0(x) =
1

h

{
(x− x1) , x0 ≤ x ≤ x1

0 , otherwise

which is a mirror of the half hat over the final interval xN . The solution u(t, x)

follows from the above definitions to be an expansion having the form

uN(t, x) =
N∑

j=0

uj(t)φj(x).
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Noting the separation of variables in the previous equation, if this form for u is

substituted into the weak form model of equation (3.15) it yields the discrete second-

order time dependent system

[Q]~̈u(t) + [C]~̇u(t) + [K]~u(t) = ~f(t), (3.19)

where the matrices and vectors are defined as

[Q]ij =



∫ L

0
ρAφiφjdx+M0 i = 0 and j = 0∫ L

0
ρAφiφjdx i 6= (0|N) and j 6= (0|N)∫ L

0
ρAφiφjdx+ML i = N and j = N

[C]ij =



∫ L

0
cDAφ

′
iφ
′
jdx+ cps,0 i = 0 and j = 0∫ L

0
cDAφ

′
iφ
′
jdx i 6= (0|N) and j 6= (0|N)∫ L

0
cDAφ

′
iφ
′
jdx+ cps,L i = N and j = N

[K]ij =



∫ L

0
EAφ′iφ

′
jdx+ kps,0 i = 0 and j = 0∫ L

0
EAφ′iφ

′
jdx i 6= (0|N) and j 6= (0|N)∫ L

0
EAφ′iφ

′
jdx+ kps,L i = N and j = N

~u = [u0(t), u1(t), ..., uN(t)][
~f
]
i

=
∫ L

0
EAλ(t, x)φ′idx

for the two degree of freedom system (3.17). The last consideration is the case where

the rod is not uniform but rather a combination of two distinct smart materials.

From Figure 3.4, the total transducer can be separated into two smaller intervals

each covering one active material. The integrals in the matrix expressions will be

uniform along one entire interval until the midpoint of the structure is reached. There

the differences in material properties will automatically arise from the integration of
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bias functions and result in the proper average of Terfenol-D and PMN-PT effects at

the center, essentially coupling the two in mechanical series.

The various integrals in the matrix indices all contain some product of bias func-

tions or bias function derivatives. Computing these with conditional statements can

prove inefficient and slow when done over the entire interval. A more robust algo-

rithm can be used by accounting for the fact that the bias function products are

nonzero only when within one point of each other on the i and j intervals. This limits

computation to just the main diagonal and adjacent diagonals rather than the entire

matrix. For the actual numerical integration a Gaussian quadrature routine is used

that looks at four points along each half of a hat function. Since the test functions

φ(x) appear identically at each point on the sample the x dependence is eliminated

from the integrals, and thus the computed quadrature results at all xi will be equal

(along one distinct material section only). This allows for the value at one point to be

calculated and simply propagated to all of the other discrete points in the material.

With the matrix coefficients determined, the system response needs to be numer-

ically approximated at discrete times. To this end the system matrices [W ] and [F ]

are created as

W =

[
0 I

−Q−1K −Q−1C

]
, ~F (t) =

[
0

−Q−1 ~f(t)

]
, (3.20)

and the second-order system (3.19) is rewritten as a first order state space system in

the form

~̇y(t) = W~y(t) + ~F (t)

~y(0) = ~y0 (3.21)
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where ~y(t) is arranged as [~u(t), ~̇u(t)]T and ~y0 denotes the initial positions and veloci-

ties. The system allows for temporal solutions to be determined through the iteration

~yj+1 = W~yj +
1

2
F [~F (tj) + ~F (tj+1)]

~y0 = ~y(0) (3.22)

where tj is the time value for which the response is ~yj. The matrices

W =

[
I − 4t

2
W

]−1 [
I +

4t
2
W

]

F = 4t
[
I − 4t

2
W

]−1

contain the differential time step 4t and once computed can be directly implemented

above. The ~y output vector contains the time-domain position and velocity at each

point along the transducer. In order to generate the desired bandwidth plots, the head

mass velocity signal (typically ~y2N) is converted into the frequency domain through

a Fourier transform.
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CHAPTER 4

TRANSDUCER DESIGN AND TESTING

This chapter presents the design and testing of a hybrid PMN-PT / Terfenol-D

transducer constructed in the Smart Materials and Structures Laboratory. The pri-

mary issues that need to be considered in this design are the mechanical components,

the magnetic circuit, and the electrical drive system. From the testing standpoint,

it is emphasized that the various sensors and data acquisition systems must be fully

characterized so that the responses of the device are accurately captured. Addition-

ally, the optimum drive conditions for each test must be determined and controlled

to ensure correct functionality of the transducer.

4.1 Mechanical Design

The design of the complete mechanical system is centered around the two smart

material elements (Figure 4.1). From the transducer modeling it is known that the

active materials dominate the stiffness in the system, and the rest of the design

can be based around these values. Therefore the starting point of this design is the

ETREMA Terfenol-D rod 50.8 mm (2 in) in length and 6.35 mm (0.25 in) in diameter.

The piezoceramic material employed is an EDO Ceramic PMN-PT stack 16 mm (0.63

in) in diameter and consisting of 62 individual layers for a total length of 35.2 mm
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(1.385 in). Using these values in the linear elastic modeling of material stiffness yields

approximately 28e6 N/m and 120e6 N/m for the Terfenol-D and PMN-PT elements,

respectively.

With the smart materials accounting for the compliance elements, the remaining

fundamental parts that need to be designed are the three vibratory masses. Bench-

marking from previous Tonpilz designs [1, 2, 3, 28, 34] reveals that equal diameter

cylindrical masses are the norm, with the head mass occasionally being tapered out-

ward. Using the approximate stiffnesses of the two smart materials, the suggested

mass ratio of roughly 1 : 2 : 2.5, and the target resonances of 1300 and 3900 Hz, it is

calculated that the head, center, and tail masses should have values of approximately

0.33 kg, 0.67 kg, and 0.83 kg. These numbers represent the overall lumped mass

values, which includes not only the masses themselves but also the attached prestress

mechanism, a percentage of the compliant material, and the magnetic circuit. As-

suming that the center and tail masses are made of non-magnetic steel and the head

mass is made of aluminum, the necessary volume of each can be easily calculated.

Several considerations lead to a practical diameter of 76.2 mm (3 in) being chosen

from which the rest of the dimensions fall into place.

To prepare the masses for machining some further considerations must be incorpo-

rated. The compressive prestress that is applied to each material is often implemented

by placing a Belleville washer under the head of a bolt running through the center

axis of the transducer. Tightening the bolt compresses the washer and loads the

entire structure but still allows for the smart material to strain. Considering the lack

of a hole in the available samples due to their small size, the center bolt concept is

expanded to three bolts located around the exterior of the materials but still running
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Figure 4.1: Construction diagram of the total hybrid transducer.
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through the masses along the primary rod axis. The design consequences of this fea-

ture are twofold. First, the center mass must allow for all six bolts to rigidly thread

into it, and second, each end mass must contain three bolt holes and corresponding

bushings for accurate alignment.

In general, the Belleville washer force-deflection relationship is nonlinear and de-

pends solely on the geometry and material of the washer. The washers employed here

have dimensions of h=.0225 in, t=.0135 in, Do=0.50 in, and Di=0.25 in, which are

designed to provide a quasi-linear force output over the range of interest as illustrated

in the measured data of Figure 4.2. From this experiment, the linear stiffness value

of a single washer is approximated as kps =0.684e6 N/m. To reduce the effective stiff-

ness of the springs, they are stacked in series combinations of three for the PMN-PT

section and five for the Terfenol-D section. A more detailed examination of Belleville

washers can be found in [24].

Final geometric modifications to the three masses include countersinking space for

the prestress bolt heads to ensure a flat radiating surface. To assist in the structure’s

alignment shallow depressions are built into each mass to interface with the two active

sections. Additionally, notches are cut out where needed to allow for the electrical

wires to protrude unimpeded. With these final additions, the mechanical drawings for

the transducer components are completed as shown in Appendix B. The construction

diagram of the complete transducer is depicted back in Figure 4.1. When all of the

components are combined the final values of the masses come out to be 0.308 kg for

the head, 0.670 kg for the center, and 0.777 kg for the tail. These slight deviations

from the target values are found to cause a negligible change in the system bandwidth.
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Figure 4.2: Experimental force versus deflection curve for the Belleville washers used
in the prestress mechanism.

Once the parts are assembled the transducer is ready for testing. When the two

sections are bolted together, the completed transducer measures 152.4 mm (6 in)

in length as shown in Figure 4.3(a). For accurate testing, the transducer must be

removed from any surface that could influence its dynamics, because for example

setting it on a table will restrict the motion of the tail mass. To this end the entire

transducer is placed inside of a 76.2 mm (3 in) PVC tube with a neoprene/cork ring

around each mass acting as an isolator. A thin slit is cut in the tube to allow the

various wires to escape. As shown in Figure 4.3(b) the complete tube assembly is

suspended from a Unistrut housing structure to prevent exogenous dynamics from

affecting transducer data.
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Figure 4.3: Complete (a) PMN-PT / Terfenol-D transducer and (b) external housing
structure.

4.2 Magnetic Circuit Design

Ideally, activation of Terfenol-D requires a perfectly uniform magnetic induction

throughout the material. To approximately generate this effect in the transducer, an

efficient magnetic return path needs to be incorporated. A key concern in magnetiz-

ing the sample is that the relative permeability of Terfenol-D under typical conditions

is about µr = 5 [12, 19]. Compared with values in the thousands for steel, it is ap-

parent that careful design of the magnetic circuit is needed to maximize the potential

magnetization of the Terfenol-D element. The key components in this flux path are

the sample itself, the cylindrical permanent magnet, and the various steel connecting

pieces.
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Figure 4.4: Cross-section of the closed magnetic circuit components.

Encasing all of the magnetic components is the Alnico V permanent magnet pro-

viding a constant field value of approximately 125 Oe (10 kA/m). The magnet has

inner and outer diameters of 19 mm (0.75 in) and 25.4 mm (1 in) and a length of

50.8 mm (2 in). An axial slit helps reduce the negative effects of high frequency eddy

currents. Connecting this to the Terfenol-D rod are 1018 steel discs that provide a

favorable magnetic flux path into and out of the sample. In this stage a small air gap

is required to allow for the Terfenol-D to strain. Often this will significantly hinder

the flux, but the gap is kept very thin and filled with a conductive grease to help

maintain a strong return path. The final magnetic structure is depicted in Figure 4.4

where all of the components are separated.

The magnetic circuit is driven by a solenoid that consists of 1232 turns of wound

26-AWG magnet wire, has a field rating of 300 Oe/A, has a resistance of 6.73 Ω, and

has an inductance of about 6 mH when filled with the Terfenol-D rod. The coil’s inner

diameter is slightly larger than the sample itself so as to not hinder the strain, and
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its length is roughly equal to that of the Terfenol-D rod as well. The innermost layer

of the coil is a separately wound pickup coil with 112 turns. This is used primarily

for sensing the induction in the smart material. The coils are wound with the help

of a variable speed motor and layers of the epoxy EpoTek T1709 spread throughout

to hold it together. This epoxy also aids the heat conduction away from the center

sample, which is important because the current can cause significant heating and

Terfenol-D properties will vary with temperature.

The magnetic finite element package FEMM v3.2 is used to simulate the system

to ensure that flux lines converge through the Terfenol-D sample and that leakage is

not predominate. The 2-d schematic of the transducer is imported and some current

input assumed. The simulation results are shown in Figure 4.5, where the relative

darkness is a measure of the flux density. In addition the software computes the

variation in induction along the length of the rod due to issues with the practical

solenoid. This result is plotted in Figure 4.6 for a relatively low input field.

4.3 Amplifier Configuration

The magnetic drive coil and the PMN-PT stack both require direct voltage ap-

plication to generate their respective fields. This input voltage is provided by two

Techron 7780 amplifiers connected in electrical series, a configuration that is capable

of producing up to 240 Vrms due to its voltage gain of 60. Since the test transducer is

not capable of handling such high levels, the amplifiers are used at low signal regimes

and thus need to be characterized at those levels. In particular, the high frequency

response of the amplifier output needs to be considered because any practical am-

plifier will at some point show a combination of magnitude roll off and undesirable
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Figure 4.5: Finite element computation of the performance of the magnetic circuit.

Figure 4.6: Predicted variation of induction along the axis of the Terfenol-D rod
calculated with FEMM v3.2.
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phase shifts. Considering that this transducer is targeted for use up to 6 kHz and may

have potential well past that, it is necessary to know the behavior of the amplifiers

at these frequencies.

To test for output degradation such as roll off or phase shifts, all three types of

electrical load (resistor, capacitor, and inductor) need to be considered because the

amplifier output is partially dependent on impedance. The tests are conducted by

connecting each component individually to the amplifiers and measuring the transfer

function of voltage across the load to voltage input to the amps. Each test is run

with the maximum allowable 20 kHz frequency span and an input of 100 mV of white

noise. Any drop off in the transfer function magnitude or sudden shifts in the phase

will be evidence that the amplifiers have issues that need to be accounted for. Further

tests are run at discrete frequencies and compared with the trends from the random

tests. The conclusion from the tests is that the amplifiers have a steady voltage gain

of approximately 60 up to at least 20 kHz, with only minor changes resulting from

the type of load impedance. A small consistent phase shift is observed at the rate of

-1◦/kHz. The full results of this procedure are presented in Appendix C.

4.4 Data Collection

Experimental data is collected from a variety of electrical and mechanical sources.

An accurate measurement of each transducer variable is necessary to quantify the

output response of the system, to address the behavior of the electromechanical cou-

pling, and to provide reasonable values for the material properties. For this purpose

a range of sensors are used in this investigation.
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On the mechanical side of the transducer, the primary variables of interest are the

motion of each mass, both at quasi-static frequencies and over the full bandwidth. For

low frequency measurements a Lucas Schaevitz MHR-025 linear variable differential

transformer (LVDT) with a sensitivity of 1.25 V/mil is used to capture the small

strains produced by both the Terfenol-D and PMN-PT elements. The sensor itself is

fixed on a test stand above the mass in question with the core located on a thin rod

that is gently fixed to the mass face with wax. The instrument occasionally suffers

from noise issues, particulary at 60 Hz, so in most cases the LVDT signal is low-pass

filtered to alleviate these errors.

For measurements at higher frequencies PCB U353B16 accelerometers, in con-

junction with the PCB 482B05 signal conditioning box, are used to record the actual

acceleration of each mass. These sensors thread directly onto the masses to ensure

the best possible coupling of the instrument to the real motion. The resulting data

signal can be numerically integrated to determine the velocity or position response

as desired.

From the electrical side of the transducer it is necessary to know the voltage

and current values associated with each smart material section. The applied voltage

across the two active elements is measured directly with an appropriate cable. The

amplifiers are equipped with a convenient current monitoring system that outputs a

small voltage signal proportional to the current flow out of the amplifiers and into

the transducer. Knowledge of the gain on this function (18.7 A/V) allows for a direct

scaling into true current. The ratio of the measured voltage and current gives the

total electrical impedance that is of particular use in analyzing the dynamics of the

structure.
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In the magnetostrictive section of the device, the pickup coil allows for the voltage

induced by flux changes to be read directly across the coil’s terminals. Connecting

these terminals to a Walker Scientific model MF-5D integrating fluxmeter results in

a voltage output directly proportional to the magnetic induction B. This instrument

applies equation (1.10) to the voltage signal where the constant NA is the product

of the number of turns in the pickup coil and the mean area of one loop.

The hardware employed for data acquisition includes a Data Physics SignalStar

Vector dynamic signal analyzer and accompanying Mobilyzer 4.0 software. This sys-

tem has five input channels that accept voltage readings up to ±10 V and performs

transfer function analysis on all desired combinations. The output channel can be

configured for a variety of signals that are used as input to the amplifiers. To cre-

ate the magnetic and electric offsets often needed in testing, a variable external DC

circuit is electrically combined with the AC output from the Data Physics prior to

amplification.

4.5 Test Parameters

The first experiments consist of applying quasi-static sinusoidal voltages from the

Data Physics system into each smart material and measuring the output displace-

ments with the LVDT. Tests are run initially at low levels (±5 V input) to ensure

that the materials respond properly before they are driven with higher (±75 V) fields.

One end of the transducer is clamped to the work table, limiting the output motion

to one degree of freedom, in order to make use of the single LVDT instrument. From

the resultant strain versus field “butterfly” curve of the Terfenol-D section a magnetic

bias and AC drive level were chosen to limit the motion to the steepest linear region
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on the curve. All subsequent broadband testing is done at the operating levels so

determined.

The tests of the high frequency bandwidth are conducted with a low drive level

and corresponding bias to maximize the linearity in the material responses. To ex-

cite the structure, low level (2.1 V) white noise voltage is generated by the Data

Physics system and combined with the appropriate DC offset (2.1 V) to ensure that

each section sees only zero-to-peak voltage. The upper frequency span on the data

collection ranges from 5 to 20 kHz using maximum resolution of the DAQ system.

The measured quantities in these tests include the applied voltage and current to the

transducer and the output acceleration at each mass. From these the target transfer

functions voltage per current (impedance) and velocity per voltage (bandwidth) are

calculated.

Experiments are conducted with each individual section driven independently and

with the two wired in parallel. In addition, to study the effect of shifting the electrical

resonance an external 378 nF capacitor is wired in parallel with the 251 nF PMN-

PT stack as well. This alters the effective capacitance in the circuit, and thus the

frequency of electrical resonance, to see what changes appear in the bandwidth. Every

broadband test is repeated when an external mechanical load impedance is added to

the radiating face of the head mass. The PVC tube is packed full of duct seal on

the one side of the transducer in an attempt to simulate the loading effects of water

that this design would see if actually used in sonar applications [2]. The results and

implications of all of these tests are presented in Chapter 5.
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CHAPTER 5

RESULTS AND ANALYSIS

Experiments are conducted on the test transducer as a means of determining

material properties for and validating the formulation of the various system models.

Low frequency tests provide data on the strain-field relationships and quantify the

hysteresis in the system. Broadband frequency experiments validate the extension of

the velocity response bandwidth to the 1-6 kHz range.

5.1 Low Frequency Model and Test Results

Quasi-static time domain tests are performed for purposes of determining the low

field drive regime to be used for broadband driving of the transducer. Figure 5.1 shows

strain versus magnetic field curves collected from the transducer when driving solely

the Terfenol-D section at 500 mHz. The overall “butterfly” shape is apparent, with

the material exhibiting positive strain in response to applied field in either direction.

The deviation of the center crossover point from zero field is due to the 125 Oe (10

kA/m) DC bias of the Alnico permanent magnet. The minor loop on the right branch

of the curve depicts the low drive level employed in the subsequent broadband tests,

chosen for its location on the steep linear region of the total curve. Corresponding
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Figure 5.1: Biased strain versus magnetic field data collected from the Terfenol-D
section at 500 mHz. The minor loop depicts the drive range for subsequent broadband
tests.

to this data is the measured induction versus field graph shown in Figure 5.2, again

with minor loop.

In order to generate the low level excitation depicted, the magnetic bias of the

Alnico is increased to 220 Oe (17.6 kA/m) by adding 2.1 V DC to the drive coil. The

minor loops are then created by applying an additional ±2.1 V AC to the drive coil,

for a total zero to peak field of 190 Oe (15.2 kA/m). The resulting drive signal must

also be applied to the PMN-PT stack, where a 0 - 4.2 V input is equivalent to a zero

to peak electric field of 7 kV/m. Figure 5.3 shows the results of driving solely the

PMN-PT stack at this level. The major loop is a simulated curve exemplifying the

general shape, while the minor loop is actual test data. It should be noted that this

signal contained some noise at 60 Hz which was removed via a software digital filter.
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Figure 5.2: Magnetic induction versus magnetic field data collected from the Terfenol-
D section at 500 mHz, showing biased major and minor loops.

Figure 5.3: Strain versus field data collected from the PMN-PT stack at 500 mHz.
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The hysteresis in this strain loop is seen to be small, and the overall slope of the data

gives the linear piezoelectric coupling coefficient d33.

The nonlinear model presented in Chapter 3 can be used to produce low frequency

graphs to compare with collected data. At this point, however, the model fit to the

data is not optimized through the various numerical constants as would be required

for truly accurate simulations. Notwithstanding, the general applicability of the non-

linear model can be seen by the qualitative similarities between the data in Figures

5.1 and 5.2 and the model output in Figures 5.4 and 5.5.
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Figure 5.4: Strain versus magnetic field for the Terfenol-D section simulated with the
nonlinear model presented in Section 3.2.

Figure 5.5: Magnetization versus magnetic field for the Terfenol-D section simulated
with the nonlinear model presented in Section 3.1.2.
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5.2 Broadband Model and Test Results

In all broadband tests, random white noise excitation in the 0 - 4.2 V range is

applied to each smart material section. The full complement of electrical impedance

and mechanical acceleration frequency response functions are measured from the two

transducer sections using the equipment reviewed in Chapter 4. The analysis tech-

niques previously discussed are applied to the impedance and admittance loops to

determine the effective material properties for use in the model simulations. The

various results and implications of all empirical and calculated data are discussed

below.

5.2.1 Terfenol-D Section

In all tests of the Terfenol-D section, the voltage excitation is applied across

the terminals of the magnetic drive coil while the PMN-PT section is left as an

open circuit. The first tests are run with the transducer operating with no external

load. Figure 5.6 shows the head mass velocity response dominated by the Terfenol-D

section’s resonance peak, which is rather sharp due to the lack of damping. The

modeled data in this case is only from the full linear transducer description. The

excited motion of the PMN-PT mode is significant, and appears at a slightly higher

frequency in the experimental data than in the model simulation. This is due to the

open circuit configuration of the piezoceramic stack causing an increase in its stiffness.

Because the model uses values obtained from the complete closed circuit transducer,

it fails to account for this shift.

The other result of primary interest is the electrical impedance. Figure 5.7 depicts

the magnitude of this function, with the linear model result overlaid onto the measured
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Figure 5.6: Head mass velocity response with only Terfenol-D excitation.

data. Both show the anticipated linear increase of Z with frequency due to the

inductive nature of the solenoid. The coupled motional effects near 1300 Hz agree

with the section’s resonant frequency from the velocity response, while the measured

impedance also shows smaller effects from the excited PMN-PT motion at 4100 Hz.

The circular mobility loop in Figure 5.8 is the same electrical impedance data plotted

in Nyquist format. The loop’s location in the first quadrant is indicative of the

transducer section’s electrical properties (jωL places it along the positive imaginary

axis) while the diameter and roundness are measures of the transduction.

The above procedure is repeated with the transducer connected to the duct seal

loading. With identical drive conditions, the presence of radiation impedance adds a

ZL term to the existing form of the mechanical impedance, the net result of which
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Figure 5.7: Electrical impedance magnitude with only Terfenol-D excitation.

Figure 5.8: Impedance mobility loop with only Terfenol-D excitation.
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Figure 5.9: Head mass velocity response with only Terfenol-D excitation with external
load ZL.

is the presence of increased damping. This is apparent in the head mass velocity

response shown in Figure 5.9, which has the same features as the unloaded result. It is

noted that whereas the model accurately predicts the level of damping in the unloaded

case, it underestimates the damping in this loaded situation. Figure 5.10 shows how

the addition of damping in the amount of 600 Ns/m (about a 100% increase) to the

modeled load impedance can compensate for this and bring the modeled Terfenol-D

resonance right onto the measured data. The need for this excess damping may be

explained by equation (1.30) being an approximation best suited for lightly damped

systems [21]. For continuity, all further graphs with the external load include this

extra term.
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Figure 5.10: Head mass velocity response with only Terfenol-D excitation with exter-
nal load and increased damping in the modeled load impedance.

The same loaded velocity response is plotted in Figure 5.11, but with the results

from the nonlinear model and the simplified modal linear model as well. The lin-

ear model assuming ideal modes ignores all off-mode contributions as explained in

Chapter 2. The nonlinear model is shown to agree with the data near the Terfenol-D

resonance, but predicts more output from the PMN-PT section than what is actually

seen, and shows a steeper roll off on the low frequency end. These disparities are

best explained by the nonlinear model not being optimized for the transducer. The

data analysis that yields the lumped system parameters for use in the linear model

does not provide equal insight into the distributed properties of the smart materials,

particularly the internal damping. As such the nonlinear model coefficients are sim-

ply estimates at this stage. The result of this is that the full linear model is found
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Figure 5.11: Head mass velocity response with only Terfenol-D excitation from all
models.

to be sufficiently accurate at low drive levels, and thus will be exclusively used in

most of the figures. The nonlinear model has been shown the potential to properly

characterize the transducer motions, but will be necessary only at operating regimes

beyond the linear model’s capabilities.

Returning to the full linear model, the electrical impedance magnitude in Figure

5.12 shows that the coupled motional effects are somewhat diminished due to the

damping, but the overall form is the same as before. The coupling value displayed is

significantly less than in the unloaded case, but this may simply be a numerical issue

since the coupling estimates (2.23)-(2.24) become poor approximations in heavily

damped systems [12]. The mobility loop in Figure 5.13 is smaller and more teardrop

shaped, a sign of increased losses [5, 15].
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Figure 5.12: Electrical impedance magnitude with only Terfenol-D excitation with
external load.

Figure 5.13: Impedance mobility loop with only Terfenol-D excitation with external
load.
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5.2.2 PMN-PT Section

Identical tests are run on just the PMN-PT section of the transducer, with the

magnetic drive coil left as an open circuit. The unloaded velocity response in Figure

5.14 shows the high frequency resonance near 3900 Hz as expected. The off-mode

effects of the Terfenol-D section are as before at a higher frequency than anticipated

by the model due to the open circuit. Figure 5.15 displays the electrical impedance

magnitude, where the inverse relationship to frequency depicts the stack’s capacitive

properties. The pronounced motional impedance effects are found in Figure 5.16 to

result in a nearly perfectly shaped circular loop, which implies that in this particular

transducer the piezoelectric transduction process is cleaner and more efficient than

the magnetostrictive counterpart. The loop is in the fourth quadrant because the

capacitive impedance can be written 1/jωC = −j/ωC, placing it along the negative

imaginary axis.

When the external load impedance is added, the same trends as in the Terfenol-D

section are observed. The dampened version of the head mass velocity response is

plotted in Figure 5.17, which displays all of the model results. Here, the nonlinear

model is practically identical to the full linear model, confirming the nonlinear formu-

lation. Once again, however, the fact that the nonlinear model offers no advantages

for this drive configuration implies that it will only be used when high drive levels

require it. Figures 5.18 and 5.19 show how the added load causes a drastic reduction

on the magnitude of the motional effects, and correspondingly on the size and circular

quality of the impedance mobility loop.
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Figure 5.14: Head mass velocity response with only PMN-PT excitation.

Figure 5.15: Electrical impedance magnitude with only PMN-PT excitation.
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Figure 5.16: Impedance mobility loop with only PMN-PT excitation.

Figure 5.17: Head mass velocity response with only PMN-PT excitation from all
models.
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Figure 5.18: Electrical impedance magnitude with only PMN-PT excitation with
external load.

Figure 5.19: Impedance mobility loop with only PMN-PT excitation with external
load.
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5.2.3 Complete Transducer

When the two sections are wired in parallel and driven with the same 0 - 4.2

V random voltage excitation, the two modes’ resonant peaks overlap to successfully

extend the transducer bandwidth to below 1 kHz. The results in Figure 5.20 show that

although the measured peaks overlap accurately with the modeled responses, the lack

of significant damping creates a large magnitude variation over the frequency range of

interest that actually constitutes a poor overall bandwidth. Driving the transducer

against the duct seal loading adds the needed damping, and the resulting velocity

response in Figure 5.21 shows a substantially flatter and more desirable bandwidth.

An important goal of this study is to characterize the effect of the electrical reso-

nance on the transducer bandwidth. To this end, the impedance magnitude in Figure

5.22 shows the results for the case when the drive solenoid and piezoceramic stack

are wired together in electrical parallel. The Terfenol-D section is shown to behave

normally, that is the impedance increases with frequency, but the PMN-PT section’s

resonance is now just to the left of the electrical resonance frequency ωn,e = 1/
√
LC.

As a result, the motional effects are quite large, and the coupling k1 is improved

from the PMN-PT only case. However, Figure 5.23 illustrates that the PMN-PT

element’s mobility loop is actually in the first quadrant, before the electrical reso-

nance frequency at the real axis-intercept. This means that the capacitive stack is

behaving inductively in this configuration. Wiring an external 378 nF capacitor in

parallel with the circuit changes the effective capacitance and thus shifts the elec-

trical resonant frequency to in between the two mechanical resonances. Figure 5.24

shows that the impedance magnitude is now indicative of the two individual modes,
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Figure 5.20: Head mass velocity response with both sections driven.

Figure 5.21: Head mass velocity response with both sections driven with external
load.
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as the Terfenol-D section is inductive and the PMN-PT section is once again capac-

itive. The Nyquist plot in Figure 5.25 illustrates that the two sections resonate in

their original quadrants. The most important result lies in the head mass velocity

response, where a comparison of Figures 5.26 and 5.27 reveals that altering the elec-

trical resonance leaves the transducer bandwidth unaffected. This result carries a

variety of implications, particularly the design consideration that replacing the piezo-

ceramic or the magnetic solenoid with an alternate component of the same type will

not fundamentally alter the transducer performance.

Finally, the resulting bandwidth of Figure 5.27 is found to have a magnitude

deviation of about 12 dB over the frequency range of interest. Typically this would

be considered too large of a variation for effective use, but it must be considered

that these Tonpilz transducers are typically incorporated into an array structure. A

U.S. Navy prototype of a similar hybrid architecture has been shown to exhibit a

comparable decibel variation over the bandwidth of a single element, but only a 3 dB

variation when configured in a 4×4 transducer array [3].
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Figure 5.22: Electrical impedance magnitude with both sections driven in parallel
with external load.

Figure 5.23: Impedance mobility loop with both sections driven in parallel.
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Figure 5.24: Electrical impedance magnitude with both sections driven with external
load and added capacitor.

Figure 5.25: Impedance mobility loop with both sections driven and added capacitor.
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Figure 5.26: Head mass velocity response with both sections driven with external
load and added capacitor.

Figure 5.27: Head mass velocity response with both sections driven with external
load.
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CHAPTER 6

CONCLUDING REMARKS

The goal of this investigation was to develop an accurate modeling framework

for application to hybrid smart material structures containing more than one active

element. The specific focus involved extending the frequency bandwidth of a Tonpilz

sonar transducer to 1-6 kHz, which has been shown to be successfully accomplished.

The overall approach of this investigation was as follows. The first chapter re-

viewed the fundamental concepts behind electromechanical systems, and how they

relate to hybrid smart structures. Chapter 2 worked through the development of

the total linear transducer model by combining concepts from mechanical vibrations,

electroacoustics, and the constitutive material relations into a unified expression.

While the results of this model compared favorably with experimental data, the use

of the model is constrained to low input operation. Knowing that a more complete

transducer description is needed for arbitrary operation, a detailed nonlinear model

was developed in Chapter 3. The design and experimental setup of the physical test

transducer were outlined in Chapter 4, with the results presented in Chapter 5.
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6.1 Conclusions

The most important results from the model and data analysis are summarized

below. In the formulation of the linear model it is learned that the modal analysis,

while useful for estimating the resonance frequencies, fails to address all pertinent

dynamics in the transducer. From the results in Chapter 5, it is apparent that for

the low drive levels employed, the full linear model provides an excellent fit to the

measured data. The linear frequency domain nature of the system equations also

imply that they are useable in control applications. The linear model’s main issue

at the low regimes implemented is the need for extra damping, on the order of 600

Ns/m, to be added to the estimated load impedance ZL to correct for inaccuracies in

equation (1.30) for the damping coefficient.

The nonlinear model is based heavily on the prior works of Smith [33] and Dapino

[10], but this investigation combines them in a novel manner. Expanding the pub-

lished one-degree-of-freedom structural model to a two-degree case is straightforward,

but a variety of issues arise when developing the three-degree-of-freedom situation.

Trying a force balance between two different rods (one for each material) gives results

that range from physically inaccurate to completely unstable. The approach of a

single transducer with variable properties better incorporates the mechanical series

coupling of the two sections and reduces to other simpler modes when certain limits

are enforced.

From the measured data, a few important trends are observed. The most funda-

mental result is that the desired bandwidth has been achieved, and that the transducer

bandwidth extends to even below 1 kHz. Although associated with undesirable losses,

sufficient damping must be present in the system to flatten out the resonance peaks.
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The figures in Chapter 5 show that the external load impedance accomplishes this

goal at the cost of diminishing the transduction processes in the two smart materials.

Variation of the system capacitance, and thus electrical resonance, is shown to

alter the impedance of each active section but cause a negligible change in the trans-

ducer bandwidth. This implies that the specific electrical properties of each smart

material can be altered, supporting the idea of retrofitting older transducers (typi-

cally employing PZT) with modern materials such as PMN-PT. The case where the

electrical resonance frequency overlaps with the PMN-PT section’s mechanical peak

showed the maximum coupling for that element, meaning potential gains might be

achievable. Further investigation into this effect may shed light on the high energy

efficiencies thought to be attainable in hybrid structures.

6.2 Future Work

While this research has accomplished several key goals, there is still potential for

further study. An original focus of hybrid systems research was the implementation of

high energy efficiencies by driving the structure near its electrical resonance. As men-

tioned, this investigation showed that maximum coupling is attained for an individual

section when the electrical and mechanical resonances overlap. Continued research

could be done on methods to shift the electrical resonance onto each section’s mode

for improved transduction. Additionally, experimental energy measurements can be

made to determine the driving efficiency of the transducer over the entire bandwidth.

This information would prove useful in optimizing the overall transducer performance.

Of primary interest for further development is a more complete implementation

of the nonlinear model. The model is composed of several parts, each requiring that
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a number of numerical constants be optimized from measured data. This procedure

requires a combination of least-square regressions that has not been used to this

point. As a result, the nonlinear model is not easily compared with either the linear

model or the physical data, particularly in the hysteretic P and M relations. The

optimization of the fit between these curves and actual data is imperative to fully

reduce the discrepancies that will propagate through the rest of the nonlinear model.

Proper correlation of the nonlinear model will be necessary to simulate the potential

effects of high drive regimes, as the inherent hysteresis and saturation effects could

offer unique enhancements of the transducer bandwidth.

In combination with this, a variety of alternate drive configurations may provide

a more optimal transducer response. Specifically, constant current and swept sine

inputs would generate slightly different transducer outputs that could lead to new

ideas. The inherent delta-E effect in Terfenol-D could be creatively used to shift the

lower resonance peak over a range that further extends the system bandwidth.

Another consideration for future research is in expanding the experimental setup

to more accurately measure the quantities of interest. The bandwidth in this thesis

is considered to be represented by the head mass velocity response, which is only

an approximation. A more accurate sonar response can be found by driving the

transducer underwater and using microphone pickups, which would present additional

implementation difficulties. Tonpilz transducers are typically employed in an array

structure to improve the overall performance, and although constructing additional

devices may be impractical, analytical techniques exist that could be used to simulate

the differences in the array loading.
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APPENDIX A

UNITS IN ELECTROMAGNETISM

The following table summarizes the most common electromagnetic quantities in

both the CGS or Gaussian system and the SI system with Sommerfeld convention.

Quantity Symbol CGS SI Conversion/Value
Electric charge q - coulomb (C) C = A·s
Current I - ampere (A) -
Electric potential V - volt (V) -

Electric field ~E - V/m -

Electric induction ~D - C/m2 -
Electric flux Φ - N·m2/C -
Permittivity ε0 - C2/N·m2 8.85×10−12

Electric moment ~p - C·m -

Polarization ~P - V/m -

Magnetic field ~H oersted (Oe) A/m Oe = 79.58 A/m

Magnetic induction ~B gauss tesla (T) gauss = 10−4 T
Magnetic flux φ maxwell weber (Wb) maxwell = 10−8 Wb
Permeability µ0 - H/m 4 π× 10 −7

Magnetic moment ~m emu A·m2 -

Magnetization ~M emu/cc A/m emu/cc = 1000 A/m
Resistance R - ohm (Ω) Ω = V/A
Capacitance C - farad (F) F = A·s/V
Inductance L - henry (H) H = V·s/A

Table A.1: Principal variables and units in electricity and magnetism.
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APPENDIX B

MECHANICAL PART DRAWINGS

This appendix contains the individual mass and magnetic circuit drawings of the

key components in Figure 4.1. The head, center, and tail masses are represented in

Figures B.1, B.2, and B.3, respectively. The steel pieces required to complete the

magnetic circuit path are depicted in Figures B.4, B.5, and B.6.

Figure B.1: Mechanical drawing of head mass.
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Figure B.2: Mechanical drawing of center mass.

Figure B.3: Mechanical drawing of tail mass.
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Figure B.4: Mechanical drawing of a magnetic circuit steel piece.

Figure B.5: Mechanical drawing of a magnetic circuit steel piece.
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Figure B.6: Mechanical drawing of a magnetic circuit steel piece.
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APPENDIX C

AMPLIFIER CHARACTERIZATION

The high frequency response of the two Techron 7780 amplifiers is measured for

resistive, inductive, and capacitive loading. The amplifiers are tested in series with

100 mV random noise input and a DAQ frequency span from DC to 20 kHz. The

measured quantities are the magnitude and phase of the output voltage to input

voltage transfer function.

Figures C.1 and C.2 show the full frequency response of the amplifiers when driving

a purely resistive load. Both graphs show only minor deviations over the range of

interest. The results for the inductor and capacitor are plotted in Figures C.3-C.4 and

C.5-C.6, respectively, with each showing nice behavior as well. Overall the expected

roll off is not found and the amplifiers behave better than anticipated.

To confirm the broadband tests, individual frequencies are tested as well via a 100

mV sine wave, the results of which are in Table C.1. An example of the 5 kHz test is

shown in Figure C.7, where the gain value is read from the flat region at that specific

frequency. Finally, these value were compared with the original tests in Figures C.8

and C.9. The conclusion is that the amplifiers are extremely reliable up to at least

20 kHz, with a constant gain of 60 V/V and a phase shift of only -1◦/kHz.
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Figure C.1: Magnitude of amplifier frequency response with R=10Ω load.

Figure C.2: Phase of amplifier frequency response with R=10Ω load.
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Figure C.3: Magnitude of amplifier frequency response with L=225 mH load.

Figure C.4: Phase of amplifier frequency response with L=225 mH load.
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Figure C.5: Magnitude of amplifier frequency response with C=390 nF load.

Figure C.6: Phase of amplifier frequency response with C=390 nF load.
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Frequency (Hz) Gain (V/V)
R L C

100 59.74 60.30 60.54
500 59.74 60.45 60.55
1000 59.73 60.48 60.55
2000 59.70 60.49 60.56
5000 59.55 60.46 60.65
10000 59.18 60.36 60.98
15000 58.68 60.22 61.55
19000 58.10 59.97 62.09

Table C.1: Amplifier voltage gains at discrete frequencies for each electrical load.

Figure C.7: Magnitude of amplifier frequency response to 5 kHz sine wave.
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Figure C.8: Magnitude of amplifier frequency response to all loads, showing agreement
between random and sinusoidal inputs.

Figure C.9: Phase of amplifier frequency response to all loads.
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