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Abstract

Magnetostrictive materials transfer energy between the magnetic and mechanical

domains as they magnetize in response to applied stresses and deform in response to

applied magnetic fields. The deformation that arises from this coupling directly causes

the material’s effective elastic moduli to depend on stress and magnetic field. This

phenomenon, known as the ∆E effect, can be electrically modulated using electromag-

nets. Devices having an electrically-tunable stiffness can be developed by harnessing

this effect. Such devices have broad application to the field of vibration control,

particularly in instances where the vibration source or operating regime change over

time. Although the static ∆E effect has been extensively measured in many man-

made magnetostrictive materials, such as Galfenol (FeGa) and Terfenol-D (TbDyFe),

this tunability has been seldom applied to the development of vibration control de-

vices. Real-time tuning of the elastic moduli (i.e., the dynamic ∆E effect) has not

been studied. Further, the effects of dynamic stress on the constitutive behavior of

magnetostrictive materials are largely unknown, despite their critical importance to

the modeling and design of many magnetostrictive systems, including dynamic sen-

sors, energy harvesters, vibration dampers, and stiffness tuning devices. This work

analytically, numerically, and experimentally explores the effects of dynamic stress

on magnetostrictive materials and the use of the static and dynamic ∆E effect in the

development of novel vibration control devices.
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Measurements of the quasi-static elastic response of Galfenol reveal that the

Young’s modulus and ∆E effect are stiffer and smaller, respectively, for small am-

plitude applied stresses than for large amplitude applied stresses. The ∆E effect of

solid and laminated samples is found to be equal, despite the laminated sample’s

17 % lower modulus under saturated conditions. The static ∆E effect in Galfenol-

based composite beams that are applied as adaptive vibration absorbers is studied by

constructing nonlinear, dynamic models of their vibratory response. The absorber’s

resonant frequencies are shown to be controllable below an input power threshold via

changes in the bias magnetic field. Resonant frequency tunability increases with the

Galfenol element’s volume fraction and offset from the bending axis.

Mechanically-induced magnetic diffusion in linear and nonlinear cylindrical fer-

romagnets is investigated. Analytical time and frequency domain solutions of linear

diffusion are derived for the first time. The solutions are non-dimensionalized and

used to define a skin depth and cut-off frequency, which can be used for design pur-

poses. This diffusion causes the material’s effective magnetoelastic coupling coefficient

and elastic modulus to be complex-valued and frequency dependent. The effects of

material property variations on the nonlinear diffusion response are studied numeri-

cally. A novel characterization of Galfenol’s constitutive response to dynamic stress is

presented along with a detailed experimental methodology that ensures the accuracy

of the measurements. Solid and laminated Galfenol rods exhibit cut-off frequencies

of 44 to 105 Hz and about 1 kHz, respectively. The mechanical loss factor of the solid

rod reaches 0.13 due to eddy current-induced damping.

The dynamic ∆E effect is studied using a magnetostrictive transducer designed

for high speed stiffness switching. Electromechanical modeling of the transducer
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shows that the rise time to stiffness control inputs can be on the order of 0.1 ms.

Terfenol-D is found to outperform Galfenol by providing a slightly faster rise time,

significantly higher magnetic diffusion cut-off frequency, and larger elastic modulus

tunability. Young’s modulus changes up to 21.9 GPa and 500 Hz, modulus switching

up to 12.3 GPa and 100 Hz, and a rise time below 1 ms are measured. The transducer

is applied in a computational study of switched stiffness vibration control of a simple

mechanical system. Using a modified control law, control-induced damping equivalent

to a viscous damping ratio of about 0.15 is demonstrated.
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Chapter 1: Introduction

1.1 Overview and Motivation

Noise and vibration are undesirable side effects of many power generating and

power transmitting systems, worsened by high performance designs and efficiency-

motivated reductions in mass. For example, severe vibration is generated in helicopter

transmissions due to the varying stiffness of the gear mesh, leading to significant cabin

noise (up to 120 dB) and pilot fatigue [107]. In automotive applications, the internal

combustion engine and transmission act as vibration sources that vary, over a broad

frequency range, with changes in the engine’s rpm, leading to audible and physical dis-

comfort for passengers [66]. When vibration cannot be reduced through direct design

modifications (e.g., by introducing additional damping or shifting natural frequencies

away from operating conditions), vibration control systems, namely absorbers and

isolators, are often utilized. Conventional control systems perform well, but must

be designed for a specific vibration source and operating regime. Through changes

in their stiffness or damping properties, adaptive (smart) vibration absorbers and

isolators (AVAs and AVIs) can tune their response in conjunction with changes to

the vibrating system. AVAs and AVIs therefore form robust vibration control sys-

tems. Additionally, vibration control via carefully-timed stiffness switching between
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high and low stiffness states can provide a simple yet powerful means of vibration

attenuation [40, 117].

A variety of smart materials, including piezoelectric [4], magnetorheological [103],

shape memory [124], and magnetostrictive [69] materials, have been used to provide

compact, solid-state forms of elastic modulus change. This research considers mag-

netostrictive materials for reasons discussed in Section 1.2.2. Quasi-static stiffness

tuning of magnetostrictive materials has been an active field of research since the

early 1900s; the effect has garnered more attention since the 1970s due to the discov-

ery of significant elastic modulus tunability in man-made magnetostrictive materials.

A large body of experimental work in this field has established the modulus tunability

of many man-made magnetostrictive alloys along with the influence of the bias con-

ditions (stress and magnetic field). However, this tunability has been seldom applied

to the development of vibration control devices. Further, in practice, the tunable

stiffness device is subjected to dynamic stress, for which the constitutive behavior

of magnetostrictive materials has rarely been studied or applied. Also, dynamic, or

real-time, stiffness tuning of magnetostrictive materials is an undiscovered field. This

dissertation advances the state-of-the-art by analytically, numerically, and experimen-

tally investigating the effects of dynamic stress on magnetostrictive materials and by

utilizing both static and dynamic elastic modulus changes in the development of novel

vibration control devices.

The subsequent section discusses important background information, including

an introduction to electromagnetism, magnetostrictive materials, magnetostrictive

transducers, and autoresonant control. After, a literature review of key topics is

presented, followed by the research objectives and an outline of the contained research.
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1.2 Background

1.2.1 Electromagnetism

This section provides an introduction to (a) the physical mechanisms underlying

electromagnetism and the magnetization process, (b) Maxwell’s equations, (c) eddy

currents and magnetic diffusion, and (d) energy dissipation in ferromagnetic materials.

A magnetic field H is generated by the motion of electrical charges. Current

flowing in a conductor creates magnetic fields that do not depend on the material

properties of the surrounding medium. These fields encircle the current in a plane

perpendicular to the current direction. At the atomic scale, imbalanced spin and

orbital motion of electrons act as sources of additional magnetic fields. Due to their

inherent nature and to differentiate them from fields due to conventional electric

currents, these atomic-scale fields are together denoted as magnetic moments m rather

than a magnetic field. Magnetic moments can be envisioned as atomic-scale magnets

that are able to rotate, but have a fixed magnitude for a given element at a given

temperature.1 The vector sum of magnetic moments per unit volume of a material

is defined as the magnetization M. The magnetic flux density B is a measure of the

total strength of the magnetic field at a point in space, namely a linear combination

of the external magnetic field and the magnetization,

B = µ0 (H + M) , (1.1)

where µ0 is the magnetic permeability of free space (a constant). The magnetic flux

density is visualized as field lines whose density in a plane normal to the line direction

1Analogous to electric dipoles, magnetic moments are also referred to as magnetic dipoles, with
the understanding that magnetic “charges” always appear in opposing pairs (i.e., isolated magnetic
charges do not exist).
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is proportional to the field’s strength. Its direction at a point in space is that in which

a miniature compass needle would point.

Imbalanced spin and orbital motion occurs in the outer electron shell of most

elements. However, when these elements exist in solids, neighboring atoms share

electrons in a manner that completely or mostly eliminates the imbalance of individual

atoms. Consequently, most materials contain magnetic moments with negligible or

very small magnitudes. However, some elements (namely the rare earths, actinides,

and transition metals [58]) exhibit imbalance in an inner electron shell that has little

or no participation in bonding. Thus, the magnetic moment of these elements persists

in solids containing them.

In ferromagnetic materials, magnetic moments are ordered as a collection of mag-

netic domains to minimize the collective energy of the moments. In each domain,

magnetic moments are aligned in the same direction. The region between neighbor-

ing magnetic domains in which magnetic moments transition from the orientation

of one domain to that of the other domain is called a magnetic domain wall. In

a macroscopically-demagnetized ferromagnetic material, magnetic domains are ar-

ranged such that the vector sum of all of the magnetic moments is zero (i.e., M = 0).2

In the presence of an external magnetic field H, magnetic moments rotate toward the

direction of the field. In this way, domain walls translate as domains oriented clos-

est to the applied field grow at the expense of domains oriented far from the field

direction. When a material is magnetized such that all n of its moments are oriented

parallel to each other, the material is in a state of complete magnetic saturation and

has a magnetization of M0 = nm. However, above 0 K, magnetic moments precess

2This condition can be satisfied by many different domain configurations; thus, there is not a
unique demagnetized state for a given material.
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about a nominal direction due to thermal activation; this reduces the magnetization

of each domain. Consequently, when all n moments are nominally parallel (i.e., when

the material consists of a single domain), the material is said to be technically sat-

urated with a magnetization of Ms. Ms = M0 at 0 K, but Ms decays to 0 at the

Curie temperature.

The process by which a material is magnetized by an external magnetic field pri-

marily depends on the magnitude of the external field energy relative to the anisotropy

energy, which promotes the alignment of magnetic moments along certain preferred di-

rections. Anisotropy energy encompasses (a) magnetocrystalline anisotropy, which is

intrinsic and depends on the symmetry of the crystal structure, (b) induced anistropy,

which is extrinsic and controlled by material processing, (c) shape anisotropy, which

is extrinsic and depends on the size and shape of the material, and (d) stress-induced

anistropy, which is extrinsic and governed by a material’s magnetostriction and the

external stress. Consequently, the magnetization represents a constitutive response

of a material and depends on the external field and external stress, M = M (H,T).

Typically, the constitutive relation Eq. (1.1) is rewritten as a function of only H as

B = µ0 (H + M) = µ0

(
1 +

M

H

)
H = µ0 (1 + χ)H = µ0µrH = µH, (1.2)

where the magnetic susceptibility χ, relative magnetic permeability µr, and magnetic

permeability µ are material properties. In ferromagnetic materials, these properties

are nonlinear functions of H and T.

An in-depth discussion of magnetic domains and the magnetization process can

be found in [99, 26, 89].
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Electromagnetic field equations

Maxwell’s equations are a set of 4 equations that govern electromagnetic fields in

free space and in matter. The physical meaning of each equation is listed below.

• Gauss’s law for electric fields: Electric charges, both free charges and those

bound to atoms, produce electrostatic fields that diverge from positive charges

and converge upon negative charges. The divergence of this electric field E is

zero everywhere except at locations where charge is present.

• Gauss’s law for magnetic fields: Since isolated positive and negative mag-

netic “charges” do not exist, there is no source of magnetic flux density nor is

there a sink for it. Thus, magnetic flux lines must form closed loops.

• Faraday’s law of induction: A time-varying magnetic flux density produces

an encircling electric field in a plane perpendicular to the direction of the mag-

netic flux density. The direction of this induced electric field is such that the

magnetic flux that it produces always opposes the existing change change in

magnetic flux.

• Ampère-Maxwell law: Free electric current3 Jfree and a time-varying electric

displacement (electric flux density) D produce an encircling magnetic field in a

plane perpendicular to the direction of the electric flux density.

3Free electric current refers to the motion of electrons that are not bound to an atom, i.e., they
exist in the unfilled, outer electron orbit of metallic elements and are free to move throughout the
material [92]. This is also referred to as the conduction current.
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In matter, Maxwell’s equations are written in differential form as

∇ ·D = ρfree, (1.3)

∇ ·B = 0, (1.4)

∇× E = −∂B
∂t
, (1.5)

∇×H = Jfree +
∂D

∂t
, (1.6)

where ρfree is the free electric charge density, D = ϵ0E + P, and P is the electric

polarization, which is the electrical analog of M.

A great introduction to Maxwell’s equations can be found in [70], whereas a more

detailed discussion is presented in [92].

Magnetic diffusion

According to Faraday’s Law Eq. (1.5), circulating electric fields are generated

around a time-varying magnetic flux. Due to the finite resistivity of magnetic ma-

terials, these electric fields cause internal eddy currents, which alter magnetic fields

propagating through the material [92]. The effect of eddy currents on magnetic fields

inside electrically-conducting media is known as magnetic diffusion. The PDE gov-

erning magnetic diffusion is derived from Eqs. (1.4) to (1.6) using Jfree = σE (where σ

is the electrical conductivity) after assuming that ∂D/∂t is negligible,4 which is valid

at frequencies sufficiently below the characteristic frequency of the magnetic system

(> 1 MHz [79]),

∇ (∇ ·H) −∇2H = −σ∂B
∂t
. (1.7)

4This is equivalent to assuming that the displacement current density ϵ0∂E/∂t and electric po-
larization current density ∂P/∂t are negligible.
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Diffusion of dynamic magnetic fields into electrically-conducting media (field-

induced magnetic diffusion) is a classical problem in electromagnetics that has re-

ceived significant attention since the late 1800s [92, 102, 144]. A common application

in which this effect occurs is when conducting cylindrical rods are excited by axial,

dynamic magnetic fields at their surface (Hext = H0exp (jωt)). In this case, the in-

ternal magnetic field, which is only a function of the cylinder’s radial coordinate r, is

given in [58] as

H(r, t) = H0

J0
(√

−1γ′r
)

J0
(√

−1γ′R
)exp (jωt) , (1.8)

where ω is the excitation frequency, J0( ) is the Bessel function of order zero, R is the

cylinder’s radius, and γ′ is the inverse of the penetration (skin) depth,

γ′ =
√
ωµσ. (1.9)

Eq. (1.8) reveals that the internal magnetic field decays toward the axis of the rod,

shielding the rod’s core from the applied field. In cylinders, magnetic diffusion is thus

also referred to as the skin effect, because magnetic flux changes are constrained to

occur near the surface (i.e., in the “skin”) of the cylinder. The cut-off frequency ωc

quantifies the frequency at which the penetration of magnetic flux into the cylinder

becomes “incomplete”, which is defined as when γ′R = 1 [58],

ωc =
1√
µσR2

. (1.10)

Although field-induced magnetic diffusion is a classical problem, the influence of

magnetoelasticity and static stress on the effect has been investigated only more re-

cently [100, 98, 119]. Hilgert et al. [80] studied the effect of frequency-dependent eddy

currents on the magnetostriction of electrical steel, which causes noise in electromag-

netic devices. Rasilo et al. [119] modeled this effect under different static stresses.

8



Dynamic mechanical inputs result in a diffusion of static magnetic fields into

electrically-conducting ferromagnets, particularly ones that exhibit strong magnetoe-

lastic coupling, such as magnetostrictive materials and ferromagnetic shape memory

alloys. Mechanically-induced magnetic diffusion is critically important for applica-

tions in which these materials operate under dynamic mechanical loading, including

dynamic sensors, energy harvesters, vibration dampers, and stiffness tuning devices.

However, only a few studies on this effect have been reported, as discussed in Sec-

tion 1.3.1.

Energy dissipation in ferromagnetic materials

In ferromagnetic materials, purely reversible changes in the material’s state only

occur for small magnetic field or stress increments [89]. Both domain wall motion

and domain rotation can be irreversible.

Energy is dissipated via magnetic hysteresis, which is approximately frequency

independent up to the characteristic frequency of the magnetic system (> 1 MHz [79])

[26], and eddy currents, which are frequency dependent.

Magnetic hysteresis is caused by magnetocrystalline anisotropy and material im-

perfections. Magnetocrystalline anisotropy leads to discontinuous and irreversible

rotation of magnetic moments within individual domains as moments jump from one

energy well to another; this mechanism appears to play the primary role in damping

of giant magnetostrictive materials [79]. The motion of magnetic domain walls is

hindered when they reach imperfections, which include (a) dislocations in the crystal

structure (e.g., due to cold working), (b) grain boundaries, (c) non-magnetic impu-

rity elements (e.g., carbon in steel) and precipitates, and (d) voids [89, 25]. When

domain walls become unpinned from these defects, very short (about 1 × 10−9 s)
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and very intense eddy current pulses occur locally around the wall [25], dissipating

energy through Joule heating. Applied magnetic fields cannot alter the dynamics of

these domain wall jumps due to their extremely brief duration. Thus, it is clear that

magnetic hysteresis occurs at the microscopic scale.

Even in the absence of magnetocrystalline anisotropy and material defects, in-

ternal eddy currents are generated as a material’s magnetic flux varies (as discussed

in Section 1.2.1), which dissipate energy via Joule heating. In the simplest case –

a homogeneous, single domain material undergoing sinusoidal changes in its uniax-

ial magnetic flux density – the time-varying eddy current distribution, schematically

shown in Fig. 1.1a, can be derived from Maxwell’s equations (with or without consider-

ing magnetic diffusion). The energy loss associated with these macroscopic-scale eddy

currents is called the classical eddy current loss and scales linearly with frequency [25].

However, flux changes result from the motion of domain walls; thus, eddy currents

are actually concentrated in the vicinity of the walls as shown in Fig. 1.1b, rather

than in the bulk. Accordingly, observed frequency-dependent losses are always larger

than that predicted by the classical model [73].

An accurate prediction of the true eddy current loss would require knowledge

of the very complex spatial and temporal dependence of the eddy current density.

Consequently, the excess energy loss not quantified by the classical model is commonly

approximated using the excess eddy current loss, a phenomenological expression based

on measurements that scales with the square root of frequency [25]. The excess loss

can be considerably larger than the classical loss when the specimen is composed

of large, widely-spaced domain walls. However, when domains are small and walls

are closely spaced, the eddy currents from adjacent moving walls tend to cancel, as
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(a) (b)

Figure 1.1: Eddy currents (a) as modeled by the classical eddy current loss and (b)
in a multi-domain ferromagnetic material; eddy currents (blue), magnetization of a
domain (red), and domain wall motion (green); images adapted from [73].

depicted in Fig. 1.1b; in this case, the measured eddy current loss will closely follow

the classical prediction.

Due to the magnetomechanical coupling in ferromagnetic materials, the applica-

tion of stress causes energy to be dissipated through magnetic hysteresis and eddy

currents. In particular, the damping associated with stress-induced displacement of

domain walls is the primary source of mechanical energy loss [51]. The mechanical

damping observed in ferromagnetic materials can therefore significantly exceed that

which results from conventional viscoelastic damping.

1.2.2 Magnetostrictive materials

This section introduces magnetostrictive materials, including their suitability for

vibration control relative to other smart materials, their variable elastic moduli, and

constitutive modeling.
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As discussed in Section 1.2.1, appreciable magnetism occurs in solids containing

elements that exhibit imbalanced spin and orbital motion of electrons located in inner

electron shells. In most of these imbalanced elements, the imbalance also causes the

atom to have a nonspherical electron charge cloud. In magnetostrictive materials, the

direction of the magnetic moment is coupled to the orientation of the nonspherical

electron cloud. Thus, magnetostrictive materials display magnetoelastic coupling and

can transduce energy between magnetic and mechanical states. Accordingly, magnetic

moment rotation is accompanied by a change in magnetization and a change in elastic

strain, which is known as magnetostriction (λ). The Joule (direct or actuation) effect

denotes the magnetostriction that results from the application of a magnetic field.

The Villari (inverse or sensing) effect, which can be harnessed for sensing, energy

harvesting, and vibration attenuation [56, 146, 149, 27, 54], denotes the change in

magnetization caused by the application of mechanical stress. This coupling is often

described by the linear piezomagnetic equations, which can be written in incremental

form as

∆B = µT∆H + d∗∆T, (1.11)

∆S = d∆H + sH∆T, (1.12)

where ∆B, ∆H, ∆S, and ∆T are the incremental magnetic flux density, magnetic

field, strain, and stress, µT is the magnetic permeability at constant stress, sH is the

compliance at constant field, and d∗ and d are piezomagnetic coupling coefficients.

Natural magnetic materials (e.g., nickel, iron, and cobalt) exhibit magnetoelastic

effects, but their weak coupling provides very little value. The magnetostriction in

iron and nickel is 20 and -40 ×10−6, respectively [89]. Interest in magnetostrictive
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materials was renewed with the discovery of giant magnetostrictive materials: man-

made alloys of rare earth elements having magnetostrictions on the order of 102

to 103. The two most widely used of these are Terfenol-D (an alloy of terbium,

dysprosium, and iron) and Galfenol (an alloy of iron and gallium). Owing to their

large magnetoelastic strains (magnetostrictions), both materials provide a sizable

variation in their elastic moduli, as discussed in the following subsection. This effect

forms the foundation for stiffness tuning using magnetostrictive materials.

The incorporation of smart materials into control systems can potentially revolu-

tionize semi-active and active vibration control design. The optimal smart material

for a specific vibration control system depends upon the operating conditions in ser-

vice and the performance requirements. For the design of a dynamic, stiffness-tuning

transducer, a high bandwidth and high stiffness change are essential. These character-

istics are representative of the following material classes: magnetostrictive, piezoelec-

tric, and magnetic shape memory (MSM). MSM materials have a very low blocking

stress (≈ 3 MPa) and require very high strength magnetic fields (up to 575 kA/m) to

realize stiffness changes [122]. Terfenol-D and Galfenol outperform MSM materials

in this regard by providing blocking stresses of 42 and 19 MPa and stiffness tun-

ing fields of 56 and 10 kA/m, respectively [63, 96, 47]. Compared to piezoelectrics,

magnetostrictive materials offer some key advantages. Piezoelectrics are susceptible

to depolling at elevated temperatures, which irreversibly deactivates the material.

Additionally, the performance of piezoelectrics degrades over time. Conversely, mag-

netoelastic coupling is an inherent material property that is fully present when the

temperature is below the material’s Curie temperature. Irreversible changes usually
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only result if melting occurs. Magnetostrictive materials can also survive millions of

actuation cycles without adverse effects [115, 114].

Regarding a stiffness tuning device, the primary differences between Terfenol-

D and Galfenol are their magnetostrictions, magnetic permeability, and mechanical

strength. Terfenol-D offers magnetostrictions up to 1600×10−6, but has a low relative

magnetic permeability of 1.5 to 10 and a tensile strength of only 28 MPa [123, 85].

Terfenol-D’s low strength restricts its use to 1D applications. On the other hand,

Galfenol provides magnetostrictions of about 350 × 10−6, but has a high relative

magnetic permeability up to 650 and a steel-like tensile strength of 500 MPa [53, 18,

95, 93]. Galfenol is capable of withstanding tension, compression, shear, and impact

loadings, allowing it to operate in 3D, load-bearing applications. Galfenol can also

be conventionally machined to simplify its integration into passive systems.

Figure 1.2: Schematic depiction of magnetoelastic coupling in a planar magnetostric-
tive material with positive magnetostriction.
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Magnetoelastic coupling is depicted schematically in Fig. 1.2 for a planar mag-

netostrictive material that is composed of two crystals/grains and exhibits a magne-

tocrystalline aniostropy that favors domain alignment along two mutually orthogonal

directions. For simplicity, the nonspherical electron cloud and magnetic moment

orientation are represented by an ellipse and arrow, respectively. Due to the mag-

netoelastic coupling, the arrow is rigidly connected to the ellipse.5 The ideal crystal

orientation of each grain is coincident with the symmetry axes of the rectangular

specimen. In practice, crystals are often slightly misaligned from the ideal orienta-

tion, as shown by the orientations of grains 1 and 2. In the unloaded state (A), mag-

netic domains align along the easy crystallographic directions (directions of minimum

magnetocrystalline anisotropy energy) such that the magnetization of the specimen

is minimized. Application of a small compressive stress (B) reorients domains away

from the compression axis and towards a plane perpendicular to said axis; this reori-

entation continues as the compression increases to a large magnitude (C), at which

point the domains jump to approximately the easy directions closest to the perpen-

dicular plane. Under a very large compression (D), all domains have rotated into

the perpendicular plane (complete mechanical saturation); however, the specimen’s

magnetization remains zero throughout (B) to (D). Application of a small field (E)

reorients domains toward the field direction and away from an antiparallel direction.

Rotation towards the field direction continues as the field is increased (F). At very

large fields (G), the magnetocrystalline and stress-induced anisotropies are overcome

and all domains align along the field direction (complete magnetic saturation). The

5In Fig. 1.2, a magnetostrictive material with positive magnetostriction is shown; thus, the arrow
is oriented along the ellipse’s major axis. A material exhibiting negative magnetostriction can be
represented by an ellipse with an arrow oriented along its minor axis.
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difference in strain from (D) to (G) is only caused by a 90 degree rotation of all of

the magnetic moments. This strain denotes the maximum magnetoelastic response

of the material; consequently, the strain is known as the saturation magnetostriction

λsaturation (or λsat).

The elastic constants of magnetostrictive materials can be defined as

CX (X,T) =
∂S

∂T

⏐⏐⏐⏐
X

, (1.13)

where the partial derivatives can be evaluated at constant magnetization (X = M),

constant magnetic flux density (X = B), or constant magnetic field (X = H). Elastic

constants specified as CM were not found in the literature, because the magnetization

cannot be directly measured, but must be inferred from measurements of B and H.

Both Terfenol-D and Galfenol have cubic crystal symmetry, and can therefore be

described mechanically by 3 independent elastic constants (c11, c12, and c44).

The constitutive behavior of magnetostrictive materials is anisotropic, hysteretic,

and nonlinear (see Fig. 1.3). The energy required to overcome material imperfections

causes hysteresis (see the preceding subsection). Nonlinearity primarily results from

magnetic saturation and anisotropy. As explained above, one form of anisotropy is

the existence of easy directions, along which the material can be magnetized the

easiest. The other main source is that the magnetostriction along certain directions

is much larger than that along other directions. For example, the magnetostriction

of Terfenol-D along the ⟨100⟩ directions (λ100) ≈ 90 ×10−6, while along the ⟨111⟩

directions (λ111) – its easy directions – it is ≈ 1600 ×10−6. The easy directions in

Galfenol are the ⟨100⟩ family of directions.
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(a) (b)

(c) (d)

Figure 1.3: Measured quasi-static constitutive behavior of Fe81.6Ga18.4 – (a),(b) axial
actuation response at different constant compressive stresses, (c),(d) axial sensing
response at different constant magnetic fields.

Variable elastic moduli

In general, the only mechanism for a change in the elastic moduli of magne-

tostrictive materials is the rotation of magnetic moments [47], which causes magne-

tostriction (magnetoelastic strain). The total strain is a superposition of the elastic

and magnetoelastic strains; thus, moment rotation causes an apparent reduction in

the material’s elastic moduli from their purely-elastic (magnetically-saturated) values
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Cs. There are, however, a variety of conditions that lead to the rotation of moments,

and thus a modulus change, including a change in magnetic boundary conditions, a

change in AC magnetic field or stress amplitude (change in excitation), and a change

in DC magnetic field or stress (change in operating point). The last condition is often

referred to as the ∆E effect (Fig. 1.4).

Constant field and constant induction denote the free and fixed magnetic bound-

ary conditions, respectively. Thus, the Young’s moduli EB and EH define the stiffest

and softest elastic states of the material for a given excitation and operating point.

Maintaining either condition requires a control system. EB and EH are related by

the magnetomechanical coupling coefficient, k = k (H,T), which defines the frac-

tion of magnetic or elastic energy that can be converted back and forth during the

transduction process,

EB =
EH

1 − k2
. (1.14)

The difference between EB and EH increases as k increases. However, materials with

high k have low magnetic permeabilities, making them difficult to magnetize [96].

Results by Calkins et al. [29] show that the efficiency of the transduction process

increases as the AC field magnitude increases, thereby increasing the difference be-

tween EB and EH . Thus, for a given operating point or ∆E effect, changes in the

AC field magnitude will vary the elastic moduli [69]. The change in elastic modulus

due to a change in magnetic boundary conditions is typically small compared to the

∆E effect. Therefore, the ∆E effect is the focus of the majority of work in the field.

At moderate to low AC stress amplitudes, reductions in the stress amplitude lead

to a stiffening of the material, which reduces the ∆E effect. The cause of this effect

has yet to be identified, but is presently attributed to a lack of energy to rotate
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magnetic moments away from energy wells [95, 96]. In Terfenol-D, this effect can

be significant due to the material’s large hysteresis, yet still smaller than the ∆E

effect [108, 29]. Although not measured in the literature, this effect is expected to be

much smaller in Galfenol, as its hysteresis is comparatively small.

(a) (b)

Figure 1.4: The ∆E effect: (a) stress versus strain for (I) initially fully magnetized
and (II) initially demagnetized ferromagnetic materials with positive maximum mag-
netostriction λs, (b) measured Young’s modulus of Fe81.6Ga18.4 in the [100] direction
at multiple bias magnetic fields for a 1D, quasi-static stress input.

As the inputs to a magnetostrictive material, stresses and magnetic fields di-

rectly control the energy landscape that governs magnetic moment orientation. In

the presence of deep energy wells, magnetic moment reorientation is hindered, limit-

ing magnetostriction and maintaining a stiff elastic state. When shallow energy wells

are present, even small perturbations in stress or magnetic field can cause magnetic

moments to jump from one energy well to another. The material is elastically soft-

ened as magnetostriction can readily occur. Thus, the ∆E effect is the primary source

of stiffness tuning in magnetostrictive materials. The ∆E effect is mathematically
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defined as the difference in elastic modulus between two states, usually normalized by

one of the moduli. No less than 7 different definitions have been used in the literature.

The conventional definition is

∆E =
Es − Ea

Ea

, (1.15)

where Es is the modulus in the stiff (magnetically-saturated) condition, and Ea is

the modulus in a demagnetized state [36, 39, 97]. When the applied field magnitude

is limited (i.e., magnetic saturation cannot be reached), the following definition has

been used,

∆EH2H1 =
EH2 − EH1

EH2

, (1.16)

where EH1 = E (H1) ≥ EH2 = E (H2) [95, 96]. The most general and robust definition

is

∆E(H,T ) =
Es − E(T,H)

Es

, (1.17)

where the effect is defined as a function of stress and magnetic field [47]. This def-

inition has two key benefits: (a) it avoids the use of Ea, which is not the minimum

modulus and is ambiguous, because its value depends on stress and there is not a

unique demagnetized state [101], and (b) it normalizes with respect to the saturated

modulus, which is a constant. ∆E effects calculated using Eq. (1.17) are bounded

between 0 and 100 %. Consequently, results from the proposed research will be pre-

sented using Eq. (1.17). Due to insufficient information provided in many references,

Eq. (1.16) must be used to compare the ∆E effects from across the literature.

Analytical expressions for the ∆E effect Eq. (1.15) have been derived for ferro-

magnetic materials with ⟨100⟩ easy magnetization directions (e.g., iron, Galfenol) and
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⟨111⟩ easy directions (e.g., nickel, Terfenol-D) [24, 26, 105],

∆E⟨100⟩ =
3

20π

(µi − 1)λ2100Es

M2
s

, ∆E⟨111⟩ =
µiλ

2
111Es

5πM2
s

[
5c44

c11 − c12 + 3c44

]2
, (1.18)

where µi is the initial relative magnetic permeability (i.e., at the demagnetized state),

and Ms is the saturation magnetization. Eq. (1.18) shows that the effect depends on

the square of the magnetostriction, the square of the saturation magnetization, and

the ease with which the material is magnetized, which is measured by the initial

magnetic susceptibility χi = (µi − 1) /4π. A directly-proportional dependence on

the purely-elastic (magnetically-saturated) modulus Es is intuitive, because in stiff

materials, the magnetoelastic strain constitutes a larger fraction of the total strain.

Constitutive modeling

Due to the diversity of active effects and the nonlinearities that magnetostrictive

materials exhibit, modeling their behavior for arbitrary stress and magnetic field in-

puts is challenging. A wide range of models have been proposed. At one extreme, a

phenomenological approach fits a curve or surface to the measurement data, which

provides efficiency but ignores the underlying physics. At the other extreme, mi-

cromagnetic models consider all known energies and are very accurate. Macroscopic

models use an intermediate approach by relating the macroscopic response of the

material to simplified descriptions of the microscopic behavior. Macroscopic models

therefore strike a balance between efficiency, accuracy, and predictive capability. The

classical macroscopic models are the Preisach model [116], the Globus model [72], the

Jiles-Atherton model [88], and the Stoner-Wohlfarth model [142]. Liorzou et al. [104]

compares these models in detail.
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Armstrong [3] proposed an incremental model for magnetoelastic hysteresis, which

calculates the 3D bulk magnetization and magnetostriction as the expected values

(via energy-weighted averaging) of a collection of non-interacting magnetic moments.

The probability density function is a Boltzmann distribution, where minimum en-

ergy orientations are more probable. The Armstrong model [3], which considers eight

fixed magnetic domain orientations, is only accurate when the input magnetic field

or stress is aligned with an easy crystal direction. Atulasimha et al. [20] improved

accuracy, at a significant computational cost, by considering 98 fixed orientations.

Evans and Dapino [60] maintained a high level of accuracy while greatly reducing

computational expense by considering the 6 (for Galfenol) or 8 (for Terfenol-D) di-

rections that minimized the stress- and magnetic field-dependent enthalpy. Evans and

Dapino [61] proposed a discrete energy-averaged (DEA) model, which appreciably im-

proved efficiency with a minimal reduction in accuracy (relative to [60]) by separately

minimizing the free energy defined locally about each easy crystallographic direction.

For a more in depth review of the available constitutive models, refer to [63].

The efficiency improvements provided by the DEA model are crucial for the mod-

eling of magnetostrictive systems, for which a large number of constitutive model

executions are typically required at each time step. The DEA model is therefore

used throughout this dissertation due to its unique combination of high accuracy and

very high computational efficiency. The DEA model has been successfully used for

the modeling of Galfenol-based systems of varying dimensionality [33, 137, 62, 154].

Section 1.2.2 summarizes this model and its improvements.
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Discrete energy-averaged constitutive models

Evans and Dapino’s DEA model [61] describes Galfenol as a collection of 6 non-

interacting, mesoscopic magnetic domains that rotate in response to the inputs – the

magnetic field vector H = [H1, H2, H3]
T and stress tensor T = [T1, T2, T3, T4, T5, T6]

T,

which is written in contracted vector notation6. The 6 directions
k
m are calculated

by minimizing an energy function that is locally-defined about each of the 6 easy

crystallographic directions, subject to the constraint || k
m || = 1. The total free energy

k

G of a magnetic moment in the vicinity of the kth easy direction
k
c incorporates the

local magnetocrystalline (anisotropy), magnetomechanical coupling (stress-induced

anisotropy), and magnetic field (Zeeman) energies, which are given in Table 1.1,

where the variables are defined in following two paragraphs.

Table 1.1: Energies of the magnetic domain orientations in the DEAM

Anisotropy Magnetomechanical Coupling Magnetic Field

1
2
K
⏐⏐⏐ km − k

c
⏐⏐⏐2 +

k

K0 −
k

λ ·T −µ0Ms
k
m ·H

The anisotropy energy constant K is the locally-defined analog of the fourth order

crystalline anisotropy constant K1, which is used to globally-define the anisotropy en-

ergy of magnetic materials with cubic symmetry. Mudivarthi et al. [109] has shown

that the magnetomechanical coupling energy is equivalent to the sum of magne-

toelastic, elastic, and mechanical work energies if K1 includes both intrinsic and

6T1 = T11, T2 = T22, T3 = T33, T4 = T12 = T21, T5 = T23 = T32, and T6 = T13 = T31
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magnetostriction-induced components. This condition is true for the majority of ex-

perimentally measured K1 (or K), including those used in this dissertation.

The minimization procedure applied to Evans and Dapino’s formulation requires

as many matrix inversions as the number of easy directions. To reduce the number

of matrix inversions to one, Chakrabarti [32] slightly modified the anisotropy energy.

Accordingly, the Gibbs free energy can be written in matrix notation as

k

G=
1

2

k
m ·K k

m −
k

b · k
m +

1

2
K+

k

K0, (1.19)

where K and
k

K0 are anisotropy energy constants;
k
m= [

k
m1,

k
m2,

k
m3]

T is the magnetiza-

tion direction having unit magnitude; k takes values ±1, . . . ,± r
2
; and r is the number

of easy crystallographic directions (the ⟨100⟩ family of six directions for Galfenol).

The magnetic stiffness matrix K and magnetic force vector
k

b are given by

K = KI− 3

⎡⎣ λ100T1 λ111T4 λ111T6
λ111T4 λ100T2 λ111T5
λ111T6 λ111T5 λ100T3

⎤⎦ (1.20)

and

k

b= K
k
c +µ0MsH, (1.21)

respectively, where I is the 3 × 3 identity matrix; λ100 and λ111 are magnetostriction

constants; µ0 and Ms are, respectively, the permeability of free space and saturation

magnetization.

The macroscopic 3D magnetostriction λ and magnetization M are defined as

weighted sums of the response due to the r minimum energy directions,

λ =

±r/2∑
k=±1

k

ξan

k

λ, (1.22)
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M = Ms

±r/2∑
k=±1

k

ξan
k
m, (1.23)

where
k

ξan and
k

λ denote, respectively, the bulk anhysteretic volume fraction and the

magnetostriction tensor written in vector notation for the kth domain. Letting Ω

be a smoothing factor, the former is calculated as a Boltzman-type, energy-weighted

average as

k

ξan= exp

⎛⎝−
k

G

Ω

⎞⎠ ±r/2∑
j=±1

exp

⎛⎝ j

G

Ω

⎞⎠ , (1.24)

and the magnetostriction in tensor notation is given as

k

λii=
3

2
λ100

k
mi

2

k

λij= 3λ111
k
mi

k
mj, i ̸= j

, i, j = 1, 2, 3. (1.25)

The strain tensor S is given by the sum of the elastic and magnetoelastic strains,

S = sT +
r∑

k=1

k

ξan

k

λ, (1.26)

where s is the compliance tensor.

Calculation of
k
m (approximate solution)

The application of an external magnetic field or stress changes the energy surface

in the vicinity of each easy crystallographic direction, which may shift the kth mini-

mum energy direction away from the kth easy direction. Thus, the unit magnitude,

minimum energy directions m are not known a priori for each easy direction, and

must be calculated by minimizing the local free energies Eq. (1.19) before evaluating

the volume fractions Eq. (1.24). Evans and Dapino[61] found an explicit solution that
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approximately minimizes the energies Eq. (1.19), by formulating the constrained min-

imization as the following inhomogeneous eigenvalue problem through the application

of the Lagrange multipliers method,

(K−
k
γ I)

k
m =

k

b, (1.27a)

k
m · k

m = 1, (1.27b)

where
k
γ is the unknown Lagrange multiplier corresponding to the kth minimum energy

direction, and I is the 3 × 3 identity matrix. In the absence of an explicit, analytical

solution to the foregoing system of equations, Evans and Dapino [61] relaxed the

normalization constraint through the approximation m·m ≈ c·m = 1 for each easy

direction. As a result, the following explicit, approximate solution was reported:

k
m ≈ [K]−1

⎡⎣ k

b +

⎛⎝1− k
c ·[K]−1

k

b
k
c ·[K]−1

k
c

⎞⎠ k
c

⎤⎦ . (1.28)

Magnetomechanical hysteresis

Hysteresis is implemented in an incremental form based upon an evolution equa-

tion for the volume fractions [61],

∆
k

ξ (i) = (1 − c)∆
k

ξirr (i) + c∆
k

ξan (i), (1.29)

where i is the increment index, c is a dimensionless constant quantifying the reversible

processes during domain wall motion, and finally the change in the irreversible volume

fractions for 3D stress and field inputs is defined as
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∆
k

ξirr (i) =

ζ

kp
(
k

ξan (i)−
k

ξirr (i− 1))

[
µ0Ms

3∑
p=1

|∆Hp(i)|

+(3/2)λ100

3∑
p=1

|∆Tp(i)| + 3λ111

6∑
q=4

|∆Tq(i)|

]
,

(1.30)

where ζ is a binary number for avoiding a nonphysical negative susceptibility, and kp

is a pinning site density constant that characterizes the energy loss associated with

domain wall rotation. Note that this hysteresis model is not self-starting, because the

initial irreversible volume fractions are undefined. However, it is common practice to

assume that ξirr(0) = 0.

Calculation of
k
m (exact solution)

Linearization of the normalization constraint about each easy direction results

in an explicit approximate solution, whose error is minimal since moments that have

rotated far from the easy axes are more energetic, and thus less probable. Nonetheless,

the approximate magnetization directions may significantly violate the unity norm

constraint for large inputs. Post-normalization of the directions was proposed by

Chakrabarti and Dapino [33], but the resulting directions can still deviate from the

true energy minima for generic 3D inputs. Additionally, this solution procedure

is prone to singularities, which could burden the computation, especially when the

method is integrated into system-level models. The utility of such system-level models

for use by non-experts is hampered if the model does not incorporate a black-box

constitutive model that is valid for all inputs.
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With the objective of developing a robust solution procedure for the DEA model

that avoids singularities, Tari et al. [145] developed an analytical solution that ex-

actly solves the constrained energy minimization. Additionally, Tari et al. [145] re-

formulated the DEA model based on the average of hysteretic data, as opposed to

anhysteretic data, which would require additional measurements for parameter op-

timization and validation. As such, they employed the averaged hysteretic volume

fractions, i.e. ξhys, which correspond to the median curves obtained from averaging

the hysteretic measurement data. Thus, every occurrence of ξan in the aforementioned

equations is replaced by ξhys. Tari et al. [145] also reformulated the magnetoelastic

energy. Evans and Dapino[61] used the tensor-valued magnetostriction Eq. (1.25)

given by Engdahl [58]. Instead, the more thorough formulation of Kittel [99] is used,

which has a constant term not present in [58]. Kittel’s expressions are given in tensor

notation as

k

λii=
3

2
λ100(

k
mi

2

−

, c0  
c12

c11 + 2c12
),

k

λij= 3λ111
k
mi

k
mj, i ̸= j,

(1.31)

where i, j = 1, 2, 3, and c11 and c12 are two of the three independent elastic moduli

for crystals with cubic symmetry. Relative to Engdahl’s equation used in the prior

work, employment of Eq. (1.31) provides a better fit of the model to experimental

data for the sensing case, as seen in [145].

Before deriving the exact solution procedure, Tari et al. [145] simplified the Gibbs

free energy Eq. (1.19) as
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where the simplified magnetic stiffness matrix is,

K = −3

⎡⎣ λ100T1 λ111T4 λ111T6
λ111T4 λ100T2 λ111T5
λ111T6 λ111T5 λ100T3

⎤⎦ . (1.33)

The energy minimization problem becomes

(K−
k
γ I)

k
m =

k

b, (1.34a)

k
m · k

m = 1. (1.34b)

The exact solution is given as

k
m= Q(Λ−

k
γ I)−1QT

k

b, (1.35)

where Q is an orthogonal matrix containing the eigenvectors of K, Λ is a diagonal

matrix composed of the corresponding eigenvalues, i.e. λ1−3, of K, and
k
γ is the given

by the solution of a sixth order polynomial,

k
γ 6 + 2(λ̄2 + λ̄3)

k
γ 5 +

(
λ̄22 + 4λ̄2λ̄3 + λ̄23 − Q̄1

−Q̄2 − Q̄3

) k
γ 4 + 2

(
λ̄22λ̄3 + λ̄2λ̄

2
3 − λ̄2Q̄1

−λ̄3Q̄1 − λ̄3Q̄2 − λ̄2Q̄3

) k
γ 3 +

(
λ̄22λ̄

2
3 − λ̄22Q̄1

−4λ̄2λ̄3Q̄1 − λ̄23Q̄1 − λ̄23Q̄2 − λ̄22Q̄3

) k
γ 2

−2λ̄2λ̄3Q̄1

(
λ̄2 + λ̄3

) k
γ −λ̄22λ̄23Q̄1 = 0 ,

(1.36)

where
k
γ= λ1−

k
γ, λ̄2 = λ2 − λ1, λ̄3 = λ3 − λ1, and [

√
Q̄1,

√
Q̄2,

√
Q̄3]

T = QT
k

b.

Eq. (1.36) can have up to six solutions. After eliminating complex solutions and solu-

tions oriented sufficiently far from the corresponding easy direction, Tari et al. [145]
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used the solution that minimizes most the Gibbs free energy. Simplification of the

exact solution procedure for lower dimensional applications, parameter optimization,

and validation of the model are presented in [145].

Application of the DEA model to Terfenol-D

When the original formulation of the DEA model is applied to Terfenol-D, unphyis-

cal kinks in the magnetization and magnetostriction responses appear and Terfenol-

D’s slow approach to saturation is absent [34]. Chakrabarti and Dapino [34] solved

these problems by (a) adding an orientation-dependent global anisotropy energy to

the existing local anisotropy energy and (b) redefining the constant smoothing factor

Ω as a function of field and stress. The latter modification makes the DEA model

implicit, thereby increasing the model’s computational expense by about 20 % due

to need for convergence iterations [34]. Further, the redefined smoothing factor adds

complexity to the hysteresis model and prevents the derivation of an analytical ma-

terial Jacobian. Nevertheless, Chakrabarti and Dapino’s model is very accurate, as

evidenced by its mean modeling error of about 3 % [34].

Appendix A proposes a new approach to eliminate the aforementioned problems.

The new approach, which is based on a simple coordinate transformation, retains the

explicit nature and hysteresis model of the original formulation of the DEA model.

Thus, the new approach is a faster alternative to the current art that provides an

analytical material Jacobian.
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1.2.3 Magnetostrictive transducers

This section briefly discusses magnetostrictive transducers, which are used for

material characterization. Magnetostrictive transducers can also be implemented as

actuators, sensors, and variable-stiffness devices, among other applications.

The simplest magnetostrictive transducer is a magnetostrictive rod surrounded by

an electromagnet, which is required to generate variable magnetic fields. To reduce

the current needed to produce a given field, a magnetically-permeable path connecting

the ends of the rod is necessary. For material characterization or optimizing perfor-

mance, magnetic and mechanical biasing mechanisms are vital. A magnetic bias is

easily generated using a permanent magnet or DC current to the electromagnet. In

Terfenol-D and Galfenol, compressive mechanical preloads are used to maximize the

magnetostriction potential, while preventing unloading during high signal operation,

which can damage brittle Terfenol-D specimens. For 1D transducers, the conventional

method for creating the preload is to place a spring in parallel with the rod and se-

ries with the output shaft [95, 43, 41, 29]. Since the constitutive responses of both

materials vary significantly with bias stress, the spring must be carefully designed to

minimize changes in the bias force over the deflection range of the transducer. Con-

sequently, softening Belleville springs are commonly used and operated at near max

deflection, where their stiffness is very small. A consequence of larger compressive

preloads is the need for larger magnetic fields, and thus larger electromagnets and

more powerful amplifiers.

The performance of Terfenol-D degrades as temperature increases [95]. As a result,

high performance transducers often require active cooling of the drive electronics or

magnetostrictive specimen. Compressed air and water cooling have been used [95, 96].
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This constraint is less severe for Galfenol, which exhibits limited variation in its active

properties from -20 to 80 ◦C [94].

The vast majority of researchers measure the force, strain, magnetic field, and

magnetic flux density using load cells, strain gauges, Hall effect sensors, and integra-

tions of the voltage induced in sensing coils, respectively.

1.2.4 Autoresonant control

This section introduces autoresonant control, which is a technique for reaching and

maintaining a resonant state of a dynamic system. In this dissertation, autoresonant

control is used as a numerical technique to vastly decrease the computation time of

parametric studies.

Autoresonant feedback control was born from the study of vibro-impact systems,

which are designed to operate near resonance [23]. Conventionally, the frequency of

the excitation is controlled and a resonant state is reached by exciting the system

at the resonant frequency. In high quality factor (Q-factor) systems (i.e., lightly

damped systems), resonance is very sensitive to changes in the system’s parameters

and inputs, and occurs at the boundary of stability for some linear systems and for

frequency-controlled excitation of nonlinear systems; consequently, very fine control

of the excitation frequency is needed to actively track resonance and avoid the jump

phenomenon (Fig. 1.5a) that results from the stability issue.

An alternative to frequency-controlled excitation is phase-controlled excitation.

After providing the system with an arbitrary initial condition, phase-controlled exci-

tation achieves self-sustained vibration by feeding the actuator that drives the sys-

tem with a phase-shifted and amplified signal of the system’s vibration. Stability
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(a) (b)

Figure 1.5: (a) jump phenomenon observed during frequency-controlled excitation of a
nonlinear system and (b) simple phase-controlled system (phase-controlling feedback
shown by the red arrows); images adapted from [140].

is maintained by limiting the magnitude of the feedback signal. Amplitude versus

phase curves govern the vibration of phase-controlled systems, with frequency act-

ing as a dependent variable. Sokolov and Babitsky [140] detailed the characteristics

of single- and two-degree-of-freedom autoresonant systems, showing the flatness and

single-valuedness of the amplitude versus phase curves that govern phase-controlled

systems. As such, jump phenomenon is eliminated for most systems and fine control

of the phase is unnecessary.

When the phase shift φ is made to coincide with the phase that maximizes the

amplitude-phase curve (φ∗), the system becomes autoresonant and maintains a reso-

nant state under changes in the system’s natural frequency [140], which result from
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changes in the system’s parameters or the operating conditions. Stability of the res-

onant state is again achieved by limiting the magnitude of the feedback signal7. The

amplitude of the resonant vibration is controlled by varying the limitation level.

The autoresonant phase shift φ∗ is in general a function of the level of damping.

For the case of hysteretic material damping, the energy dissipation per vibration cycle

(damping capacity) is independent of the frequency of vibration. Consequently, the

resonant frequency is equal to the undamped natural frequency and is independent

of the magnitude of damping [52]. This is the ideal case for realizing autoresonant

control, because, for a linear system, the resonance of each mode will occur when the

excitation is in phase with vibratory velocity. If sufficient modal separation exists

and the forcing is independent of frequency, then φ∗ is approximately −π
2

or −3π
2

for

all modes and any level of damping. The damping capacity for viscoelastic material

damping and linear viscous damping depends on frequency; these models of damping

can be respectively used to describe the mechanical damping (as done in Section 2.2.2)

and eddy current damping (i.e., frequency-dependent magnetic hysteresis) that occur

in magnetostrictive materials. As a result, the resonant frequency (and therefore φ∗)

will depend on the level of damping.

Autoresonant feedback control has been utilized in various applications, but pri-

marily for ultrasonically-assisted machining [151]. Recently, Twiefel [148] numerically

applied autoresonant feedback control to efficiently conduct parametric studies on the

mode shape of a piezoelectric beam. In Section 2.2.2, autoresonant feedback control

is used as a numerical technique to significantly reduce the computational expense of

7This is true except for systems with amplitude-phase curves that tend to infinity at resonance
or nonlinear systems that have a negative restoring force for large displacements [140]
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parametric studies by automatically tracking the resonance of a Galfenol composite

beam under prescribed changes in the bias condition and excitation magnitude.

1.3 Literature Review

This section summarizes the previous work completed in the characterization and

dynamic modeling of magnetostrictive materials and transducers in relation to stiff-

ness tuning.

1.3.1 Magnetic diffusion

The effects of 1D mechanically-induced magnetic diffusion have been briefly stud-

ied numerically [121, 42, 49]. Notably, Sarawate and Dapino [121] investigated the

magnetic field in a Ni–Mn–Ga rod and illustrated the dependence of the field’s time

domain response on radial coordinate and strain frequency for a small range of pa-

rameters. 1D mechanically-induced magnetic diffusion has been analytically treated

in the context of magnetostrictive energy harvesters by Davino et al. [50], who derived

an expression for average harvested power, and by Zhao and Lord [160], who derived

an expression for the effective internal magnetic field. However, the spatial and fre-

quency dependence of the internal magnetic field or magnetic flux density have not

been derived. Further, a skin depth and cut-off frequency for this effect are absent

from the literature.

1.3.2 Delta E effect

A number of methods have been used to measure the elastic moduli of magne-

tostrictive materials, including strain-stress, acoustic, electroacoustic, and lumped

parameter modeling techniques.
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The most common method is calculating the slope of strain responses to 1D, quasi-

static stresses having small (≈ 10 MPa or less) or large (≈ 20 MPa or more) amplitude,

referred to as minor or major hysteresis loops, respectively. Reported measurements

include the minor loop [96] and major loop [108, 96] responses of Terfenol-D and

the major loop responses of Galfenol [143, 157, 97, 22, 19, 21, 156, 47, 120]. Minor

loop strain versus stress responses of Galfenol have not been reported. Major and

minor loops can be measured at constant current to the electromagnet or at constant

magnetic field. The former is easy to realize, but incorporates the response of the

magnetic circuit in the measured response, while the latter requires feedback control,

but provides a direct measure of the constitutive response. This method benefits

from having a well defined and controllable stress input and from its low frequency

excitation, for which magnetic diffusion is negligible. One drawback is the noise-

amplifying differentiation required to calculate the moduli. This drawback has been

mitigated by calculating slopes from polynomial fits of data subsets [156, 47, 120], in

one case preceded by a moving average technique [154].

Other researchers have used acoustic techniques like ultrasonic velocity measure-

ments [36, 39] and resonant ultrasound spectroscopy [37, 113], which are capable of

measuring all 3 independent elastic constants from a single specimen. However, Clark

et al. [36] noted a 17 % difference between elastic moduli measured using ultrasonic

velocity measurements and static stress-strain curves. Furthermore, incorporating

the effects of AC and DC stresses is challenging.

The Young’s modulus of magnetostrictive materials can also be calculated from

the electrical response of the solenoid used to magnetically excite the material [123,

30, 41, 29, 43]. This technique is known as the dynamic method, because it provides
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a measure of the material’s behavior under dynamic operating conditions. Specifi-

cally, the modulus is calculated from electrical impedance and admittance frequency

responses with the aid of a transducer model that couples electroacoustics theory

with linear constitutive equations and a single-degree-of-freedom mechanical model.

A variety of important material properties can be calculated from relatively simple

measurements. As noted by Savage et al. [123], a problem of this method is the

presence of flux leakage (i.e., magnetic flux passing through the drive coil, but not

the sample), which is especially important for Terfenol-D due to its low magnetic

permeability. Use of the voltage induced in a sensing coil instead of the voltage drop

across the drive coil has been found to overcome this issue [123, 30]. The primary

problem with this method is its reliance on the accuracy of the 1D, linear transducer

model. The presence of losses (i.e., hysteresis, eddy currents, viscoelasticity) or spu-

rious mechanical resonances of transducer parts can cause inaccuracies. Further, the

linearity assumption is only valid for low signal operation (see Fig. 1.3).

Kellogg and Flatau [95] directly calculated the stiffness and elastic modulus of a

Terfenol-D rod from displacement transmissibility frequency responses using the an-

alytical response of a two-degree-of-freedom, base-excited mechanical model. Similar

to the dynamic method, this technique relies on a linearity assumption, but still has

value for for some cases.

An exhaustive summary of the ∆E effect measured in Terfenol-D and Galfenol

is presented in Table 1.2, along with select measurements of other magnetostrictive

materials. Clearly, the conventional and natural materials have limited usefulness

for stiffness tuning. The performance of Metglas is attractive, but the material is

manufactured in micron-thick sheets. Although bulk geometries can be made by
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Table 1.2: A comparison of measured ∆E effects for a variety of magnetostrictive
materials, calculated using Eq. (1.16).

Material Class Material |∆E|, %

Conventional

Ni 19.1 [83], 21.0 [36]
W steel 0.7 [83]

Fe-rich Ni steel 0.5 [83]
Ni-rich Ni steel 25.2 [83]

Metglas
Fe40Ni38Mo4B18 38.6 [2]

Fe78Si9B13 180 [2]

Other rare-earth
Tb1Fe2 88.1 [36]

Tb0.67Dy0.33 480 [38]

Terfenol-D
Tb0.3Dy0.7Fe1.93 100 [108]
Tb0.3Dy0.7Fe1.95 266 [95], 414 [96]
Tb0.3Dy0.7Fe2 144 [123], 161 [39]

Galfenol

Fe84Ga16 117 [47]
Fe81.6Ga18.4 270 [156], 90 [156], 60.9 [120]

Fe81Ga19 168 [47], 104 [97], 40 [22]
Fe75.3Ga24.7 8 [22]

laminating many sheets, the structural integrity of these forms under compression is

unclear. The ∆E effect of TbDy only reaches the order of magnitude in Table 1.2 at

cryogenic temperatures, where its magnetostriction is significantly larger than near

room temperature [69]. Thus, Galfenol and Terfenol-D are the materials of interest.

The ∆E effect for specific alloys can be seen to vary significantly. The primary cause

is a difference in the conditions under which the moduli were reported, however varia-

tions in the material’s texture, material processing conditions, magnetic permeability,

and saturation magnetostriction can contribute. This also illustrates a drawback of

the ∆E effect definition Eq. (1.16) used in the table.
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1.3.3 Dynamic behavior of Terfenol-D and Galfenol

The design of magnetostrictive transducers that can dynamically tune their stiff-

ness requires knowledge of the magnetostrictive material’s constitutive behavior under

dynamic operating conditions. This knowledge is also critically important for the val-

idation of rate-dependent constitutive models [153]. The Young’s modulus, coupling

coefficient, and damping ratio of Galfenol rods have been calculated from electrical

responses to controlled dynamic currents [147]; however, this electrically-controlled

method relies on a linear piezomagnetic model relating electrical and mechanical do-

mains. Besides the potential inaccuracy of linear models, this method cannot quan-

tify the frequency dependence of material properties. Weng et al. [155] measured the

magnetization of a Galfenol rod subjected to dynamic stress. However, only one bias

condition and frequencies up to 10 Hz were considered. Ishimoto et al. [86] measured

the damping capacity of Galfenol under dynamic stress, but the forcing frequency was

limited to 10 Hz. Walker [152] measured flux density versus dynamic stress minor

loops at a single bias point for forcing frequencies of 10 to 1000 Hz. As frequency

increased, hysteresis was nearly constant, while sensitivity decayed monotonically.

Strain responses were not presented and the force magnitude was limited to 3 MPa

due to experimental limitations. These references also neglected their sensor signals’

phase misalignment versus frequency, which significantly increases the uncertainty of

energy loss calculations. No other measurements of Terfenol-D’s or Galfenol’s consti-

tutive behavior in response to dynamic forces were found.
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1.3.4 Magnetostrictive tunable stiffness devices

Ashour and Nayfeh [4] and Duan and Or [57] developed active and semi-active

vibration absorbers using Terfenol-D and Terfenol-D/epoxy composite actuators, re-

spectively. Neither author used the stiffness tuning property of Terfenol-D, but rather

its actuation capability. Flatau et al. [69] and Pagliarulo et al. [112] harnessed the

tunable stiffness of Terfenol-D rods to create semi-active AVAs whose axial resonant

frequencies could be quasi-statically decreased by 30 and 13 %, respectively. Due to

the use of Terfenol-D, these devices were relatively large to accommodate the rod

geometry and a sizeable electromagnet. Hiller et al. [81] and Bryant et al. [28] used

Terfenol-D actuators as active vibration isolators, demonstrating 50 and 82 % atten-

uations, respectively, of the disturbance vibration amplitude at low frequencies (10

to 70 Hz).

Many researchers have proposed models for magnetostrictive transducers (e.g.,

[138, 46, 44, 35, 62, 27]). Contributions to this field are primarily due to improve-

ments to constitutive models. Others have modeled the dynamic behavior of beams

containing Galfenol sheets or Terfenol-D particles, with focuses on dynamic actua-

tion for positioning [136, 137] or for active vibration control [161]. The ∆E effect

and stiffness tuning were rarely mentioned in this body of work. AVAs based on

magnetostrictive composites have not been studied.

Dapino et al. [45] modeled the shift in the 1st axial resonant frequency of a

Terfenol-D rod due to changes in the bias magnetic field. The resonant frequencies

were calculated from Fast Fourier Transformations of time domain impact responses

at constant magnetic fields. The time domain model is based on a distributed param-

eter model of the rod’s axial vibration, where the magnetostriction takes the form of
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an internally-applied force. The model was shown to be only qualitatively accurate,

due in part to the use of a phenomenological magnetostriction model and a constant

elastic modulus of the rod.

Jin et al. [90] calculated the 1st axial resonant frequency of a Terfenol-D transducer

as a function of magnetic field, stress, and temperature by coupling a distributed

parameter axial vibration model with a 3D, nonlinear constitutive model, which was

derived from Taylor series expansions of thermodynamic relations for strain, entropy,

and magnetic field. The calculated resonant frequencies agreed qualitatively with

measurements of a Metglas alloy.

Fukada et al. [71] presented a simple model for a novel method of semi-active stiff-

ness control that accomplishes tuning by connecting the electromagnet surrounding a

magnetostrictive rod to inductive loads of different positive and negative inductance.

This is analogous to the use of negative capacitive loads to change the electrical

boundary condition, and thus mechanical stiffness, of piezoelectric materials [111].

Although a linear constitutive model with constant material properties was used,

limited yet promising modeling results show that stiffening on the order of 100 % as

well as negative stiffness are possible.

1.4 Research Objectives and Outline

The literature review shows the availability of a significant body of work regard-

ing the measurement of quasi-static stiffness changes in magnetostrictive materials.

However, the elastic response of Galfenol to small amplitude quasi-static stresses has

not been reported. A select number of models and vibration control devices that
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consider or utilize this effect for quasi-static tuning have also been presented. Al-

though, Galfenol-based tunable stiffness devices have not been investigated, despite

Galfenol’s unique mechanical robustness. Also, a critical aspect of magnetostrictive

variable stiffness devices (as well as energy harvesters and dynamic sensors) – the

constitutive behavior under dynamic stresses – has been largely neglected. Further,

dynamic stiffness tuning of magnetostrictive materials is an undiscovered field, in

spite of its importance and potential contribution to vibration control. Hence, the

objectives of this research are to

• study the stiffness tuning response of Galfenol-based adaptive vibration ab-

sorbers through the development and application of nonlinear dynamic models

that describe their mechanical vibration response,

• investigate the effect of dynamic stress on the constitutive behavior of and

magnetic diffusion in ferromagnetic materials,

• experimentally characterize Galfenol’s response to dynamic, compressive stress,

including the frequency dependence of its sensitivity and Young’s modulus,

• and model, design, test, and apply a magnetostrictive device that can electri-

cally switch its stiffness at high speeds (up to 1 kHz).

The structure of this dissertation follows the objectives in order. Chapter 2 con-

siders static stiffness changes in Galfenol. First, the minor loop strain response of

the most common Galfenol alloy, Fe81.6Ga18.4, to quasi-static compressive stress is

measured; from these measurements, Galfenol’s Young’s modulus is calculated and

then studied to ascertain its variation with respect to stress and the applied bias mag-

netic field. Second, the stiffness tuning response of Galfenol beam adaptive vibration
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absorbers is investigated using lumped parameter and distributed parameter models

that are derived by incorporating Galfenol’s nonlinear, stress- and magnetic field-

dependent Young’s modulus into classical mechanical vibration equations. Chapter 3

focuses on stress-induced dynamic effects in magnetostrictive materials. First, linear

and nonlinear mechanically-induced magnetic diffusion in cylindrical ferromagnets

is studied by deriving analytical and numerical solutions, respectively, of Maxwell’s

equations. Second, precise measurements of Galfenol’s response to dynamic, compres-

sive stress are presented along with a novel experimental design, wherein a detailed

discussion of specimen design, sensor selection, uncertainty analysis, calibration, error

sources, and data processing methods is included. Chapter 4 investigates the dynamic

tuning of stiffness in magnetostrictive materials. First, a magnetostrictive device that

can dynamically vary its stiffness is modeled, designed, and tested. Second, a case

study is reported to illustrate the use of a dynamically-tunable magnetostrictive spring

for switched stiffness vibration control of a single-degree-of-freedom mechanical sys-

tem. Finally, Chapter 5 summarizes the research and discusses its contributions to

the state-of-the-art. This chapter also identifies future work that can build upon the

research contained herein.
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Chapter 2: Static Stiffness Change

In this chapter, the dependence of Galfenol’s minor loop elastic modulus on bias

stress and bias magnetic field is measured. This understanding is then applied to the

modeling of adaptive vibration absorbers composed of Galfenol-based metal-matrix

composite beams.

2.1 Quasi-Static Elastic Response of Galfenol

As discussed in Section 1.3.2, the existing body of experimental work provides

a thorough understanding of the major loop mechanical response of Galfenol alloys,

particularly the effect of stoichiometry on the response. However, strain versus stress

minor loops and a comprehensive comparison of constant current and constant field

bias conditions have not been reported. Further, the elastic response of laminated

Galfenol specimens, which are necessary for high frequency operation, is absent from

the literature.

In this section, major and minor strain versus stress and Young’s modulus re-

sponses of a solid, research grade, <100> oriented, polycrystalline Fe81.6Ga18.4 rod

are reported for constant current and constant field conditions. For comparison,

major loop, constant current responses of a laminated specimen are also presented.
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Major and minor loops were obtained for 1 Hz, 31.4 MPa and 4 Hz, 2.88 MPa am-

plitude sinusoidal stresses, respectively. Constant currents up to 1 A and constant

fields up to 13.8 kA/m were considered, because this Galfenol alloy is most sensitive

to stress for bias fields below 10 kA/m [154]. Evans and Dapino’s DEA constitutive

model [60, 61] (summarized in Section 1.2.2) was fit to the experimental data to facil-

itate the use of the presented measurements for the design, optimization, and control

of Galfenol-based systems. The model exhibits errors of 1.22 % and 1.02 % relative

to constant current and constant field measurements, respectively, using the reported

optimized model parameters.

The research in this section was conducted in collaboration with Zhangxian Deng,

who lead the modeling work and helped analyze the data.

2.1.1 Experimental design and setup

Solid and laminated cylindrical specimens were cut from a single <100> oriented,

polycrystalline Fe81.6Ga18.4 bulk rod, which was grown by ETREMA Products, Inc. as

discussed in Section 3.2.1. Each rod had a diameter of 6.35 mm (0.25 in) and a length

of 76.2 mm (3 in). The laminates of the laminated rod were 0.84 mm (0.033 in) thick.

The magnetic bias was applied by the symmetric electromagnetic transducer shown

in Figs. 3.16 and 3.22(a), which generates a uniform magnetic state in the gauge

region of the specimen while allowing for independent mechanical excitation. This

transducer has been successfully used in previous research [154]. The electromagnets

were driven by an AE Techron LVC5050 linear amplifier operated in controlled current

mode. Axial stress was applied by a MTS 831.50 dynamic load frame operated in force
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control mode using a MTS 793 FlexTest GT controller. Axial force was measured

with an Interface 1010ACK-500-B load cell.

The magnetic flux density was measured using a Lake Shore 480 fluxmeter and

custom pick-up coil, which was located in the center of the gauge region. The bias

magnetic field was measured at the surface of the rods using an Allegro A1321LUA

Hall chip. A dSPACE DS1103 board programmed for PI control was used to maintain

a constant magnetic field throughout the stress cycle. The magnetic field was typically

held within ±0.0125 kA/m and ±0.004 kA/m of the bias field for major and minor

loops, respectively [129]. Comparatively, quasi-static constant field experiments by

Wun-Fogle et al. [156] exhibited magnetic field variations of ±0.079 kA/m (typical)

to ±0.79 kA/m (maximum). Bias current variation during constant current testing

was typically less than 0.03 mA [129]. Axial strain was quantified by averaging the

strain measured by a pair of Vishay Micro-Measurements EA-06-250BF-350/L strain

gauges oriented along the axis of the rod and installed on opposite sides of the rod.

The sensors were calibrated as described in Appendix C.2, except for the pick-up

coil, which was calibrated by measuring the static magnetic field generated between

the poles of a large electromagnet using the pick-up coil and a calibrated Hall ef-

fect sensor. An uncertainty analysis of each measured quantity is detailed in Ap-

pendix C.1. Measurement signals were phase aligned in post processing by correcting

for the phase response of the conditioning electronics, as explained in the Phase

calibration subsection of Section 3.2.4.

The testing procedure included the application of a bias field (or current) followed

by the bias force, after which 1 Hz, 31.4 MPa amplitude (for major loops) or 4 Hz,

2.88 MPa amplitude (for minor loops) sinusoidal compressive stress was applied until
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a steady-state response was observed. Responses were recorded for constant currents

of 0 to 1 A in 0.1 A increments and constant fields of 0.73, 1.42, 2.41, 3.88, 5.50,

7.17, 8.84, 10.51, 12.19, and 13.76 kA/m (the fields generated by each bias current

under zero force). Minor loops were measured for nominal bias stresses of -41.6 MPa

to -5.7 MPa in 7.2 MPa steps, where negative values denote compression.

2.1.2 Results and discussion

The DEA model was separately optimized to the constant field and constant

current major loop responses of the solid Galfenol rod as discussed in [154]. The

modeling error Er was quantified as

Er =
1

2N

(
||Bm −Bd||
range(Bd)

+
||Sm − Sd||
range(Sd)

)
, (2.1)

where N is the number of data points in a single loop, B is the magnetic flux density,

S is the strain, and the subscripts m and d denote modeled and measured quantities,

respectively [32, 154].

Solid rod: major strain versus stress loops under constant field

A comparison of the experimental and simulated strain versus stress responses of

the solid Galfenol rod is given in Fig. 2.1. To enhance the optimization of the model

and further illustrate the fit, flux density versus stress responses are also considered.

There is extremely close agreement between the model and the data, with an average

modeling error of 1.02 %. The optimized model parameters, shown in Table 2.1,

closely fit results from the literature [143, 156, 65].

Galfenol exhibits a very high degree of kinematic reversibility (i.e., the order

of application of stress and magnetic field does not matter) [65, 154]. To provide
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Table 2.1: Optimized model parameters for the DEA model.

K, kJ/m3 K0, kJ/m3 λ100, ×10−6 λ111, ×10−6 µ0Ms, T
18.78 0.03 157.93 N/A 1.58

Ω, J kp, J c Es, GPa
1024.50 381.78 0.82 72.04
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Figure 2.1: Comparison of the experimental (solid) and modeled (dashed) sensing
responses of the solid Fe81.6Ga18.4 rod to 1 Hz sinusoidal compression for constant
magnetic fields of 0.73, 1.42, 2.41, 3.88, 5.50, 7.17, 8.84, 10.51, 12.19, and 13.76 kA/m:
(a) magnetic flux density versus stress and (b) strain versus stress.

confidence in the experimental setup, reversibility was evaluated by measuring the

actuation response of the solid rod in addition to its sensing response [129]. As seen in

Fig. 2.2, the actuation points obtained from sensing curves almost mirror the directly

measured actuation curves, which is consistent with reversibility measurements in

prior work [65, 154].

The macroscopic strain consists of elastic deformation, which varies linearly with

stress, and magnetostriction, which depends on the relative magnitude of magnetic,
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(a) (b)

Figure 2.2: Comparison of the actuation responses of the solid Galfenol rod measured
directly (solid black lines) and obtained from the sensing responses at constant field
(red circles): (a) flux density versus field and (b) strain versus field.

mechanical, and magnetomechanical coupling energies. There are two saturation re-

gions in which magnetostriction does not occur: (a) magnetic field-induced saturation,

when the magnetic field energy dominates the total free energy and causes alignment

of magnetic domains along the rod’s axis, and (b) stress-induced saturation, when

the magnetomechanical coupling energy dominates and moments are forced to lie in

the basal plane. The burst region, where elastic deformation and magnetostriction

occur simultaneously, denotes a transition between the two saturation states. In the

burst region, the free energy terms have similar magnitude and magnetic domains are

free to rotate. As the bias field increases, the location of the burst region shifts to

larger compressive stress, because a larger mechanical energy is required to balance

the increased magnetic energy.

The Young’s modulus of the solid rod at constant field (Fig. 2.3) was calculated

as the inverse of the slope of the measured strain versus stress responses. To mitigate
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Figure 2.3: Young’s modulus of the solid Fe81.6Ga18.4 rod (from major loops) for a
bias stress of -31.9 MPa and constant bias fields of 0.73, 1.42, 2.41, 3.88, 5.50, 7.17,
8.84, 10.51, 12.19, and 13.76 kA/m; color changes from blue to red as the bias field
increases; decreasing stress (dashed) and increasing stress (solid).

the noise amplification from numerical differentiation, small sections of each curve

were fit by 4th order polynomials, which were analytically differentiated to calculate

the slope at the center of each section [154, 120, 47, 156]. A 75 % overlap of adjacent

sections was used to smoothen the modulus curves. As seen in Fig. 2.3, the modulus

for a given constant field is stress dependent. The location of the minimum modulus

follows the center of the burst region, shifting to larger compression as the bias field

is increased. The magnitude of the minimum modulus increases with increasing bias

field, as observed and explained by Datta et al. [47]. The minimum Young’s modulus

is about 32.53 GPa and occurs at 2.41 kA/m and -6.25 MPa. According to Eq. (1.17),

this corresponds to a ∆E effect of 54.84 %.

For each constant field, there are two modulus curves: one corresponding to the

loading half of the compression cycle and one to the unloading half. This hysteresis in

the modulus is due to magnetic hysteresis, which is discussed in the Energy dissipa-

tion in ferromagnetic materials subsection of Section 1.2.1. The elastic modulus
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tends to increase above the saturation value after the stress changes direction, par-

ticularly near zero stress. The cause was not investigated, although it is thought to

result from having a stress reversal point before complete magnetic saturation. Noise

prevented the calculation of material properties near reversal points in Ref. [120].

However, noise is not believed to be the cause here.

Solid rod: minor strain versus stress loops under constant field

Fig. 2.4(a) shows the minor loop, strain versus stress responses of the solid Galfenol

rod under constant field. Distinct saturation and burst regions are observed depending

on the bias stress and field. A comparison of select major and minor loop responses

under constant field is depicted in Fig. 2.4(b). As expected, the minor loops lie

within the major loops. It is emphasized that the minor loop testing was conducted

at 4 Hz for consistency with similar work on Terfenol-D [96] and Galfenol [154];

however, preliminary testing revealed that the minor loop responses for 0.1 Hz and

4 Hz sinusoidal compression were equal to within experiment error. In the burst

region, the Galfenol rod is noticeably stiffer for small amplitude loading than for

major loop loading. The same trend was observed in Terfenol-D by Kellogg and

Flatau [96], who attributed the decrease to constrained magnetic moment rotation.

The Young’s modulus of minor strain versus stress loops – shown in Fig. 2.5(a) for

constant field testing of the solid rod – was calculated via linear regression. Fig. 2.5(b)

gives a comparison of the modulus of select major and minor loop responses. As noted

earlier, the modulus of minor loops is consistently larger than that of major loops in

the burst region. The minimum modulus of the minor loop responses is 44.74 GPa,

corresponding to a ∆E effect of 37.90 %, when field and stress are 2.41 kA/m and

-5.77 MPa, respectively.
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Figure 2.4: (a) Strain versus stress minor loops of the solid Fe81.6Ga18.4 rod to 4 Hz
sinusoidal compression for constant fields of 0.73, 1.42, 2.41, 3.88, 5.50, 7.17, 8.84,
10.51, 12.19, and 13.76 kA/m and nominal bias stresses of -5.73 to -41.6 MPa in
7.2 MPa steps and (b) comparison of the major and minor loop responses of the solid
rod for constant field of 2.41, 3.88, and 5.50 kA/m.

Fig. 2.6(a) depicts the Young’s modulus response of Galfenol to an applied field

for different bias stresses. The Young’s modulus first decreases to a minimum with

increasing field, then increases toward the saturation modulus thereafter. The min-

imum modulus shifts to a larger magnetic field as the compressive stress increases.

The minimum modulus, and thus maximum ∆E effect, is achieved when the bias

stress is small. The same trend is observed in existing measurements of Terfenol-

D [96]. The Young’s modulus from minor loops (Fig. 2.6(b)) also exhibits a minimum

as field increases; however, the minimum moduli are larger than those of the major

loop responses, because magnetostrictive materials are sensitive to the amplitude of

the applied cyclic stress [96, 108].
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Figure 2.5: (a) Young’s modulus of the solid Fe81.6Ga18.4 rod (from minor loops) for
constant fields of 0.73, 1.42, 2.41, 3.88, 5.50, 7.17, 8.84, 10.51, 12.19, and 13.76 kA/m
and nominal bias stresses of -5.73 to -41.6 MPa in 7.2 MPa steps and (b) comparison
of the modulus from the major (lines) and the minor (circles) loop responses for
constant fields of 2.41, 3.88, and 5.50 kA/m.

Solid rod: major strain versus stress loops under constant current

Practical Galfenol-based devices, such as force sensors and energy harvesters, will

typically lack active magnetic field control. Thus, strain versus stress responses under

constant current to the electromagnets were also measured. The major loop, constant

current sensing response of the solid Galfenol rod is depicted in Fig. 2.7 along with

optimized simulations, which exhibit an average modeling error of 1.22 %. Comparing

constant field major loops (Fig. 2.1) to constant current major loops (Fig. 2.7) shows

that the latter has a flatter slope in the burst region. This results from the stress-

dependent field that occurs under constant current (see Fig. 2.8(a)) due to Galfenol’s

stress- and field-dependent magnetic permeability, which is shown in Fig. 2.8(b). The

changes in magnetic field cause magnetostriction, which partially compensates for
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Figure 2.6: Young’s modulus of the solid Fe81.6Ga18.4 rod from constant field (a) major
loops (dashed: decreasing stress; solid: increasing stress) and (b) minor loops; bias
stresses are from -5.73 to -41.6 MPa in 7.2 MPa steps.

the passive elastic deformation, thus leading to smaller changes in strain for a given

change in stress.

Fig. 2.9 presents the Young’s modulus of the solid rod at constant current, which

was calculated using the same method as used for Fig. 2.3. The minimum modulus

of 43.94 GPa occurs at a 0.2 A bias current and a -3.34 MPa stress. The associated

∆E effect of 39.01 % is considerably smaller than the effect under constant field.

The minimum modulus increases as the bias current increases, similar to the effect

of increasing the bias field. The hysteresis observed in the constant current modulus

responses is slightly larger than in the constant field responses.

Solid rod: minor strain versus stress loops under constant current

Fig. 2.10(a) depicts the minor loop, strain versus stress responses of the solid

Galfenol rod under constant current. A comparison of select major and minor loop
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Figure 2.7: Comparison of the experimental (solid) and modeled (dashed) sensing
responses of the solid Fe81.6Ga18.4 rod to 1 Hz sinusoidal compression: (a) flux density
versus stress and (b) strain versus stress. Bias current values are from 0 A to 1 A in
0.1 A steps.

responses under constant current is depicted in Fig. 2.10(b). Minor loops are again

circumscribed by their corresponding major loops.

The minor loop Young’s modulus of the solid Galfenol rod under constant cur-

rent, which is calculated using linear regression, is shown in Fig. 2.11(a). Fig. 2.11(b)

compares select major and minor loop modulus responses. As observed for constant

field conditions, the constant current minor loop responses are stiffer than their cor-

responding major loop responses. The minimum modulus for this case is 52.26 GPa

at 0 A bias current and -5.76 MPa bias stress, providing a ∆E effect of 27.46 %.

Laminated rod: major strain versus stress loops under constant current

To relate the quasi-static performance of laminated Galfenol rods with that of solid

Galfenol rods, major loop strain versus stress responses of a laminated Fe81.6Ga18.4

rod were measured under constant current for the same conditions as used for the

55



−60 −50 −40 −30 −20 −10 0
0

2

4

6

8

10

12

14

Stress [MPa]

M
ag

ne
tic

 F
ie

ld
 [k

A
/m

] Bias current inc.

(a)

−20−15−10 −5 0 5 10 15 20
0

100

200

300

400

500

600

700

Magnetic Field [kA/m]

µ 33T
/µ

0 [−
]

 

 

Bias
compression

inc.

(b)

Figure 2.8: (a) variation in magnetic field for constant currents of 0 A to 1 A in
increments of 0.1 A and (b) relative magnetic permeability of the solid Fe81.6Ga18.4

rod for constant stresses of 0, -1.62, -10.3, -20.5, -30.7, -40.9, -51.2, and -61.5 MPa.

solid rod. The measurements are shown in Fig. 2.12 along with the Young’s modulus

response, which was calculated as explained in the Solid rod: major strain versus

stress loops under constant field subsection of Section 2.1.2. Relative to the solid

rod, the laminated rod has a considerably lower saturation modulus of 59.54 GPa,

which is primarily due to the presence of adhesive layers that have a modulus of

only 0.86 GPa. The observed trends are consistent with the behavior of the solid

rod. The minimum modulus is 36.31 GPa, which occurs at 0.5 A bias current and

-3.25 MPa stress. Interestingly, the corresponding ∆E effect of 39.02 % is equal,

within experimental error, to that of the solid rod under the same conditions.

2.1.3 Concluding remarks

In this section, major strain versus stress responses of solid rods of research grade,

<100> oriented, textured polycrystalline Fe81.6Ga18.4 were measured under constant

magnetic fields from 0.73 kA/m to 13.76 kA/m and under constant currents from 0 A
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Figure 2.9: Young’s modulus of the solid Fe81.6Ga18.4 rod (from major loops) versus
stress for constant currents of 0 A to 1 A with 0.1 A steps; decreasing stress (dashed)
and increasing stress (solid).

to 1 A. The mechanical loading consisted of a 1 Hz stress ranging from -63.3 MPa to

-0.5 MPa. The minimum major loop modulus under constant field and constant cur-

rent is 32.53 GPa and 43.94 GPa, respectively, corresponding to ∆E effects of 54.84 %

and 39.01 %, respectively. The DEA model was optimized to the constant field and

constant current elastic responses. The modeling results show a close agreement with

the data, exhibiting average modeling errors of 1.02 % and 1.22 % for constant field

and constant current conditions, respectively. Minor loop mechanical excitations were

also applied by superimposing a 4.0 Hz, 2.88 MPa amplitude sinusoidal stress on bias

stresses ranging from -41.6 MPa to -5.7 MPa. In general, the minor loop responses

are flatter than their circumscribing major loop responses. The minimum minor loop

modulus under constant field and constant current is 44.74 GPa and 52.26 GPa,

respectively, corresponding to ∆E effects of 37.90 % and 27.46 %, respectively. A

laminated Galfenol sample, cut from the same bulk rod as the solid rod, was tested

under the same constant current conditions. Due to the soft adhesive layer between
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Figure 2.10: (a) strain versus stress minor loops of the solid Fe81.6Ga18.4 rod for
constant currents of 0 A to 1 A in increments of 0.1 A and nominal bias stresses of
-5.7 MPa to -41.6 MPa with 7.2 MPa steps and (b) comparison of the major and
minor loop responses of the solid rod for constant currents of 0.2, 0.3, and 0.4 A.

laminates, the saturation modulus of the laminated sample is 59.54 GPa, which is

82.65 % of the solid rod’s saturation modulus. The minimum major loop modulus of

the laminated rod is 36.31 GPa, corresponding to a 39.02 % ∆E effect.

In all cases, the minimum modulus occurs at larger compressive stress as the bias

field or current increases. The ∆E effect associated with minor loops is consistently

lower than that associated with major loops, regardless of the magnetic bias con-

dition. The hysteresis of constant field responses is smaller than that of constant

current responses; this may result from the field control system providing energy to

the magnetic circuit.
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Figure 2.11: (a) Young’s modulus of the solid Fe81.6Ga18.4 rod for constant currents
of 0 A to 1 A in 0.1 A steps and nominal bias stresses of -5.7 MPa to -41.6 MPa
with 7.2 MPa steps and (b) comparison of the modulus from major (lines) and minor
(circles) loops for constant currents of 0.2, 0.3, and 0.4 A.
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Figure 2.12: (a) strain and (b) Young’s modulus major loops of the laminated
Fe81.6Ga18.4 rod for constant currents of 0 A to 1 A in 0.1 A steps; decreasing stress
(dashed) and increasing stress (solid).
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2.2 Galfenol Vibration Absorbers

Vibration absorbers are a common solution when undesirable vibration or trans-

mitted forces cannot be reduced through direct design modifications (e.g., by in-

troducing additional damping or shifting resonant frequencies away from operating

conditions). While conventional absorbers must be designed for a specific operating

condition and vibrating structure, adaptive vibration absorbers (AVAs) can tune their

response in conjunction with changes in operating conditions.

Recent advancements in manufacturing technology have enabled the development

of composites containing active materials. By harnessing Galfenol’s robustness and

its electrically-tunable elastic modulus, load-bearing composites that provide a con-

trollable stiffness can be realized. One enabling technology is ultrasonic additive

manufacturing (UAM), a metal layering technique for creating multimaterial com-

posites containing seamlessly-embedded smart materials. UAM is a low temperature

rapid prototyping process based on solid-state welding of metal foils to themselves or

to a metallic substrate [135]. In UAM, a sonotrode applies transverse ultrasonic vi-

bration (>20 kHz) to the tape–substrate pair creating a scrubbing action that shears

asperities and disperses surface contaminants and oxides. The resulting nascent sur-

faces metallically bond under an applied normal force. A 9 kW UAM machine and

a schematic of the ultrasonic weld head are shown in Fig. 2.13. Metallic tapes are

welded additively to form bulk 3D geometries, which may include complex internal

channels created through periodic machining.

The manufacture of layered structures by UAM is computer controlled and au-

tomatic. A tape feed mechanism supplies the metal foils to the weld head and cuts

them at the beginning and end of each pass. Embedding smart materials is presently
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Figure 2.13: Very high power UAM machine installed in the Center for Ultrasonic
Additive Manufacturing at The Ohio State University, and schematic of the ultrasonic
system (motion during welding shown by arrows).

done by combining this automatic process for layering of the matrix along with man-

ual placement of the smart materials. Galfenol is best embedded as sheet stock or

wires. Depending on the thickness of the Galfenol features relative to the typical foil

thickness (0.15 mm, or 0.006 in), grooves are machined in the matrix to partially

bury the material under the surface of the build. This is done via the built-in CNC

mill or laser etching system. A Galfenol/Al 3003 composite manufactured via UAM

is shown in Fig. 2.14.

Figure 2.14: Al 3003 composite manufactured by UAM containing an embedded 0.05
x 1.27 cm Galfenol sheet.

61



In this section, a metal-matrix composite beam, like that shown in Fig. 2.14,

containing an embedded sheet of Galfenol is considered as an AVA. The objective

of this section is to assess the controllability of the composite’s resonance through

bias field tuning of the elastic modulus. The magnitude of the change in the com-

posite’s resonant frequency provides a measure of the tunability of the AVA, and

therefore its ability to absorb the vibration of a host structure that exhibits variable

operating conditions or dynamic characteristics. Tuning of the composite’s resonant

frequency is studied by calculating the nonlinear, bending vibration of the compos-

ite at different forcing frequencies. In the first subsection, the composite is modeled

as a single-degree-of-freedom mechanical system, whereas in the second subsection,

a 1D distributed parameter model is used. A Galfenol/aluminum composite beam,

manufactured via UAM, is used to validate the distributed parameter model.

2.2.1 Lumped parameter modeling

In this section, the nonlinear, bending vibration of the aforementioned composite

beam is modeled to quantify changes in the composite’s frequency response due to

variations in the excitation power amplitude and the bias magnetic field. To improve

computational efficiency, the composite is approximated as a simple mass-spring-

damper system, where the spring behaves nonlinearly due to Galfenol’s stress- and

magnetic field-dependent elastic modulus. Accuracy is retained by (i) incorporating

a fully-coupled, nonlinear constitutive model of Galfenol accurate for arbitrary stress

and magnetic field (the DEA model), (ii) considering the variation in Galfenol’s elastic

modulus along the length of the composite, and (iii) including the asymmetric tension-

compression behavior of Galfenol. Two boundary conditions, clamped-free (C-F) and
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clamped-clamped (C-C), are considered. To optimize the composite geometry for

resonance tuning, a parametric study is presented to determine the effect of Galfenol

volume fraction and of the location of Galfenol elements within the composite.

Model development

The frequency domain response of the composite’s vibration is desired to quantify

the tunability of the composite’s resonance. However, an eigenvalue problem cannot

be formulated, because the stiffness nonlinearity is state dependent. Consequently,

the frequency response must be approximated by calculating the steady-state vibra-

tion of the composite in the time domain and extracting the vibration amplitudes

at discrete excitation frequencies. The number of time domain responses required

to approximate the frequency responses for the parametric studies is O(104), be-

cause (i) about 30 discrete frequencies are needed for smoothness of the frequency

responses, (ii) both forward and reverse frequency sweeps are required, (iii) a wide

range of operating conditions (excitation power amplitude and bias magnetic field)

must be considered, and (iv) the independent parameter (Galfenol volume fraction or

location) must be varied. As such, the system must be simplified for computational

efficiency. To preserve the complex constitutive behavior, the composite is approx-

imated as a single lumped mass with an equivalent bending stiffness and constant

damping.

Bending Vibration Model

Following the standard application of Newton’s 2nd law, the governing ODE for

the composite beam represented as a single-degree-of-freedom resonator is,

m ¨̄w + c ˙̄w + keq(Hbias, T )w̄ = mω2U2e
iωt, (2.2)
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where w̄ is defined as the relative displacement between the mass and base, and

harmonic base excitation with amplitude U2 and frequency ω is used,

w̄ = w̄1 − w̄2 = w̄1 − U2e
iωt. (2.3)

In Eq. (2.2), the spring is nonlinear due to the dependence of Galfenol’s elastic mod-

ulus on the bias magnetic field (Hbias) and bending stress (T ). The damping ratio,

ξ =
c

2mωn

=
c

2m

√
m

keq
, (2.4)

was held constant for all simulations. Using results from Meirovitch [106], the equiv-

alent spring constants for a C-F beam subject to a tip load and a C-C beam subject

to midspan load are,

kCF
eq (Hbias, T ) =

3Eeq(Hbias, T )I(Hbias, T )

L3
(2.5)

and

kCC
eq (Hbias, T ) =

192Eeq(Hbias, T )I(Hbias, T )

L3
, (2.6)

respectively, where L is the length of the beam. As such, w̄ represents the tip deflec-

tion of the C-F beam and the midspan deflection of the C-C beam. The equivalent

elastic modulus of the composite Eeq is calculated as a function of the matrix and

average Galfenol elastic moduli (EM and EG) and volume fractions (ξM and ξG) using

the rule of mixtures [141],

Eeq(Hbias, T ) = EG(Hbias, T )ξG + EMξM. (2.7)

The area moment of inertia I is calculated in the standard manner after first ho-

mogenizing the composite by scaling the Galfenol width (WG) to yield an equivalent

section of matrix material,

WGeq =
EG(Hbias, T )

EM

WG. (2.8)
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The magnetic field is assumed homogeneous throughout the composite. Consid-

ering the stress variation in the beam and the asymmetry in the material’s tension-

compression behavior, an average elastic modulus for the Galfenol element is calcu-

lated. As seen in Figs. 2.1(a) and 2.3, respectively, the magnetic flux in Galfenol and

its elastic modulus vary almost exclusively in the compressive stress regime. Thus,

even for Galfenol located at the neutral axis, the symmetric (zero average) bend-

ing stress will yield an asymmetric elastic modulus distribution through the Galfenol

thickness. This asymmetric distribution will change as the stress magnitude varies,

leading to a non-constant average elastic modulus through the Galfenol element’s

thickness. An example of this variation in elastic modulus is shown in Fig. 2.15 as a

function of the maximum bending stress in a Galfenol beam.
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Figure 2.15: Average elastic modulus through the thickness of a Galfenol element
located at the neutral axis with Hbias = 2 kA/m (calculated using the DEA model).

Galfenol’s elastic modulus varies along the length of the beam due to the position-

dependent stress in the Galfenol element. As such, this variation is incorporated in

the single-degree-of-freedom model of the composite by using an average value of the

65



stress in the element. As will be discussed in Section 2.2.1, the stress acting on the

Galfenol element is calculated from its strain using a numerical inversion of the DEA

model. Thus, an average value of the strain is required.

The strain in the Galfenol element at a distance y from the neutral axis is calcu-

lated from mechanics of materials as,

S = −y∂
2w

∂x2
, (2.9)

where w(x) is the transverse deflection of the beam along its length. This strain is

evaluated at each time step by assuming that the instantaneous beam deflection is

due to a virtual, static force F at the tip (for the C-F beam) or the midspan (for the

C-C beam). Under these conditions, the elastic curves of the C-F and C-C beams

are,

wCF (x) =
1

2EeqI

(
FLx2 − 1

3
Fx3

)
(2.10)

and

wCC (x) =

{
(4EeqI)−1 (−1

3
Fx3 + 1

4
FLx2

)
0 ≤ x ≤ L

2

(4EeqI)−1 (1
3
Fx3 − 3

4
FLx2 + 1

2
FL2x− 1

12
FL3

)
L
2
≤ x ≤ L

, (2.11)

respectively. The average curvature of the C-F beam is,(
∂2w

∂x2

)CF

avg

=
FL

2EeqI
. (2.12)

Setting x = L in Eq. (2.10) to relate the calculated tip deflection w̄CF to the virtual

tip force and using Eq. (2.12), the strain in the Galfenol element Eq. (2.9) for the

C-F beam can be rewritten as,

SCF = −3w̄CFy

2L2
. (2.13)

For the C-C beam, the average curvature is zero. Despite this, the average elastic

modulus of the Galfenol element will still vary even if it is also located at the beam’s
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neutral axis. For the C-C beam, the average curvature over the middle half and over

the outer quarters of the beam,(
∂2w

∂x2

)CC

avg1

=
−FL

16EeqI
(2.14)

and (
∂2w

∂x2

)CC

avg2

=
FL

16EeqI
, (2.15)

respectively, are both used. Setting x = L/2 in Eq. (2.11) to relate the calculated

midspan deflection w̄CC to the virtual midspan force and using Eqs. (2.14) and (2.15),

the strain in the Galfenol element Eq. (2.9) over these sections of the C-C beam can

be rewritten as,

SCC
1 =

12w̄CCy

L2
(2.16)

and

SCC
2 = −12w̄CCy

L2
. (2.17)

In summary, the change in Galfenol’s elastic modulus along the length of the beam

is incorporated into the proposed model using a single average strain Eq. (2.13) for

the C-F beam and two average strains Eqs. (2.16) and (2.17) for the C-C beam.

The variation in Galfenol’s elastic modulus through the element’s thickness is

considered by averaging the elastic moduli that are calculated at 2, 4, 6, 8, and 10

equally-spaced locations through the thickness. The number of locations necessary

for an accurate approximation was determined through a short parametric study. The

independent variables in the study were the bias magnetic field (values of 0, 2, and

4 kA/m) and the location of the Galfenol element (at the neutral axis, 75 % of the

element above the neutral axis, and 75 % of the element below the neutral axis).

For each case, the force applied to the beams was varied such that the maximum
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Figure 2.16: Average elastic modulus of a Galfenol element located at the C-F beam’s
neutral axis calculated from 2 (+), 6 (#), and 10 (�) locations through the element’s
thickness compared to the true average (—) (Hbias = 4 kA/m; 4 and 8 location
averages not shown for clarity).

stress in the Galfenol element varied between 0 and 350 MPa. A uniform grid of

points was applied to the Galfenol element (100 points through its thickness and 100

points along its length). At each grid point, the strain was calculated using Eq. (2.9).

The true average elastic modulus in the Galfenol element was taken as the average

over this 100 x 100 grid. An example comparison between the true average and the

approximated averages is shown in Fig. 2.16. For each case, the RMS error was

calculated relative to the true average. The average RMS error over all of the test

cases is tabulated in Table 2.2 for each approximation.

Note that the approximations for the C-C beam average twice as many elastic

moduli as for the C-F beam, because two average strains (and therefore two elastic

moduli) are needed to describe the elastic modulus variation along the C-C beam’s

length. Considering accuracy and computational efficiency of the composite vibration

model, 6 and 4 averages through the Galfenol element’s thickness were used for the

C-F and C-C beams, respectively.
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Table 2.2: Average RMS error for approximating the average elastic modulus through
the thickness and along the length of the Galfenol element using 2, 4, 6, 8, and 10
equally-spaced locations through its thickness.

Number of
Locations

Average RMS Error (GPa)
C-F Beam C-C Beam

2 4.06 2.41
4 2.40 1.70
6 1.80 1.49
8 1.80 1.54
10 1.82 1.62

Nonlinear solution procedure

The solution procedure is graphically depicted in Fig. 2.17. The inner loop ap-

proximates the nonlinear time domain response of the composite beam through lin-

earization of the nonlinear ODE Eq. (2.2) by updating the equivalent stiffness for

each time step. The DEA model is used to update Galfenol’s elastic modulus, which

requires knowledge of the stress and magnetic field in the Galfenol element. The mag-

netic field is a known input. However, due to the bi-directional coupling present in

the Galfenol element, direct calculation of the stress from the beam’s deflection is not

possible. Instead, stress must be calculated from the bias magnetic field and strain in

the Galfenol element by numerically inverting the DEA model. In this paper, the in-

version is performed using the quasi-Newton SR1 algorithm [33]. Therefore, for each

time increment, the strain, stress, and elastic modulus must be calculated at each of

the 6 and 8 averaging locations for the C-F and C-C beams, respectively. Each cycle

of the excitation is divided into 50 differential time steps to maintain accuracy and
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smoothness. Solutions are obtained for 15 cycles of the base excitation, which was

determined a posteriori to ensure that steady state was reached.

Figure 2.17: Solution procedure to approximate a single, potentially hysteretic fre-
quency response.

The outer loop approximates the frequency response of the composite’s nonlin-

ear vibration. The amplitude ratio is calculated as the steady-state tip or midspan

displacement divided by the excitation amplitude. Forward and reverse excitation

frequency sweeps are necessary due to the nonlinearities in the system, which may
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result in multiple, stable periodic orbits of composite vibration for a single set of oper-

ating conditions. When this occurs, it is seen in the frequency response as hysteresis

in the steady-state vibration of the system. This also explains the need for enforcing

continuity of state (i.e., equating the initial state of the next time domain response

with the final state of the current response) at the beginning of each time domain

simulation.
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Figure 2.18: Hysteretic frequency response of the C-F Galfenol-Al composite, Hbias =
1 kA/m, |P | = 0.0119 J, and ξG = 0.82.

A hysteretic frequency response obtained using the proposed model is shown in

Fig. 2.18. Throughout each frequency sweep, the input power amplitude |P | = |Fv|

is held constant by defining the excitation amplitude as,

U2 =

√
|P |
mω3

, (2.18)

which can be derived from Eqs. (2.2) and (2.3). This is a more physically accurate

operating condition than that used in [125]. This numerical simulation is equivalent

to a forward and reverse stepped sine experiment that includes the first vibration

mode.
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Model results

The entire range of composite behavior is described by the excitation magnitude

and the bias magnetic field. Thus, a complete characterization of the stiffness tuning

behavior, and therefore resonant frequency tuning behavior, is obtained by consider-

ing a range of input power amplitudes (1 × 10−3 to 1 × 104 J) that leads to Galfenol

stresses between 50 and -50 MPa and bias magnetic fields (0 to 13 kA/m) capable of

magnetically saturating the Galfenol element over this stress range. The 1D strain

response of Galfenol is symmetric with respect to magnetic field. Therefore, negative

bias magnetic fields do not need to be considered. To accurately approximate the

resonant frequency for each case, both the forward and reverse frequency sweeps were

curve fit with cubic splines. The resonant frequency was taken as the frequency at

which the maximum amplitude ratio occurs in the interpolated data. The resonant

frequency of vibration for every combination of input power amplitude and bias mag-

netic field was obtained in this manner. The resulting frequencies were normalized

with respect to the maximum frequency to show the percent changes in resonant fre-

quency from the saturated (stiff) case. For a given geometry of the composite, the

percent change in resonant frequency is calculated according to

∆ωr =

⏐⏐⏐⏐ωr,min

ωr,max

− ωr,max

ωr,max

⏐⏐⏐⏐ =

⏐⏐⏐⏐ωr,min

ωr,max

− 1

⏐⏐⏐⏐ . (2.19)

In order to determine the geometry that maximizes the stiffness tunability of the

composite, Galfenol volume fraction and its offset from the horizontal midplane of

the composite’s cross section were varied. Surface plots of the normalized resonant

frequency were generated for each case, and are presented as a top view of the surface
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Table 2.3: Model parameters.

FeGa
Matrix
(Al)

Composite

Ms

(T)
λ100

(×10−6)
Kk

(kJ/m3)
Ω

(J/m3)
E

(GPa)
ξ

L
(cm)

m
(kg)

width
(cm)

thickness
(cm)

1.3787 157 2.71×104 776.73 68.9 0.1 2.54 0.058 1.65 0.0762

in Figs. 2.19, 2.20, 2.22, and 2.23. Results are presented for the model parameters

given in Table 2.3; the material properties for Galfenol were obtained through a least-

squares optimization routine using the anhysteretic DEA model and experimental

measurements of a highly-textured, polycrystalline Fe81.6Ga18.4 Galfenol rod [154].

For the parametric study of Galfenol volume fraction, the Galfenol element was

located at the horizontal midplane of the composite’s cross section, while its volume

fraction was varied between 10 % and 100 % (i.e., the limiting case of no surrounding

matrix). A surface plot of the composite’s normalized resonant frequency is shown for

each case in Figs. 2.19 and 2.20 for the C-F and C-C beams, respectively. The surface

plots for negative bias magnetic fields are simply reflections about the Hbias = 0 line

of those shown in Figs. 2.19 and 2.20. The maximum resonant frequency tunability

as a function of the volume fraction is summarized in Fig. 2.21.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.19: Normalized resonant frequency of the C-F composite as a function of the
operating conditions for Galfenol volume fractions of (a) 10 %, (b) 28 %, (c) 46 %, (d)
64 %, (e) 82 %, and (f) 100 % (top views shown, Galfenol embedded at the neutral
axis). Resonant frequencies normalized with respect to the saturated (stiff) case.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.20: Normalized resonant frequency of the C-C composite as a function of the
operating conditions for Galfenol volume fractions of (a) 10 %, (b) 28 %, (c) 46 %, (d)
64 %, (e) 82 %, and (f) 100 % (top views shown, Galfenol embedded at the neutral
axis).
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Figure 2.21: Effect of Galfenol volume fraction on the maximum tunability of the
vibration absorber’s resonance for the C-F and C-C boundary conditions (Galfenol
embedded at the neutral axis).

The parametric study of Galfenol’s location was conducted by holding the volume

fraction of Galfenol constant at 10 %, while varying Galfenol’s location vertically in

the composite’s cross section. Four different cases were modeled: (i) the reference

case – Galfenol midplane coincident with the composite midplane, (ii) Galfenol mid-

plane shifted upward 33 % of the limiting value (iv), (iii) Galfenol midplane shifted

upward 66 % of the limiting value (iv), and (iv) the limiting case – top surface of

Galfenol coincident with the top surface of the composite. A surface plot of the com-

posite’s normalized resonant frequency is shown for each case in Figs. 2.22 and 2.23

for the C-F and C-C beams, respectively. The maximum resonant frequency tunabil-

ity as a function of Galfenol’s offset from the composite midplane is summarized in

Fig. 2.24.
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(a) (b)

(c) (d)

Figure 2.22: Normalized resonant frequency of the C-F composite as a function of
the operating conditions for Galfenol embedded at the (a) reference or minimum, (b)
33 %, (c) 66 %, and (d) 100 % or maximum locations (top views shown, ξG = 0.1).
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(a) (b)

(c) (d)

Figure 2.23: Normalized resonant frequency of the C-C composite as a function of
the operating conditions for Galfenol embedded at the (a) reference or minimum, (b)
33 %, (c) 66 %, and (d) 100 % or maximum locations (top views shown, ξG = 0.1).
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Figure 2.24: Effect of Galfenol’s vertical location in the composite on the maximum
tunability of the vibration absorber’s resonance for the C-F and C-C boundary con-
ditions (ξG = 0.1).

Discussion

For a given input power amplitude, semi-active control of the vibration absorber’s

resonant frequency is accomplished by modulating the composite’s resonance between

its minimum and maximum frequencies through changes in the bias magnetic field.

The results show that nearly uniform controllability occurs below a threshold of the

input power amplitude (i.e., about 5 × 10−1 J for the C-F boundary conditions,

ξG = 0.1, and Galfenol located at the neutral axis). The maximum tunability of

the vibration absorber’s resonant frequency also occurs in this region, and can be

achieved with relatively weak magnetic fields of 8 kA/m or less.

Above the threshold of the input power amplitude, the composite’s capacity for

resonance tuning decreases, and eventually the composite’s resonant frequency be-

comes uncontrollable. Despite this, some controllability exists over a wide range

(about 3 to 5 orders of magnitude) of the power amplitude of the excitation. The
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decrease in controllability is attributed to the increased stress on the Galfenol ele-

ment as the power amplitude increases. Galfenol becomes magnetically saturated

when subjected to sufficiently large compressive stresses, causing the elastic modulus

to saturate (see Fig. 2.3). Thus, the expression,

lim
|T |→∞

EG(t) = Esaturated
G ≈ 58 GPa, (2.20)

holds for 1D Galfenol elements. This tendency toward a constant elastic modulus

is slowed by increasing the bias magnetic field to counteract increases in the stress

amplitude. This explains why the location of the minimum resonant frequency in

Figs. 2.19 and 2.20 shifts to higher magnetic fields as the input power amplitude

increases above the threshold value.

From the above reasoning, it can be postulated that the effect of the input power

amplitude will depend upon the composite geometry. The power amplitude threshold

will be lower for more compliant composites, and vice versa. This is supported by

the results of the parametric studies. As seen in Figs. 2.19 and 2.20, the threshold

decreases as Galfenol volume fraction increases, because the aluminum matrix is re-

placed with a softer material. Similarly in Figs. 2.22 and 2.23, the threshold decreases

as Galfenol is shifted away from the neutral axis due to a decrease in the compos-

ite’s area moment of inertia and an increased bending stress on the Galfenol element.

Thus, while the results are obtained for the single set of composite parameters given

in Table 2.3, the topology of the resonant frequency surfaces for arbitrary composite

geometries will be equivalent to those presented in this paper, but scaled along the

input power axis.

When the input power is small, the Galfenol element behaves nearly linearly, be-

cause the bending stress has a small variation. Under this condition, the percent
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change in the resonant frequency due to a change in the bias magnetic field is maxi-

mized for a given geometry of the composite,

∆ωr,max ≈

⏐⏐⏐⏐⏐
√
Eeq,minI (Eeq,min)

Eeq,maxI (Eeq,max)
− 1

⏐⏐⏐⏐⏐ , (2.21)

where I (Eeq,min) and I (Eeq,max) are the area moments of inertia when the equivalent

Young’s modulus of the composite is at its minimum and maximum value, respec-

tively. The area moment of inertia of the composite varies with the Galfenol volume

fraction and Young’s modulus of the Galfenol element, because the Galfenol element

is scaled according to Eq. (2.8) to yield an equivalent section of matrix material.

Accordingly, the area moment of inertia of the composite decreases as the volume

fraction increases and as the Young’s modulus of Galfenol decreases from its satu-

rated value. The observed tunability in the resonant frequency is therefore due to

a combination of the change in Galfenol’s Young’s modulus and the change in the

composite’s area moment of inertia. The maximum resonant frequency tunability

peaks when the Galfenol volume fraction is 100 %. For this case, if the constitutive

response of the Galfenol element is assumed linear and uniform, Eq. (2.21) approxi-

mately becomes

∆ωr,max ≈

⏐⏐⏐⏐⏐
√

(28.5 × 109) (2.47 × 10−13)

(58.0 × 109) (5.12 × 10−13)
− 1

⏐⏐⏐⏐⏐ = 51.3 %, (2.22)

which is close to the observed maximum resonant frequency tunability of 49 %. The

resonant frequency tunability due to only the maximum change in Galfenol’s Young’s

modulus would be about 30 %.
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The magnitude of the resonant frequency tunability and the effect of the bias

magnetic field on the surfaces will be altered if the Galfenol properties given in Ta-

ble 2.3 are modified. The material anisotropy constants Kk, and saturation magne-

tization Ms have a minimal effect on Galfenol’s elastic modulus behavior. However,

the smoothing factor Ω (which accounts for material imperfections) and the magne-

tostriction constant λ100 directly control the ∆E effect. Referring to Fig. 1.4, the

smoothness of the transition between the two linear elastic branches is controlled by

Ω, while λ100 controls the width of the transition. As such, the ∆E effect is enhanced

as the magnetostriction constant increases and as the amount of material imperfec-

tions (Ω) decreases. Only small improvements over the Ω value of 776.73 used in

this paper can be expected, as evidenced by the reported values of Ω for Galfenol in

the literature (500 to 2100 [61, 19, 32]). A λ100 value of 157 × 10−6 is used in this

paper, yielding E0 = 28.6 GPa. From Eq. (1.16) with EH2 = E(H = 0, T = 0), this

results in ∆Emax ≈ 100 %. If the maximum λ100 value for polycrystalline Galfenol –

187 × 10−6 [93] – is instead used, then E0 = 23.5 GPa and ∆Emax ≈ 150 %. There-

fore, the resonant frequency tunability results presented in this paper are relatively

conservative estimations of the true potential of Galfenol-based active composites.

The effect of the boundary conditions on the resonant frequency surfaces is small

for both parametric studies. The thresholds of the input power amplitude are lower for

the C-F boundary condition due to the composite’s increased compliance as discussed

above. As seen in Figs. 2.21 and 2.24, the boundary condition has an insignificant

effect on the maximum resonant frequency tunability in all cases. For the C-C beam,

as the magnetic field increases a compressive blocking stress develops to constrain

the Galfenol element and prevent magnetostriction along the axis of the beam. It
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is well known that this will result in an effective softening of the beam with respect

to transverse vibration, and will thus contribute to the resonant frequency tuning

response of the vibration absorber. This effect is not included in the proposed model

and should be investigated in future studies.

Concluding remarks

This section investigated the semi-active control of a magnetically-tunable vi-

bration absorber’s resonant frequency. The vibration absorber that was considered

is an aluminum-matrix composite containing Galfenol. For computational reasons,

the composite was modeled as a single-degree-of-freedom system. The complex con-

stitutive behavior was included by using a fully-nonlinear, anhysteretic model of

Galfenol from the literature. Despite the one dimensional simplification, the vari-

ation in Galfenol’s elastic modulus along the length and through the thickness of the

Galfenol element was retained by considering the stress distribution throughout the

element and the asymmetric tension-compression behavior of Galfenol. Two bound-

ary conditions – cantilevered and clamped-clamped – were imposed on the composite.

Resonant frequency tunability of the absorber was investigated by computing its fre-

quency response to harmonic base excitation as a function of the operating conditions

– input power amplitude and bias magnetic field. Parametric studies were presented

to characterize the effect on resonant frequency tunability of Galfenol volume fraction

and Galfenol’s location within the composite.

Results and conclusions from the study are summarized as follows:
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• Nearly uniform controllability of the vibration absorber’s resonant frequency

is possible below a threshold of the input power amplitude. The resonant fre-

quency is modulated between its minimum and maximum value using weak

magnetic fields of 0 to 8 kA/m. As the input power amplitude increases above

the threshold, the controllability decreases and stronger magnetic fields are re-

quired to realize the control.

• The observed resonant frequency tunability results from changes in Galfenol’s

Young’s modulus and the composite’s area moment of inertia.

• The boundary condition imposed on the composite was found to have a minimal

effect on its resonant frequency tuning behavior. However, the model does not

include the effect of axial loading, which is well known to affect the resonant

frequency of transverse vibration in beams.

• When the Galfenol element is located at the neutral axis, the maximum resonant

frequency tunability varies between 2.5 and 49 % as Galfenol volume fraction

increases from 10 to 100 %.

• When Galfenol volume fraction is fixed at 10 %, the maximum resonant fre-

quency tunability varies between 2.5 and 5.5 % as the Galfenol element is offset

from the composite’s midplane.

• It was reasoned that the resonant frequency tuning results presented in this

section are conservative estimates of the true potential of Galfenol-based vi-

bration absorbers, and can be applied to systems with differences in composite

geometry and certain Galfenol material properties.
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2.2.2 Distributed parameter modeling

The objective of this section is to characterize and model Galfenol composite

beams operating as AVAs that are subjected to axial loads and operate at an ar-

bitrary mode of the beam. In this section, the characterization is performed by

calculating the beam’s resonant frequency as a function of (a) mode number, (b) base

acceleration magnitude, (c) bias magnetic field, and (d) Galfenol volume fraction.

For nonlinear systems that do not permit the formulation of an eigenvalue problem,

the conventional approach for calculating resonant frequencies is to approximate the

nonlinear frequency response using a large number of time domain simulations. This

approach, which is computationally intensive, especially for multi-degree-of-freedom

systems, was used in Section 2.2.1. In the model contained in this section, resonant

frequencies of the continuous beam are calculated from time domain responses by

incorporating autoresonant feedback control, which was introduced in Section 1.2.4.

The continuous, nonlinear bending vibration of the composite beams is modeled us-

ing Euler-Bernoulli beam theory. The effects of axial force on the beam, viscoelastic

material damping, and beam non-uniformity are included. The distributed param-

eter model is spatially discretized using the finite difference method. The resulting

state-space system is then implemented in Simulink and solved using the Runge-

Kutta-Fehlberg method. The model is validated by comparing numerical frequency

domain responses to analytical responses, which are derived for the case of a passive

beam. Further validation is presented by comparing calculated and measured reso-

nant frequencies and mode shapes of a UAM composite beam containing Galfenol.
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Model development

The system of interest is a metal-matrix composite beam composed of a single

matrix material and a single sheet of Galfenol. The system and finite difference

nodes are shown in Fig. 2.25. The beam’s cross section and an example Galfenol/Al

6061 composite manufactured using UAM are shown in Fig. 2.26.

Figure 2.25: Schematic of the base-excited magnetostrictive composite beam and
nodes used for finite difference discretization.

Figure 2.26: Galfenol/Al 6061 composite beam manufactured using UAM and
schematic of the beam’s cross section; Galfenol and composite dimensions (thickness
x width) are 0.51 x 1.02 and 1.02 x 1.91 mm, respectively.

To investigate the effect of an axial force on the dynamic behavior of this compos-

ite, clamped-clamped (C-C) boundary conditions are considered. In order to char-

acterize the beam’s suitability for use as an AVA, a distributed parameter model of
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the beam’s transverse vibration is presented. To incorporate the nonlinearity result-

ing from Galfenol’s stress- and magnetic field-dependent elastic modulus, the non-

uniformity of the beam along its length is fully retained. The non-uniformity through

the thickness is approximated as in Section 2.2.1. AVAs are implemented by coupling

them to a host structure exhibiting undesirable vibration. As such, the response of

the beam to base excitation is modeled.

Material damping in the composite is modeled as viscoelastic, which is frequency

dependent. This model was selected over hysteretic damping, which is frequency

independent, because it is well known that ferromagnetic materials exhibit frequency-

dependent hysteresis due to eddy currents, which occur even for stress application

in the absence of AC magnetic fields. In this paper, the Kelvin-Voigt model for

viscoelastic material damping is adopted. This damping model was successfully used

(in a simplified form) for the modeling of Galfenol unimorphs by Shu et al. [137].

The following assumptions are used to develop the proposed model detailed in the

subsequent subsections:

• Euler-Bernoulli beam theory (i.e., small deflections and negligible shear defor-

mation)

• Mass per unit length of the beam ρA and Kelvin-Voigt damping constant a are

constant and uniform

• Bias magnetic field H is uniform

• The uniform axial force P is calculated from a static analysis of the 1-D com-

posite

Beam vibration model
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In this subsection, a state-space system is derived by discretizing the PDE gov-

erning transverse vibration of the composite beam. The axial force is then derived,

after which the flexural rigidity is presented in the context of unidirectional compos-

ites. From Meirovitch [106], the governing equation for the transverse vibration of

the Euler-Bernoulli beam considered above is

ρAẅ(x, t) + [EI(x, t) (aẇxx(x, t) + wxx(x, t))]xx − P (t)wxx(x, t) = f(x, t), (2.23)

where P is the uniform axial force, f denotes the applied distributed force, ρ and

A are the density and cross-sectional area, respectively, EI represents the flexural

rigidity, a is a viscoelastic parameter for the Kelvin-Voigt damping model, w is the

transverse deflection of the beam, and wx and ẇ denote partial derivatives of w with

respect to x and t, respectively; EI is state-dependent and non-uniformity. For base

excitation, the total deflection is written as

w(x, t) = w̄(x, t) + u(t), (2.24)

where w̄(x, t) is the beam’s displacement relative to the base and u is the base dis-

placement. Insertion of Eq. (2.24) into Eq. (2.23) and neglecting the applied force

gives

ρA ¨̄w(x, t) + [EI(x, t) (a ˙̄wxx(x, t) + w̄xx(x, t))]xx − P (t)w̄xx(x, t) = −ρAü(t). (2.25)

Thus, in terms of the relative displacement w̄(x, t), the base-excited system can be

viewed as a beam with static boundary conditions subject to an equivalent force,

feq(t) = −ρAü(t). (2.26)

After expanding the differentiation, (2.25) can be written as

ρA ¨̄w(x, t) + FC(ẋ, t) + FK(x, t) = feq(t), (2.27)

88



where the damping force FC is

FC(ẋ, t) = a (EIxx ˙̄wxx + 2EIx ˙̄wxxx + EI ˙̄wxxxx) , (2.28)

and the flexural force FK is

FK(x, t) = EIxxw̄xx + 2EIxw̄xxx + EIw̄xxxx − Pw̄xx. (2.29)

The governing PDE given by Eqs. (2.27) to (2.29) does not admit an eigenvalue

problem nor a closed-form solution due to the beam’s spatial and temporal non-

uniformity, which results from the magnetic field- and stress-dependent elastic prop-

erties of the Galfenol component. Consequently, the PDE is solved approximately by

(i) discretizing the beam (Fig. 2.25), (ii) using the finite difference method to approx-

imate spatial derivatives and express the discretized system in state-space form, and

(iii) using the explicit Runge-Kutta-Fehlberg method (MATLAB’s ode45 ) to solve

the state-space system iteratively.

Following discretization, the continuous PDE Eq. (2.27) becomes a system of dis-

crete PDEs in terms of the unknown nodal displacements w̄i and their derivatives,

where i = 2, . . . , N − 1 since the boundary conditions provide w̄1 = w̄N = w̄x1 =

w̄xN
= 0. Of the standard finite difference methods (backward, central, and forward),

the central difference method provides the best accuracy [82]; however, it may be un-

defined at or near boundaries due to its dependence on fictitious nodes i = −1,−2, . . .

or i = N + 1, N + 2, . . ..

Using the 2nd order central difference method [82] to approximate the spatial

partial derivatives, Eqs. (2.28) and (2.29) can be written at the ith node as

FC
i (t) ≈ a∆x−4 (Ai ˙̄wi+2 +Bi ˙̄wi+1 + Ci ˙̄wi +Di ˙̄wi−1 +Gi ˙̄wi−2) , (2.30)
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and

FK
i (t) ≈ ∆x−4

(
Aiw̄i+2+(Bi−P̄ )w̄i+1+(Ci+2P̄ )w̄i+(Di−P̄ )w̄i−1+Giw̄i−2

)
= ∆x−4

(
Aiw̄i+2 + B̄iw̄i+1 + C̄iw̄i + D̄iw̄i−1 +Giw̄i−2

)
,

(2.31)

where

P̄ = ∆x2P

Ai = EIi +
1

2
(EIi+1 − EIi−1)

Bi = −6EIi + 2EIi−1

Ci = −2EIi+1 + 10EIi − 2EIi−1

Di = −6EIi + 2EIi+1

Gi = EIi −
1

2
(EIi+1 − EIi−1).

(2.32)

Evaluation of Eqs. (2.30) and (2.31) at nodes i = 2 and i = N − 1 therefore depends

on the fictitious nodes w̄−1 and w̄N+1, respectively. However, by approximating the

boundary condition on the slope of the beam using the 2nd order central difference

method, the following relations can be derived:

w̄−1 ≈ w̄2, w̄N+1 ≈ w̄N−1. (2.33)

Using the relations Eq. (2.33), the 2nd order central difference approximation of the

damping force FC
i and flexural force FK

i can be evaluated at all interior nodes.

Since the approximate damping and flexural forces depend only on the nodal veloc-

ities and displacements, respectively, the set of (N − 2) discrete PDEs approximating

Eqs. (2.27) to (2.29) can be written in a form resembling a standard multi-degree-of-

freedom system,

[M ] { ¨̄w}+
n

[C] { ˙̄w}+
n

[K] {w̄} = {feq} , (2.34)

where n denotes the order of the error in the approximation of the damping and

flexural forces. When the beam is free from an added mass, the global mass matrix
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[M ] is

[M ] = ρA [I] , (2.35)

where [I] is the identity matrix. Added masses can be incorporated by increasing ρA

at nodes over which the mass is located. For this case, [M ] remains diagonal. The 2nd

order accurate damping and stiffness matrices (
2

[C] and
2

[K]) are pentadiagonal matri-

ces, as detailed in Appendix B.1. If increased accuracy is necessary,
4

[C] and
4

[K] may

be derived using the 4th order central difference method, as shown in Appendix B.1.

For this case, the damping and stiffness matrices are heptadiagonal. Consequently,

the system matrices can be considered sparse when a reasonable number of nodes is

used. By defining the state vector W as the nodal displacements and velocities, the

state-space representation of Eq. (2.34) can be written as

Ẇ =

[
[0] [I]

− [M ]−1 [K] − [M ]−1 [C]

]{
{w̄}
{ ˙̄w}

}
+

{
{0}

[M ]−1 {feq}

}
. (2.36)

The state-space system is implemented and solved in Simulink to utilize an available

solver and to improve computational efficiency by precompiling the model.

Calculation of the axial force P

The application of a magnetic field to the composite generates magnetostriction

λ in the Galfenol element that is counteracted by the matrix and by a compressive

force due to the fixed boundary conditions. To derive an expression for the axial force

that develops in the composite, static analysis of a free-free composite subjected to a

magnetic field is first considered (Fig. 2.27(a)).

Assuming that a uniform shear stress acts between Galfenol and the surrounding

matrix, free body diagrams of the matrix and Galfenol constituents are given in

Fig. 2.27(a). Further assuming that there is no slip at the interfaces, the displacement
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(a) (b)

Figure 2.27: Schematic and free body diagram of the 1-D static composite subjected
to an applied magnetic field with boundary conditions: (a) free-free, and (b) fixed-
fixed.

compatibility between the layers can be expressed as

δF−F = δG = δM1 = δM2

=
−FML

AGEG

+ λL =
(FM/2)L

AMEM

,
(2.37)

where δF−F, δG, and δM1 are the displacements of the free-free composite, the Galfenol

section, and one of the matrix sections; EM and EG are the elastic moduli of the matrix

and Galfenol, respectively; and AM and AG are the cross-sectional areas of one of the

matrix sections and the Galfenol section, respectively. Rearranging Eq. (2.37) one

gets the total force on the Galfenol section applied by the matrix,

FM =
2λ(AMEM)(AGEG)

AGEG + 2AMEM

. (2.38)

Insertion of Eq. (2.38) in Eq. (2.37) gives the free-free deflection,

δF−F = δG = λ(1 − 2AMEM

AGEG + 2AMEM

)L = λeffL, (2.39)

where λeff is the effective magnetostriction of the composite. The effective mag-

netostriction is consistent with the cases of no matrix (AM = 0) and no Galfenol
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(AG = 0), for which the magnetostriction in the composite is λ and 0, respec-

tively. Now consider a static, fixed-fixed composite and its homogeneous equivalent

(Fig. 2.27(b)). By writing a compatibility equation for the equivalent beam, the axial

force on the composite can be written as

P = −λeffAeqEeq, (2.40)

where the parameters of the equivalent beam are found by considering the matrix

and Galfenol as springs in parallel,

AeqEeq = AGEG + 2AMEM. (2.41)

Calculation of the flexural rigidity EIi

Solution of the state-space system Eq. (2.36) requires calculation of the flexural

rigidity EIi at each time step for all nodes. The composite’s area moment of inertia

Ii is a function of the cross-sectional geometry of an equivalent, homogeneous cross

section of matrix material, which depends upon the elastic moduli of the matrix EM
i

and Galfenol EG
i (x, t). The elastic modulus Ei of a unidirectional composite is found

using the rule of mixtures given by Agarwal et al. [1],

Ei(x, t) = EM
i ξ

M + EG
i (x, t)ξG, (2.42)

where ξM and ξG denote the matrix and Galfenol volume fractions, respectively.

Consequently, a constitutive model for Galfenol is needed to calculate the magnetic

field- and stress-dependent flexural rigidity of the composite. As detailed in [126],

before calculating the elastic modulus in the Galfenol element, the stress must be

calculated using an inversion of the constitutive model, which has inputs of magnetic

field and strain. In this paper, the strain in the beam is calculated using the exact

93



expression for an Euler-Bernoulli beam,

S = −yw̄xx

(
1 + w̄2

x

)−3/2
. (2.43)

The spatial derivatives in Eq. (2.43) are calculated at interior nodes i = 3, . . . , N − 2

using the 4th order central difference method. The 2nd order backward, central, and

forward difference methods are used for the remaining nodes.

This work utilizes the DEA model developed by Evans and Dapino [61] and dis-

cussed in Section 1.2.2.

Autoresonant feedback control

A Simulink block diagram of the dynamic beam model is shown in Fig. 2.28, where

the red, dotted arrows denote the autoresonant feedback. Arbitrary, nonzero initial

conditions can be used. Stability of the feedback control is ensured for most systems

by limiting the magnitude of the feedback signal [140]. The amplitude of the resonant

vibration is controlled by varying the limit. To consider the excitation magnitude’s

effect on the resonant frequency tunability of the beam, Section 2.2.1 varied the base

excitation power. With autoresonant feedback, the in situ excitation power cannot

be correctly limited. Thus, the base acceleration magnitude is limited in this model.

As a result, feq approximately becomes a square wave.

The damping capacity for viscoelastic material damping depends on frequency

[52]. As a result, the resonant frequency and autoresonant phase shift φ∗ will depend

on the level of damping. In this section, the damping matrix
n

[C] varies temporally

due to the flexural rigidity’s non-uniformity, which implies that φ∗ is time dependent.

However, as shown in the following section, the composite beam is a high Q-factor

(low damping) system, for which ωr ≈ ωn. Thus, the time dependence is neglected.
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Figure 2.28: Simulink block diagram for the vibration of the FeGa composite beam;
autoresonant feedback shown by red, dotted arrows.

For convenience, this section uses an autoresonant feedback control with phase shift

φ = ±π/2 (velocity feedback).

A multi-degree-of-freedom system has a set of amplitude versus phase relations,

because the mass(es) on which the force is applied (loading point(s)) and on which

the vibration is measured (the observation point(s)) can be selected arbitrarily and

independently. For base excitation Eq. (2.26), the loading points are fixed. The obser-

vation point is selected by considering a passive, damped beam (i.e., uniform flexural

rigidity and no axial force), for which the analytical frequency response of the dis-

placement transmissibility (w̄/u) is given by Eqs. (B.19) and (B.20) in Appendix B.2.

A representative amplitude versus phase response at 4 locations along the symmetric

beam is shown in Fig. 2.29(a). The 3 peaks in the responses correspond to the 1st,

3rd, and 5th modes of vibration, because the base excitation Eq. (2.26) cannot excite

asymmetric modes in a clamped-clamped (symmetric) beam. The amplitude versus

phase curves are not single-valued and have maxima that deviate significantly from
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Figure 2.29: Example analytical amplitude versus phase response of the passive beam
(a) at select locations along the beam, and (b) for the relative displacement trans-
missibility w̃/u = (w̄(x = 0.5L) − w̄(x = 0.32L))/u; dashed vertical lines denote
φ = π/2, 3π/2, 5π/2; 0 dB = 1 m/m.

the assumption φ∗ = ±π/2. Sokolov and Babitsky [140] showed that antiresonant

regimes (minima in Fig. 2.29(a)) are unstable under phase control. By observing

the relative displacement between two points having opposite polarity for the 3rd

and 5th modes, the amplitude versus phase curve has peaks at φ ≈ π/2, 3π/2, 5π/2

(Fig. 2.29(b)). Consequently, the simplified autoresonant feedback implemented in

this section (velocity feedback) provides an accurate calculation of the resonant fre-

quencies, as detailed in Section 2.2.2. The remaining multi-valuedness is resolved

by utilizing a bandpass filter which, when tuned properly, serves as a mode selector.

This bandpass filter must be carefully designed for a given system based on mode

separation and amplitude versus phase characteristic response.
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Model validation

Model validation is performed in two stages. First, the model is validated for a

passive beam, for which an analytical solution is derived in Appendix B.2. Second, the

model is validated for the clamped-clamped active beam by comparing measured and

calculated mode shapes and resonant frequencies after calculating the Kelvin-Voigt

damping constant a.

Validation of the model for a passive beam is performed by calculating the fre-

quency response of the displacement transmissibility assuming a = 1 × 10−6 s. The

percent error between simulated and analytical responses is shown in Fig. 2.30, where

two discretizations (h-refinement, increasing N) and two orders of differentiation ac-

curacy (p-refinement, increasing n) are compared. The calculated response converges

to the analytical using h- and p-refinement.

10
4

−20

−10

0

10

20

30

Base Excitation Frequency (Hz)

A
m

pl
itu

de
 (

%
 E

rr
or

)

(a)

10
4

0

5

10

15

20

25

Base Excitation Frequency (Hz)

P
ha

se
 (

%
 E

rr
or

)

 

 

31 node − 2nd order
31 node − 4th order
41 node − 2nd order
41 node − 4th order

(b)

Figure 2.30: Calculated frequency response of the displacement transmissibility of
the passive beam w̃/u = (w(x = 0.5L)−w(x = 0.32L))/u compared to the analytical
response (B.20): percent errors in the (a) amplitude and (b) phase responses; dashed
vertical lines denote 1st, 3rd, and 5th undamped resonant frequencies.
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Figure 2.31: Tracking of the passive beam’s 1st resonant frequency using autoreso-
nant feedback control: (a) spectrogram of the simulated relative displacement w̃ and
(b) dominant vibration frequency versus time (overlayed in (a) as a white line); EI
decreased at 0.03 and 0.05 s, and increased at 0.07 and 0.09 s.

The autoresonant feedback control is validated by calculating the beam’s vibra-

tion while discretely varying EI, and therefore ωr. An example spectrogram of the

time domain response and ωr(t) are given in Fig. 2.31. From an interpolated spectro-

gram, the resonant frequency is taken as the dominant frequency of vibration after

the feedback control stabilizes. For each flexural rigidity, the analytical resonant

frequencies of the 1st, 3rd, and 5th modes were calculated from Eq. (B.20) in Ap-

pendix B.2. Two metrics are used to characterize the resonant frequency tuning of

the AVA (Galfenol beam): the absolute resonant frequencies and the shifts in reso-

nant frequencies. The relative numerical error for the absolute and shift metrics are

denoted by ErA and ErS, respectively. These errors are summarized in Table 2.4,

where h- and p-refinement is compared. Modes 1 and 5 were distinguished using a

bandpass filter. Thus, the error caused by the filter’s frequency-dependent phase is
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included. For the passive beam, the autoresonant feedback control has a fast response

time, results in vibration having a very stable frequency content, and is very accurate,

with errors below 4 % for all but the 5th mode of one case.

Prior to validating the model for the active beam, the Kelvin-Voigt damping

constant a was estimated from an impulse response of the clamped-clamped UAM

composite that is shown in Fig. 2.26. The damping ratio ζ1 was calculated as 0.00217

using the logarithmic decrement method, which is applicable due to the presence of

significant mode separation [52]. From Eq. (B.13), the damping constant is calculated

as a = (2ζ1)/ω1 = 3.56×10−7. Transverse vibration of the UAM beam was measured

using a Polytec PSV-400 scanning laser vibrometer. A periodic chirp excitation was

used, because it has a nearly constant acceleration magnitude over the chirp band-

width. The experimental setup is shown in Fig. 2.32(a). Masses were glued to the

beam at the antinodes of the 3rd mode to shift the 1st and 3rd resonant frequencies

into the bandwidth of the shaker. The 5th mode could not be excited. In the model,

Table 2.4: Autoresonant tracking of the passive beam’s resonant frequency: relative
numerical errors for the absolute resonant frequencies (ErA) and shifts in resonant
frequencies (ErS).

Mode 1 Mode 3 Mode 5
ErA (%) ErS (%) ErA (%) ErS (%) ErA (%) ErS (%)

N=31, n=2 0.515 0.768 1.92 1.70 3.54 7.51
N=31, n=4 0.413 0.719 1.02 2.11 2.28 3.79
N=41, n=2 0.334 0.612 1.13 2.04 1.58 2.70
N=41, n=4 0.256 0.519 0.629 2.37 0.256 2.82
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the masses were incorporated at nodes over which they were located by locally in-

creasing ρA, such that the total mass added to the beam remained constant under

h-refinement.
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Figure 2.32: (a) Experimental setup for the model validation, and (b) experimental
and simulated mode shapes of the UAM Galfenol/Al 6061 composite for the 1st and
3rd modes.

Fig. 2.32(b) compares the measured and simulated 1st and 3rd mode shapes for

a base acceleration magnitude of about 2 g. Since only modes 1 and 3 were consid-

ered, a bandpass filter was not needed. The laser vibrometer measurements showed

that torsional motion of the masses was small compared to the transverse deflection.

Experimental and calculated resonant frequencies are compared in Table 2.5. Dis-

crepancies between the two can be attributed to the presence and finite size of the

masses, which cause a significant increase in the beam’s rotary inertia and a constraint

on its local curvature. These physics are not incorporated into the model. The effect
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of the rotary inertia of the masses is more pronounced for the 1st mode, because

displacements are an order of magnitude higher and the two outside masses rotate.

Additional error may have been introduced from imperfect boundary conditions and

placement of masses, and by assuming an autoresonant phase φ∗ = ±π/2. However,

considering the model’s assumptions and the size of the masses relative to the beam,

the accuracy is good overall.

Table 2.5: Percent difference between measured and calculated resonant frequencies
of the UAM Galfenol/Al 6061 beam as a function of the number of nodes N and
the order of accuracy n for the approximation of spatial derivatives; experimental
resonant frequencies: ωr1 = 502 Hz, ωr3 = 2300 Hz; H = 0 kA/m, |ü| ≈ 2 g.

Mode 1 Mode 3
ωr1 (Hz) Percent Difference ωr3 (Hz) Percent Difference

N=31, n=2 594 18.3 2340 1.74
N=31, n=4 598 19.1 2360 2.61
N=41, n=2 597 18.9 2310 0.43
N=41, n=4 593 18.1 2320 0.87

Results and discussion

To characterize the ability of the UAM Galfenol/Al 6061 beam to operate as

an AVA, the resonant frequencies of the 1st and 3rd modes were calculated as a

function of bias magnetic field (0–10 kA/m), base acceleration magnitude (0.5–20 g),

and Galfenol volume fraction (10–100 %). Time domain responses were calculated

using the Simulink model in Fig. 2.28, but without the bandpass filter. Resonant

frequencies were calculated as detailed above after the autoresonant feedback control

stabilized following a change in the inputs. For each Galfenol volume fraction, the
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resonant frequencies were normalized by the maximum frequency to show the percent

change that can be achieved by varying the bias magnetic field. This normalization

is consistent with prior work [126, 47], but is different from that used to calculate

the elastic modulus changes summarized in the introduction of Section 2.2. Results

are presented as a series of surfaces (one for each Galfenol volume fraction) using the

bias magnetic field and base acceleration limit as independent variables. The data

are interpolated to smoothen the surfaces. A top view of the surfaces is shown in

Fig. 2.33 for the 3rd mode. Results for the 1st mode are similar and are therefore

not shown. For Galfenol volume fractions of 82 % and 100 %, the surfaces are less

smooth, because the autoresonant feedback control had difficulty in reaching a steady

state. This can be attributed to the large spatial and fast temporal variations in the

composite’s flexural rigidity that occur for these cases.

In all cases, the minimum resonant frequency occurs for small excitation mag-

nitudes and weak magnetic fields, because the flexural rigidity is a minimum when

stress and magnetic field are small. Weak excitations therefore allow for the great-

est change in resonant frequency, because Galfenol can be easily tuned to its stiff

(magnetically-saturated) state by applying stronger bias magnetic fields. As the base

acceleration increases, the resulting higher stresses begin to saturate the Galfenol

element. Consequently, the composite beam begins to lose its resonant frequency

tunability as the Galfenol element behaves more like a passive material. These re-

sults are supported by the authors’ previous work [126]. The range of acceleration

magnitudes over which the beam’s behavior transitions from active to nearly passive

will depend on the beam’s geometry, the mass loading, and the stiffness of the matrix
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(a) (b)

(c) (d)

Figure 2.33: Normalized resonant frequency of the 3rd bending vibration mode of the
clamped-clamped UAM composite as a function of the base acceleration limit and
the bias magnetic field for Galfenol volume fractions of (a) 10 %, (b) 46 %, (c) 82 %,
and (d) 100 %; results for 28 % and 64 % are not shown for brevity.

material. The effect of variations in Galfenol’s elastic modulus on the composite’s be-

havior will be more pronounced for composites with softer matrices (see Eq. (2.42)).

Al 6061 is about 15 % to 130 % stiffer than Galfenol depending on stress and mag-

netic field. Thus, in Fig. 2.33, the transition shifts toward smaller accelerations as

Galfenol volume fraction increases.
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The compressive axial force on the beam that develops in response to applied mag-

netic fields tends to soften the beam and reduce its resonant frequencies. This coun-

teracts the stiffening that occurs as the magnetic field tries to saturate the Galfenol

element. This is seen in Fig. 2.33 as a broadening of the tunable region along the

magnetic field axis. A broadening along the base acceleration axis was also found for

high Galfenol volume fractions. This may be an artifact of the autoresonant feedback

control caused by its difficulty in reaching a steady state as mentioned above. In fu-

ture work, the autoresonant feedback control will be better tuned to more accurately

investigate this behavior.
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Figure 2.34: Maximum resonant frequency tunability of the Galfenol/Al 6061 beam
as a function of Galfenol volume fraction.

A figure of merit for an AVA is its maximum change in resonant frequency. The

dependence of this figure of merit on Galfenol volume fraction is detailed in Fig. 2.34

for the 1st and 3rd modes. The maximum tunability increases monotonically from

3 to 51 % as Galfenol volume fraction increases from 10 % to 100 %, respectively.

The results for the 1st mode are very similar to those in Section 2.2.1, which used a

single-degree-of-freedom model and neglected the axial force. Thus, the incorporation
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of the axial force in this model appears to have only a small effect on the maximum

tunability of the 1st resonant frequency. The maximum tunability of the 1st and 3rd

resonant frequencies was found to be nearly equal except at high Galfenol volume

fractions. Thus, with regard to this figure of merit, the performance of the Galfenol

beam as an AVA does not degrade when operated at higher modes.

Concluding remarks

This section investigated the use of Galfenol composite beams as solid-state, adap-

tive vibration absorbers that operate at an arbitrary vibration mode. The manufac-

ture of these structures by UAM was discussed. To characterize the stiffness tunability

of the beams, a distributed parameter model of their transverse vibration was pre-

sented. The model adopts Euler-Bernoulli beam theory and incorporates Galfenol’s

nonlinear constitutive behavior, an axial force, viscoelastic material damping, and the

beams’ non-uniformity. The model was used to calculate the 1st and 3rd resonant fre-

quencies of a FeGa/Al 6061 composite beam as a function of base acceleration, FeGa

volume fraction, and bias magnetic field. Autoresonant feedback control was used as

a numerical technique to maintain the resonant state under changes to the system.

An extensive validation of the model was conducted using analytical responses and

measurements of a FeGa/Al 6061 composite beam, which was manufactured using

UAM. Additional measurements should be obtained in future work to quantify the

model’s performance at nonzero bias magnetic fields.

The conclusions from the study are summarized as follows:
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• Autoresonant feedback control is an efficient numerical technique for the cal-

culation of the resonant frequency of complex nonlinear systems that are sub-

jected to changes in system parameters. For multi-degree-of-freedom systems,

the performance of the control system is improved through careful selection

of the vibration observation point(s) and careful tuning of the mode selector

(bandpass filter).

• The composite’s stiffness can be modulated between its soft and stiff states with

weak bias magnetic fields of 10 kA/m or less.

• The maximum tunability of the beam’s resonant frequency is possible when

the base acceleration, and therefore stress in the Galfenol element, is small. A

maximum tunability of 3 to 51 % was found for the UAM Galfenol/Al 6061

composites containing 10 % to 100 % Galfenol by volume, respectively.

• The axial force developed in the clamped-clamped composite due to the ap-

plication of a bias magnetic field was found to have a minimal effect on the

maximum resonant frequency tunability, but an appreciable effect on the range

of parameters over which tuning can occur.

• With respect to the maximum resonant frequency tunability, the performance

of the Galfenol beam as an adaptive vibration absorber does not degrade (for

most cases) when it is operated at higher modes.

• The effect of variations in Galfenol’s elastic modulus on the composite’s resonant

frequency will be more pronounced for composites having softer matrices.
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Chapter 3: Dynamic Stress Effects in Magnetostrictive

Materials

This chapter investigates the effects of dynamic stress on the constitutive behavior

of magnetostrictive materials. In the first section, the effect of mechanically-induced

eddy currents on the internal magnetic field and magnetic flux density of cylindri-

cal ferromagnets is studied. This effect, which is known as mechanically-induced

magnetic diffusion, is first considered in linear constitutive regimes by analytically

solving Maxwell’s equations. To investigate the effect of constitutive nonlinearities

on the diffusion response, Maxwell’s equations are then solved numerically. In the

second section, precise measurements of Galfenol’s strain and magnetic flux density

responses to dynamic, compressive stress are presented along with a novel exper-

imental design, wherein a detailed discussion of specimen design, sensor selection,

uncertainty analysis, calibration, error sources, and data processing methods is in-

cluded. From these measurements, the frequency dependence of dynamic material

properties and energy loss components is presented.
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3.1 Mechanically-Induced Magnetic Diffusion

3.1.1 Linear constitutive regimes

In this section, an analytical model of the radial dependence of mechanically-

induced magnetic diffusion in cylindrical ferromagnets is presented. Analytical time

and frequency domain solutions are derived. The solutions are non-dimensionalized

and then used to investigate the spatial and frequency dependence of the internal

magnetic field and magnetic flux. Unlike the analytical and numerical solutions ref-

erenced in Section 1.2.1, these analytical solutions provide design criteria, reveal the

relative importance of each material property, and provide expressions for skin depth

and cut-off frequency. For nonlinear operating regimes, the derived solutions can be

used to assess whether lamination of the ferromagnet is necessary.

Model development

The magnetic diffusion equation for ferromagnets is derived from Maxwell’s equa-

tions and the assumption that displacement currents are negligible,

−∇ (∇ ·H) + ∇2H = σBt = σµ0 (H + M)t , (3.1)

where the subscript t denotes partial differentiation with respect to time, σ represents

the electrical conductivity, µ0 is the magnetic permeability of free space, and H, B,

and M are the magnetic field strength, magnetic flux density, and magnetization

vectors, respectively, which each depend on time t and position. In magnetostrictive

materials, M depends on the stress vector T such that Eq. (3.1) becomes

−∇ (∇ ·H) + ∇2H− σ ([µ]H)t = σ ([d∗]T)t , (3.2)
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where [µ] and [d∗] denote the magnetic field- and stress-dependent magnetic perme-

ability and piezomagnetic coefficient tensors, respectively. In ferromagnetic shape

memory alloys, M depends on the strain vector S such that Eq. (3.1) becomes

−∇ (∇ ·H) + ∇2H− σ ([µ]H)t = σ (µ0 [e]S)t , (3.3)

where [e] represents the magnetic field- and strain-dependent coupling coefficient ten-

sor.

For biased operation and sufficiently low amplitude excitation, the constitutive

tensors [µ], [d∗], and [e] can be assumed constant. If a cylindrical magnetostrictive

material or ferromagnetic shape memory alloy is operated in a transducer having a

closed magnetic circuit of low reluctance, demagnetizing fields can be neglected and

the circuit can be represented as an infinitely long rod subjected to an axial magnetic

field Hext at its surface and an axial, distributed force on its ends. Due to the

inhomogeneous internal magnetic field, the rod’s stiffness, and therefore the applied

stress, will be radially dependent [100]. However, to permit an analytical solution,

the stress is assumed uniform throughout the rod. Stress uniformity along the axial

direction is valid for forcing frequencies sufficiently below mechanical resonance of the

rod. Due to this assumption, the rod’s mechanical inertia and damping are ignored.

Under the aforementioned assumptions, Eqs. (3.2) and (3.3) simplify to

Hrr(r, t) +Hr(r, t)/r − σµHt(r, t) = σd∗Tt(t), (3.4)

and

Hrr(r, t) +Hr(r, t)/r − σµHt(r, t) = σµ0eSt(t), (3.5)

respectively, where r is the radial coordinate, the subscript r denotes partial differ-

entiation with respect to r, and µ, d∗, and e are the 33 components of the respective
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tensors. Thus, the 1D magnetic diffusion problem for ferromagnetic shape memory al-

loys is identical to that for magnetostrictive materials if µ0e and S(t) are substituted

for d∗ and T (t), respectively. Consequently, it is sufficient to only solve Eq. (3.4),

which resembles the 1D field-induced magnetic diffusion problem, but with a forcing

term.

1D time- and frequency domain solutions

To solve Eq. (3.4), it is convenient to have zero boundary conditions. This is

accomplished using the change of variables, H̃(r, t) = H(r, t) − Hext, so that the

initial boundary value problem is

H̃rr(r, t) + H̃r(r, t)/r − σµH̃t(r, t) = σd∗Tt(t), (3.6)

H̃(r, t = 0) = 0, (3.7)

H̃(r = R, t) = 0, (3.8)

H̃(r, t) finite, (3.9)

where r = R is the surface of the rod. Eqs. (3.6)–(3.9) can be written as an inhomo-

geneous Bessel equation of order zero using the change of variables, u =
√
µσr,

u2H̃uu(u, t) + uH̃u(u, t) − u2H̃t(u, t) =
d∗

µ
u2Tt(t), (3.10)

H̃

(
u

√
µσ

, t = 0

)
= 0, (3.11)

H̃ (u =
√
µσR, t) = 0, (3.12)

H̃

(
u

√
µσ

, t

)
finite, (3.13)

where the subscript u indicates partial differentiation with respect to u.

The solution of Eqs. (3.10)–(3.13) is found using the method of eigenfunction

expansions. After assuming that H̃(u, t) = D(t)U(u), the eigenvalue problem can be
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derived from the homogeneous form of Eq. (3.10) using the method of separation of

variables,

u2Uuu(u) + uUu(u) = ku2U(u), (3.14)

U

(
u

√
µσ

)
finite, (3.15)

U (
√
µσR) = 0, (3.16)

where the separation constant k must be negative (i.e., k = −λ2) to avoid trivial

solutions [5]. The solution of the eigenvalue problem Eqs. (3.14)–(3.16) is given by

Asmar [5] as

Un(u) = J0

(
αn
0√
µσR

u

)
, (3.17)

corresponding to the eigenvalues

(λn)2 = (αn
0/ (

√
µσR))2 , (3.18)

where n = 1, 2, 3 . . . is an index, J0 is the Bessel function of order zero, and αn
0 is the

nth positive zero of J0. Using the method of eigenfunction expansions, the solution

of Eq. (3.10) has the form

H̃(u, t) =
∞∑
n=1

Dn(t)Un(u) =
∞∑
n=1

Dn(t)J0

(
αn
0√
µσR

u

)
. (3.19)

Insertion of Eq. (3.19) into Eq. (3.10) followed by simplification using Eqs. (3.14) and

(3.17) gives

∞∑
n=1

[
J0

(
αn
0√
µσR

u

)(
Dn

t (t)+(λn)2Dn(t)
)]

=−d
∗Tt(t)

µ
. (3.20)

After multiplying both sides of Eq. (3.20) by uJ0
(
αs
0u/
(√
µσR

))
, integrating with

respect to u from 0 to
√
µσR, interchanging the order of integration and summation,

111



and using the orthogonality of the Bessel functions [5], only the sth term of the

summation survives,

µσR2

2
J2
1 (αs

0)
(
Ds

t (t)+(λs)2Ds(t)
)

= −d
∗

µ
Tt(t)

√
µσR∫
0

uJ0

(
αs
0√

µσR
u

)
du, (3.21)

where J1 is the Bessel function of order 1. Evaluating the integral in Eq. (3.21)

using the change of variables, k = αs
0u/

(√
µσR

)
, and an integral identity of Bessel

functions [5], one gets

Ds
t (t) + (λs)2Ds(t) = − 2d∗

µαs
0J1(α

s
0)
Tt(t), (3.22)

Ds(0) = 0. (3.23)

The initial condition Eq. (3.23) is derived by inserting Eq. (3.19) into Eq. (3.11) to

get

H̃(r, t = 0) =
∞∑
s=1

Ds(0)J0

(
αs
0

R
r

)
= 0, (3.24)

which is a 0th order Bessel series expansion of f(r) = 0, for which the expansion

coefficients Ds(0) must all equal zero. For a harmonic stress, T (t) = T̂ exp(jωt), the

solution of Eqs. (3.22)–(3.23) is

Ds(t) = T̂M s(ω)
(

ej(ωt+φs(ω)) − ejφ
s(ω)e−(λs)2t

)
, (3.25)

where the magnitude M s(ω) and phase φs(ω) of the modal frequency response D̂s(jω)

are

M s(ω) =

((
D̂s

Re(ω)
)2

+
(
D̂s

Im(ω)
)2)1/2

(3.26)

and

φs(ω) = ∠
(
D̂s

Re(ω) + jD̂s
Im(ω)

)
, (3.27)
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where

D̂s
Re(ω) =

−2d∗ (µσωR2)
2

µαs
0J1(α

s
0)
(
(αs

0)
4 + (µσωR2)2

) , (3.28)

D̂s
Im(ω) =

−2d∗αs
0 (µσωR2)

µJ1(αs
0)
(
(αs

0)
4 + (µσωR2)2

) . (3.29)

The total time domain solution in the original coordinates is

H(r, t) =
∞∑
s=1

[
Ds(t)J0

(
αs
0

r

R

)]
+Hext, (3.30)

where the real and imaginary part of Eq. (3.25) are retained for cosinusoidal and

sinusoidal forcing, respectively. By inserting the steady-state part of Eq. (3.25) into

Eq. (3.19), the frequency response of H̃(r, t) can be written as

G(r, jω) = T̂
√
G2

Re +G2
Imexp (j∠ (GRe + jGIm)) , (3.31)

where

GRe(r, ω) =
∞∑
s=1

[
J0

(
αs
0

r

R

)
D̂s

Re(ω)
]
, (3.32)

GIm(r, ω) =
∞∑
s=1

[
J0

(
αs
0

r

R

)
D̂s

Im(ω)
]
. (3.33)

Non-dimensionalization of the analytical solutions

The time domain solution is non-dimensionalized in two steps. First, the rod’s

radius is written in terms of a parameter q and penetration (skin) depth δ as

R

δ
= q. (3.34)

For field- and mechanically-induced diffusion, the skin depth can be generally defined

as the depth from the surface at which the amplitude of the dynamic magnetic flux
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B̃ has attenuated by an amount ψ relative to the amplitude at the surface. Using the

linear piezomagnetic equation

B̃(r, t) = µH̃(r, t) + d∗T (t) (3.35)

and boundary condition Eq. (3.8), the surface field is B̃(r = R, t) = d∗T (t). Conse-

quently, if R = δ then

⏐⏐⏐B̃(r = 0, t)
⏐⏐⏐ = ψ

⏐⏐⏐B̃(r = R, t)
⏐⏐⏐ = ψd∗T̂ . (3.36)

Evaluation of Eq. (3.36) using Eq. (3.35) and the steady-state response of Eq. (3.19)

followed by simplification gives⏐⏐⏐⏐⏐
∞∑
s=1

[
(−2p2/αs

0) + j (−2pαs
0)

J1(αs
0)
(
(αs

0)
4 + p2

) ]
+ 1

⏐⏐⏐⏐⏐ = ψ, (3.37)

where p = µσωδ2. For field-induced diffusion of plane waves, ψ = exp (−1) [92],

whereas for field-induced diffusion in cylinders, ψ =
(
J0
(√

−1
))−1

[58]. By numeri-

cally solving Eq. (3.37) for the latter condition, one gets p ≈ 4.3393. Thus, the skin

depth for mechanically-induced diffusion in cylinders is

δM ≈ 2.0831 (µσω)−1/2 = 2.0831δH , (3.38)

where δH is the skin depth for field-induced diffusion in cylinders, which is given

in [58]. The condition δM = δH can be specified, but at the expense of having a

different meaning (i.e., different ψ) for the skin depth for the two types of diffusion.

Thus, δM as given by Eq. (3.38) is used in this section.

The second step used to non-dimensionalize the time domain solution is to non-

dimensionalize the dynamic field such that the dynamic flux it would produce on its

own is normalized by the magnitude of the dynamic flux produced by the stress alone.
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Therefore, the non-dimensionalized dynamic field is

H̄(r, t) =
µ⏐⏐⏐d∗T̂ ⏐⏐⏐H̃(r, t), (3.39)

while the non-dimensionalized total field is H́(r, t) = H̄(r, t) +Hext.

To non-dimensionalize the frequency domain solution, the first step is to normalize

the frequency by a cut-off frequency defined as the frequency for which δ = R [58].

Using Eq. (3.38), the cut-off frequency for mechanically-induced diffusion is given as

ωM
c ≈ (2.0831)2

(
µσR2

)−1
= 4.3393ωH

c , (3.40)

where ωH
c is the cut-off frequency for field-induced diffusion in cylinders, which is

given in [58]. Thus, by comparing Eq. (3.40) to Eqs. (3.34) and (3.38), it is found

that the frequency can be scaled according to

ω = q2ωM
c . (3.41)

The second generalization step is the same as that used for the time domain solution

(i.e., Eq. (3.39)).

The non-dimensionalized time domain solution is given as follows. After simplifi-

cation, the use of Eqs. (3.34) and (3.38) in Eq. (3.39) gives

H̄
( r
R
, t
)

=
∞∑
s=1

[
J0

(
αs
0

r

R

)
M̄ s(q) (W (t) −X(t))

]
, (3.42)

where

W (t) = exp
(
j
(
ωt+ φ̄s(q)

))
, (3.43)

X(t) = exp
(
jφ̄s(q)

)
exp

(
− (αs

0)
2ω

4.3393q2
t

)
. (3.44)
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As before, the real and imaginary parts of Eqs. (3.43) and (3.44) are retained for

cosinusoidal and sinusoidal forcing, respectively. The magnitude M̄ s(q) and phase

φ̄s(q) of D̄s(jq) are calculated analogous to Eqs. (3.26) and (3.27), where the real and

imaginary parts of D̄s(jq) are, respectively,

D̄s
Re(q) =

−2 sgn
(
d∗T̂

)
(4.3393q2)

2

αs
0J1(α

s
0)
(
(αs

0)
4 + (4.3393q2)2

) (3.45)

and

D̄s
Im(q) =

−2 sgn
(
d∗T̂

)
αs
0 (4.3393q2)

J1(αs
0)
(
(αs

0)
4 + (4.3393q2)2

) , (3.46)

where sgn() is the signum function. The steady-state magnitude of H̄,

⏐⏐⏐H̄( r
R
, t→∞

)⏐⏐⏐= ∞∑
s=1

[
J0

(
αs
0

r

R

)√(
D̄s

Re

)2
+
(
D̄s

Im

)2]
, (3.47)

is only a function of r/R and q.

The frequency response of H̄(r/R, t) is

Ḡ
( r
R
, jq
)

=
µ⏐⏐⏐d∗T̂ ⏐⏐⏐G

(
r, j
(
q2ωM

c

))
=
√
Ḡ2

Re+ Ḡ2
Imexp

(
j∠
(
ḠRe + jḠIm

))
, (3.48)

where

ḠRe

( r
R
, q
)

=
∞∑
s=1

[
J0

(
αs
0

r

R

)
D̄s

Re(q)
]
, (3.49)

ḠIm

( r
R
, q
)

=
∞∑
s=1

[
J0

(
αs
0

r

R

)
D̄s

Im(q)
]
. (3.50)

A non-dimensionalized magnetic flux density can be defined as the dynamic flux

density normalized by its magnitude at the surface,

B̄
( r
R
, t
)

=
B̃(r, t)⏐⏐⏐d∗T̂ ⏐⏐⏐ . (3.51)
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After inserting Eqs. (3.35) and (3.19) into Eq. (3.51) and simplifying, the frequency

response of B̄(r/R, t) can be expressed as

F̄
( r
R
, jq
)

=
(
ḠRe+sgn

(
d∗T̂

))
+ j ḠIm. (3.52)

Eddy current effects in 0D constitutive models

To incorporate the effects of mechanically-induced magnetic diffusion in 0D linear

constitutive models, an effective internal magnetic field is first defined as the average

field over the rod’s cross section,

Heff(t) =
1

πR2

∫
A

H(r, t)dA =
2

R2

R∫
0

H(r, t)rdr, (3.53)

where A is the cross-sectional area. Inserting Eq. (3.30) into Eq. (3.53), neglecting

the transient part of Eq. (3.25), evaluating the integral as done in Eq. (3.21), and

simplifying, one gets

Heff(t) = 2
∞∑
s=1

[
D̂s(jω)J1(α

s
0)

αs
0

]
T̂ ejωt +Hext = ĤeffT (t) +Hext. (3.54)

Use of the effective field Eq. (3.54) in the 0D linear piezomagnetic equation B(t) =

µTH(t) + d∗T (t) results in

B(t) = µTHext +
(
d∗ + µT Ĥeff

)
T (t) = µTHext + d∗χMT (t). (3.55)

χM = χM
Re − j χM

Im is the eddy current loss factor for mechanically-induced diffusion,

χM
Re = 1 − 4

∞∑
s=1

[
(4.3393q2)

2

(αs
0)

2 ((αs
0)

4 + (4.3393q2)2
)], (3.56)

χM
Im = 4

∞∑
s=1

[
4.3393q2

(αs
0)

4 + (4.3393q2)2

]
, (3.57)

where Eqs. (3.41) and (3.40) were used to simplify the expressions. Therefore,

mechanically-induced magnetic diffusion effects can be represented in linear models
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of magnetostrictive materials as a complex piezomagnetic coefficient (or, in general,

as a complex magnetoelastic coupling coefficient in ferromagnetic materials),

d∗c = d∗χM = d∗
(
χM
Re − j χM

Im

)
. (3.58)

This is analogous to the representation of field-induced diffusion as a complex mag-

netic permeability [58]. The non-dimensionalized, effective dynamic field can now be

written as

H̄eff(t) = sgn
(
d∗T̂

) ((
χM
Re − 1

)
− jχM

Im

)
ejωt. (3.59)

If the effective field Eq. (3.54) is instead inserted into the 0D linear piezomagnetic

equation S(t) = dH(t) + sHT (t), the following results,

S(t) = dHext +
(
sH+ dĤeff

)
T (t) = dHext + sH

(
1 +

(
χM−1

) dd∗

µT sH

)
T (t)

= dHext + sH
(
1 +

(
χM−1

)
κ2
)
T (t), (3.60)

where sH is the compliance at constant field, d = d∗T, and κ is the magnetomechan-

ical coupling factor. Thus, mechanically-induced magnetic diffusion also causes the

ferromagnet’s effective compliance (and elastic modulus, EH = 1/sH) to be a complex

function of the excitation frequency,

sHc = sH
(
1+
(
χM−1

)
κ2
)
. (3.61)

Results and discussion

The derived solutions involve infinite summations. For the cases considered in

this section, 20 terms are sufficient to ensure convergence of the summations; to gen-

erate the following figures, summations were truncated at 500 terms. The general

solutions given in the Non-dimensionalization of the analytical solutions and
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Eddy current effects in 0D constitutive models subsections above are illus-

trated below; thus, the following figures and discussion are valid for all ferromagnetic

materials when their behavior is sufficiently linear.

The non-dimensionalized time domain behavior of mechanically-induced diffusion

is shown in Fig. 3.1 for positive d∗T̂ . If d∗T̂ is negative, the response is the negative of

that shown in Fig. 3.1. The spatial dependence of H̄(r/R, t) is depicted in Fig. 3.1(a)

for R/δM= q =1. The transient response quickly decays, and the internal magnetic

field becomes nearly sinusoidal in time. The amplitude and phase lag of the steady-

state response increase while moving from the rod’s surface to its axis. Fig. 3.1(b)

shows the frequency dependence of the non-dimensionalized, effective dynamic field

H̄eff(t) for varying q. As q increases, the amplitude and phase lag increase monotoni-

cally from 0 and π/2 to 1 and π, respectively. The prior numerical solutions [121, 42]

are consistent with these trends.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
1.2

Non-dimensional Time (t∗f)

H̄
(r
/
R
,t
)

 

 
R
0.8R

0.6R
0.4R

0.2R
0R

(a)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−1

−0.75
−0.5

−0.25
0

0.25
0.5

0.75
1

1.25

Non-dimensional Time (t∗f)

H̄
eff

 

 0
0.5

1
2

3
5

10

(b)

Figure 3.1: Non-dimensionalized time domain response to sinusoidal forcing for posi-
tive d∗T̂ , (a) non-dimensionalized dynamic field H̄(r/R, t) at different radial locations
for R/δM= q=1 and (b) non-dimensionalized, effective dynamic field H̄eff(t) for dif-
ferent R/δM=q.
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Physically, as the magnitude of the non-dimensionalized dynamic field increases

from 0 toward 1, the magnetic energy increases in magnitude and varies with time

such that it opposes changes in the magnetoelastic coupling energy. This suppresses

the rotation of magnetic domains, leading to a reduction in magnetic flux changes and

a stiffening of the elastic behavior. When the non-dimensionalized dynamic field has

a magnitude of 1 and lags behind the stress by π (or by 0 for a material with negative

d∗), changes in the magnetoelastic coupling energy are balanced by changes in the

magnetic energy. As a result, there is no driving potential to rotate magnetic domains

away from their bias positions. Therefore, the magnetic flux remains constant and

the material behaves passively. This state forms the upper bound on mechanically-

induced magnetic diffusion. From this state, increases in q will have no effect on the

constitutive response at radial locations for which the upper bound has been reached.

Fig. 3.2 depicts the steady-state, spatial distribution of the magnitude of the non-

dimensionalized dynamic field, which is only a function of R/δM=q. In each case, the

dynamic field is zero at the rod’s surface due to the boundary condition Eq. (3.8).

Thus, mechanically-induced magnetic domain rotation is unimpeded at the surface,

where the dynamic magnetic flux attains its maximum value. When the radius is one

skin depth (i.e., q=1), the magnitude of the non-dimensionalized dynamic field at the

rod’s axis is about 0.86. As q increases, magnetic diffusion becomes more severe and

the magnitude of the internal dynamic field increases accordingly. Interestingly, for

moderate to high q, the magnitude of the non-dimensionalized dynamic field exceeds

1. This is discussed after presenting the frequency domain responses.
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Figure 3.2: Spatial distribution of the steady-state, non-dimensionalized dynamic
field for different R/δM=q.

The non-dimensionalized frequency response of H̄(r/R, t) at different radial lo-

cations is presented in Fig. 3.3(a). For ω/ωc less than about 1, the magnitude re-

sponse increases monotonically with frequency and with decreasing r. In this regime,⏐⏐Ḡ(r/R, jq)
⏐⏐ ∝ f 1.0. With further increases in frequency, the magnitude overshoots

1, peaks, then decreases to 1 and becomes independent of frequency. The peak mag-

nitude decreases and is successively shifted to higher frequencies as one moves closer

to the rod’s surface. The normalized, frequency-independent field magnitude is 1 at

all locations. A −π/2 phase shift occurs as frequency increases. The response toward

the surface leads that at the axis, particularly after the magnitude response at the

axis peaks.

To explain the frequency response in Fig. 3.3(a), recall that diffusion-produced

fields are in phase with the eddy currents (Ampère’s law), which are induced in pro-

portion to −Bt(t) (Faraday-Lenz law). Consequently, H̃(r, t) ∝ −Bt(r, t). At low

frequency, the internal magnetic field is nearly constant and −Bt(r, t) ≈ −d∗Tt(t);
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Figure 3.3: Non-dimensionalized frequency response of (a) the dynamic field H̃(r, t)
– magnitude (top) and phase (bottom) – and (b) the dynamic magnetic flux density
magnitude as functions of ω/ωc =q2 at different radial locations.

thus, the internal field is in phase with −d∗Tt(t), which lags π/2 behind T (t). As

frequency increases, the magnitude of the internal field increases along with the pro-

portion of −Bt(r, t) caused by the field. As a result, B(r, t) phase shifts toward H̃(r, t)

and lags behind T (t). This in turn creates a lag in the eddy currents and H̃(r, t).

This behavior continues with increasing frequency until H(t) lags behind T (t) by

π, at which point the magnitude of H̃(r, t) becomes frequency independent. The

overshoot in the magnitude response of H̄(r/R, t) results from the non-180 degree

phase misalignment between the dynamic field and stress; it does not imply that the

dynamic field overcomes the applied stress and begins to drive the system. To illus-

trate this, the magnitude response of the non-dimensionalized dynamic flux is shown
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in Fig. 3.3(b). At the cut-off frequency, the magnitude of the non-dimensionalized

dynamic flux is 0.789 ≈
(
J0
(√

−1
))−1

at the axis; thus, the derivation of the cut-off

frequency in the Non-dimensionalization of the analytical solutions subsection

is verified. Above the cut-off frequency, the magnitude decays monotonically to zero,

first at the axis, then closer to the surface.

Given a maximum desired attenuation of the magnetic flux density, Fig. 3.3(b) can

be used to define design criteria for applications in which cylindrical ferromagnetic

materials are subjected to dynamic axial stress. Selecting 10% attenuation as an

example, the forcing frequency should be kept below about 0.63 times the cut-off

frequency. If this condition cannot be met, the cut-off frequency should be increased

by altering the bias condition, changing the material, or decreasing the rod’s radius.

If this does not suffice, the material can be laminated to reduce the effect of eddy

currents.

The real and imaginary parts of the eddy current factor for mechanically-induced

magnetic diffusion are presented in Fig. 3.4. Since this plot is general, it can be used

with Eq. (3.58) to directly calculate a complex magnetoelastic coupling coefficient for

incorporating mechanically-induced magnetic diffusion effects in any ferromagnetic

material.

Concluding remarks

This section considered the radial dependence of magnetic diffusion in cylindri-

cal ferromagnets that results from the application of a constant surface magnetic

field with dynamic mechanical inputs; this effect, which is particularly pronounced in

magnetoelastic materials, was termed mechanically-induced magnetic diffusion to dis-

tinguish it from the conventional magnetic field-induced magnetic diffusion. The PDE
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Figure 3.4: Real and imaginary parts of χM , the eddy current factor for mechanically-
induced magnetic diffusion, as a function of ω/ωc =q2.

governing radial diffusion was derived from the general magnetic diffusion equation by

considering the symmetry of the problem and assuming linear constitutive behavior.

Analytical time and frequency domain solutions were derived using the method of

eigenfunction expansions. By non-dimensionalizing the dynamic magnetic field and

deriving a penetration (skin) depth δM and cut-off frequency ωM
c for mechanically-

induced diffusion, the solutions were non-dimensionalized (i.e., made applicable to all

ferromagnetic materials). The skin depth and cut-off frequency are

δM ≈ 2.0831 (µσω)−1/2 = 2.0831δH (3.62)

and

ωM
c ≈ 4.3393

(
µσR2

)−1
= 4.3393ωH

c , (3.63)

respectively, where δH and ωH
c are the skin depth and cut-off frequency for field-

induced diffusion in cylinders, respectively. By defining an effective internal magnetic

field as the average field over the cylindrical rod’s cross section, it was shown that

the effects of mechanically-induced diffusion can be incorporated in 0D constitutive
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models through the use of a complex magnetoelastic coupling coefficient and complex

mechanical compliance (or complex elastic modulus).

The non-dimensionalized solutions were plotted to illustrate the response of these

materials to mechanically-induced diffusion. The spatial distribution of the magni-

tude of the non-dimensionalized dynamic field was given for a wide range of skin

depths. For forcing frequencies below about 5 times the cut-off frequency (or equiv-

alently, for rods with radii less than about 2.2 times the skin depth), the dynamic,

internal magnetic field increases monotonically from zero at the rod’s surface to a

maximum at its axis. The internal field at the axis also phase lags behind the field

closer to the surface. Up to about the cut-off frequency, the magnitude of the steady-

state, dynamic field increases in proportion to f 1.0. As forcing frequency increases

above that range, the magnitude overshoots its high frequency limit, peaks, then

decreases to its high frequency limit, at which point the dynamic magnetic flux be-

comes zero and further increases in forcing frequency have no effect. The magnitude

response of the dynamic magnetic flux was also presented. Given a maximum de-

sired attenuation of the magnetic flux density, this magnitude response can be used

to define design criteria for many applications, including dynamic sensors, energy

harvesters, vibration dampers, and tunable stiffness devices. For example, for a max-

imum attenuation of 10 %, the forcing frequency should be kept below about 0.63

times the cut-off frequency. The normalized real and imaginary part of the eddy

current factor were plotted as a function of the normalized forcing frequency. Given

a material of known properties, the complex magnetoelastic coupling coefficient can

be directly calculated from this plot.
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3.1.2 Nonlinear constitutive regimes

In this section, nonlinear, mechanically-induced magnetic diffusion is investigated

by numerically solving the PDE governing mechanically-induced diffusion in cylin-

drical ferromagnets for the case of nonlinear constitutive behavior. Non-uniformity

of the applied stress along the cylindrical specimen’s radial direction is also incorpo-

rated. First, the model and solution procedure are presented. Next, the procedure

is validated for linear regimes by forcing the material properties to be constant and

comparing the calculated responses to the analytical solution derived in Section 3.1.1.

Then, the effect of nonlinear and time-varying material properties on the diffusion

response is studied.

Model development

As noted in the Model development subsection of Section 3.1.1, mechanically-

induced magnetic diffusion in magnetostrictive materials is governed by,

−∇ (∇ ·H) + ∇2H− σ ([µ]H)t = σ ([d∗]T)t . (3.64)

Assuming a cylindrical geometry and neglecting demagnetizing fields, Eq. (3.64) sim-

plifies to

Hrr +
1

r
Hr − σ (µHt + µtH) = σ (d∗Tt + d∗tT ), (3.65)

H(r, t = 0) = Hext, (3.66)

H(r = R, t) = Hext, (3.67)

H(r, t) symmetric about r = 0, (3.68)

where the magnetic permeability µ, piezomagnetic coupling coefficient d∗, magnetic

field H, and stress T depend on the radial coordinate r and time t. The nonlinear
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magnetic diffusion response H is found by numerically solving Eq. (3.65) for a given

distributed force F̄ applied to the ends of the rod.

Eq. (3.65) is iteratively solved using the backward time central space (BTCS)

finite difference method as done by Evans and Dapino [64], who numerically solved

an equivalent equation. To apply this method, the rod is discretized into concentric

sections of equal radial width, as shown in Fig. 3.5. Discretization nodes are located

at the center of each section to facilitate the calculation of the stress applied to each

section. By considering the sections as axial springs in parallel, the force Fi applied

to section i is

Fi =
ki
keq

F =
AiEi

Li

(∑ AiEi

Li

)−1

F, (3.69)

where F is the total applied force, keq is the equivalent axial stiffness of the discretized

rod, and ki, Ai, Ei, and Li are the axial stiffness, cross-sectional area, Young’s mod-

ulus, and length of section i. The stress Ti applied to section i is therefore

Ti =
Fi

Ai

=
FiEi∑
AiEi

. (3.70)

Since Ei varies due to the temporal and spatial dependence of the internal magnetic

field, Ti is also a function of r and t.

Using the BTCS method, Eq. (3.65) becomes

1

∆r2
(
Hj+1

i+1 − 2Hj+1
i +Hj+1

i−1

)
+

1

2∆r

(
Hj+1

i+1 −Hj+1
i−1

)
− σ

∆t

(
µj+1
i − µj

i

)
Hj+1

i

− σ

∆t
µj+1
i

(
Hj+1

i −Hj
i

)
=

σ

∆t

(
dj+1
i − dji

)
T j+1
i +

σ

∆t
dj+1
i

(
T j+1
i − T j

i

)
, (3.71)

where ∆r is the distance between neighboring nodes, ∆t is the time increment between

solution steps, the subscripts denote the spatial index, and the superscripts denote

the temporal index. The accuracy of the BTCS method is on the order of (∆t,∆x2).
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Figure 3.5: Discretization of the cylindrical ferromagnet; symmetry axis (red), dis-
tributed force (green), bias magnetic field at the surface (purple), discretization nodes
(black circles), and fictitious nodes (blue circles).

Eq. (3.71) depends on the fictitious nodes i = −1 and i = g + 1 at nodes i = 1

and i = g, respectively. This issue is resolved by applying the boundary conditions.

As done in [100], the boundary condition Eq. (3.68) is written as a Taylor series

expansion about r = 0,

0 =
∂H

∂r

⏐⏐⏐⏐
r=0

=
∂H

∂r

⏐⏐⏐⏐
r=r1

− ∆r

2

∂2H

∂r2

⏐⏐⏐⏐
r=r1

+ O

((
∆r

2

)2
)
. (3.72)

Similarly, the boundary condition Eq. (3.67) is written as a Taylor series expansion

about r = R,

Hext = Hg +
∆r

2

∂H

∂r

⏐⏐⏐⏐
r=rg

+
1

2

(
∆r

2

)2
∂2H

∂r2

⏐⏐⏐⏐
r=rg

+ O

((
∆r

2

)3
)
. (3.73)

Approximation of the derivatives in Eqs. (3.72) and (3.73) using the 2nd order central

difference method followed by simplification gives

Hj
−1 ≈ Hj

1 (3.74)
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and

Hj
g+1 ≈

8

3
Hext − 2Hj

g +
1

3
Hj

g−1. (3.75)

Together, Eqs. (3.71), (3.74), and (3.75) form a system of algebraic equations, from

which the internal magnetic field at the next time step, {Hj+1}, can be easily calcu-

lated via a matrix inversion.

The time domain response of the internal magnetic field is solved iteratively ac-

cording to the procedure shown in Fig. 3.6. A piece-wise linear procedure cannot

be used, because the material properties at the next time step j + 1 are required to

calculate the solution at j+ 1. To begin each time step, the solution at the next time

step j+ 1 is estimated from the known, converged solution at the current time step j

and previous step j−1 using linear extrapolation in time. Initially, the stress at j+1

is calculated from the known, applied force at j+1 and the elastic modulus at j using

Eq. (3.70). Then, the elastic modulus at j+ 1 is calculated from the present estimate

of the stress and magnetic field at j + 1 using the constitutive model discussed in

the Discrete energy-averaged constitutive models subsection of Section 1.2.2.

This updated modulus at j+ 1 is used to update the stress at j+ 1. Since the elastic

modulus and stress are functions of each other, each is successively updated within a

while loop until a convergence condition on the change in stress is met. The piezo-

magnetic coefficient and permeability at j+ 1 are then calculated from the converged

stress at j + 1 and the present estimate of the field at j + 1 using the aforementioned

constitutive model. Next, the estimate of the field at j+1 is updated using the BTCS

method and boundary conditions. If a convergence condition on the change in the

estimated field is not met, the modulus and stress at j+ 1 are again iteratively calcu-

lated using the new estimate, after which d and µ at j + 1 are updated, before once
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again updating the estimated field. Once the field at j + 1 has converged, the time

index is incremented and the procedure repeats. If the field at j+ 1 stops converging

and begins to diverge, iterations on k are stopped and the time index is incremented.

Figure 3.6: Solution procedure for calculating the nonlinear magnetic diffusion re-
sponse of magnetostrictive materials.
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Validation for linear constitutive behavior

The numerical method is validated for the case of linear constitutive behavior by

forcing the material properties to be constant and comparing the calculated responses

to the analytical solution derived in Section 3.1.1. The model parameters common

to all of the simulations in this section are given in Table 3.1. Additionally, 20

discretization nodes (i.e., g = 20) are used for the validation. Figs. 3.7 and 3.8

respectively show the spatial distribution and frequency response of the steady-state,

non-dimensionalized dynamic field.

Table 3.1: Modeling parameters common to all nonlinear magnetic diffusion simula-
tions.

dt, s σ, 1/Ωµm R, mm Tbias, MPa Hext, kA/m

2π/(500ω) 2.15 3.2 -8 2.5

As seen in Figs. 3.7 and 3.8, the numerical method very accurately calculates the

spatial and frequency dependence of linear mechanically-induced magnetic diffusion.

In particular, Fig. 3.8(b) gives the numerical error (Er = numerical − analytical) for

the frequency domain calculation. For the parameters used, the error does not exceed

1 % and is typically less than 0.5 % regardless of the radial location. The effective

internal magnetic field was also calculated at each excitation frequency by averaging

the magnetic field along the radial coordinate.8 Fig. 3.9 depicts the frequency response

of the non-dimensionalized, effective (average) internal dynamic field. The analytical

8Averaging along the radial coordinate is equivalent to integrating over the radial direction and
dividing by the radius R.
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Figure 3.7: Validation of the numerical method: spatial distribution of the steady-
state, non-dimensionalized dynamic field for different R/δM=q; analytical (solid) and
numerical (triangles).

response is accurately quantified; however, the numerical error between ω/ωc of 1 and

10 is considerably larger than that observed in the radially-dependent response, due

in part to error propagation (see Section 3.2.2). The numerical error improves with

the use of a finer spatial mesh, because the calculation of the average field at a given

frequency converges to the true average of the numerical response.

Next, the effectiveness of the nonlinear solution procedure shown in Fig. 3.6 is

assessed by comparing its numerical solution to that calculated using MATLAB’s

fminunc nonlinear minimization procedure. In quasi-linear and many nonlinear oper-

ating regimes, the two solutions are nearly identical (as observed for the case depicted

in Fig. 3.10(a)), although the proposed procedure is markedly faster. However, in

some cases, typically when the response is considerably nonlinear, neither solution

procedure converges; in particular, both procedures diverge over approximately the

same time spans, as shown in Fig. 3.10(b). When convergence is not achieved, the

solution procedure is repeated without iterations on k; as shown in Fig. 3.11, this
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Figure 3.8: Validation of the numerical method: (a) non-dimensionalized frequency
response of the dynamic field H̃(r, t) – magnitude (top) and phase (bottom) – as a
function of ω/ωc =q2 at different radial locations and (b) numerical error; analytical
(solid) and numerical (triangles).

can provide a smooth, accurate solution in some cases. The following section only

considers cases for which the proposed solution procedure provides a smooth solution.

The development of a more robust solution procedure is tasked to future work.

Results and Discussion

Using the validated model, the behavior of nonlinear, mechanically-induced mag-

netic diffusion in Galfenol is now studied. The effect of a time-varying piezomagnetic

coefficient and permeability is first investigated for a prescribed sinusoidal variation

in the properties. Variations of different amplitude that are in-phase and 180 degrees
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Ḡ

eff
(r
/R

,j
q)
,
ra
d

-π

-7π/8

-3π/4

-5π/8

-π/2

(a)

10-2 10-1 100 101 102 103

E
rr
(
∣ ∣

Ḡ
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Figure 3.9: Validation of the numerical method: (a) non-dimensionalized frequency
response of the effective (average) internal dynamic field – magnitude (top) and phase
(bottom) – as a function of ω/ωc =q2 and (b) numerical error; analytical (solid) and
numerical (circles).

out-of-phase with the applied dynamic stress are considered. The results are shown

in Figs. 3.12(a) and 3.12(b) for a low frequency stress having a small and moderate

stress amplitude, respectively. There are three key observations. First, as the vari-

ation amplitude decreases, the nonlinear diffusion response converges to the linear,

analytical response, as expected. Second, when the variation is out-of-phase with

the dynamic stress, the parametric excitation caused by the variation adds to the

stress excitation. Conversely, the parametric excitation caused by an in-phase vari-

ation counteracts the stress excitation and, for large variations, drives the response
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Figure 3.10: Comparison of a nonlinear diffusion response at the rod’s axis calculated
using the proposed solution procedure and MATLAB’s fminunc: (a) g = 20, ω =
10ωc, and |T | = 4 MPa and (b) g = 40, ω = ωc, and |T | = 2 MPa.

out-of-phase from the linear, analytical response.9 Third, at a low stress amplitude,

the effect of out-of-phase and in-phase variations have a similar magnitude. However,

at a moderate stress amplitude, in-phase variations have a considerably larger effect

than out-of-phase.

Next, the full complexity of Galfenol’s nonlinear diffusion response is investigated

by calculating its time-varying material properties using the DEA model, as depicted

in Fig. 3.6. The model parameters are given in Table 3.1. For the selected bias

stress, the material operates within a small region that is adjacent to the point of

maximum magnetoelastic coupling at the selected external (surface) field, which is

a desirable operating point for many applications. However, this is expected to be

a near worst-case operating point with regard to nonlinear magnetic diffusion, due

9This observation also holds for high forcing frequencies.
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Figure 3.11: Comparison of a nonlinear diffusion response at the rod’s axis calculated
with and without iterations on k; g = 40, ω = 0.25ωc, and |T | = 2 MPa.

to the magnetic permeability’s large magnitude and strong stress dependence at this

point (see Fig. 3.13 and also refer to Fig. 2.8(b)).

Fig. 3.14 shows the temporal response of a Galfenol rod for low to moderate

forcing frequencies and stress amplitudes. At low stress amplitudes, the nonlinear

diffusion response resembles that of linear diffusion, i.e., the steady-state response is

sinusoidal and symmetric about the surface field. As the stress amplitude increases,

the non-dimensionalized internal field becomes asymmetric with respect to the surface

field and its amplitude increases, particularly near the rod’s axis. However, the mean

field over one oscillation cycle is equal to Hext in every case. At the selected bias,

nonlinearity becomes appreciable at a stress amplitude of about 1.5 MPa.

The frequency response of a Galfenol rod at low to moderate stress amplitudes is

depicted in Fig. 3.14, where the response is only reported at frequencies for which the

numerical solution procedure converged. At low forcing frequencies, the magnitude

of the internal field is small and the variation in material properties is nearly 180
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Figure 3.12: Convergence of the nonlinear magnetic diffusion response to the linear,
analytical diffusion response (solid black) at the rod’s axis for a uniform stress and
a prescribed sinusoidal d∗ and µ of amplitude 74.52 · X nm/A and 365.6µ0 · X,
respectively: (a) |T | = 0.5 MPa, X = [0.01, 0.025, 0.05, 0.1] for out-of-phase (dashed-
dotted) and in-phase (dashed) sinusoids and (b) |T | = 3 MPa, X = [0.01, 0.1, 0.25, 0.5]
for out-of-phase sinusoids (dashed-dotted) and X = [0.001, 0.0025, 0.005, 0.01] for in-
phase sinusoids (dashed); g = 20, ω = 0.1ωc, Hext = 5 kA/m, and Tbias = −40 MPa;
nonlinear curves are normalized using the stress amplitude and the bias d∗ and µ.

degrees out-of-phase with the dynamic stress. Thus, according to the observations of

Fig. 3.12, diffusion is more pronounced for higher stress amplitudes due to a larger

variation in material properties. Conversely, at high forcing frequencies, diffusion is

generally less pronounced for higher stress amplitudes, because the magnitude of the

internal field is large, which causes the material properties to vary almost in-phase

with the dynamic stress. At a forcing frequency of about 2ωc, the diffusion response

is the same for different stress amplitudes. As seen in the inset of Fig. 3.15(a), the

magnitude of the non-dimensionalized diffusion response does not reach 0.86 (i.e., the

value of the linear response at the cut-off frequency) until about 1.4ωc; this suggests

that the cut-off frequency of the nonlinear diffusion response at the chosen bias is
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Figure 3.13: Magnetic permeability of Galfenol (Fe81.6Ga18.4) about the selected bias
point for different stress amplitudes, calculated using the DEA model after optimizing
it to the measurements in Section 2.1.

about 1.4 times that of the linear response. At high frequency, the magnitude of the

internal field is significantly larger than that of the linear response for all cases. The

cause of this trend is unknown and requires further investigation.

Concluding remarks

In this section, the behavior of nonlinear mechanically-induced magnetic diffusion

was studied by numerically solving the PDE that governs radial diffusion in cylin-

drical ferromagnets. Radial non-uniformity of the applied stress was also considered.

The PDE was solved using the backward time central space finite difference method

along with equilibrium iterations. The numerical method was validated by compar-

ing the linear, analytical solution from Section 3.1.1 to responses calculated for the

case of constant material properties. The numerical error is below 1 % at every ra-

dial location. The effectiveness of the proposed numerical method was analyzed by

comparing responses calculated using the proposed method and MATLAB’s fminunc

138



t, s
0 0.04 0.08 0.12 0.16

(H
a
v
g−
H

ex
t)
·
µ
/
d
|T

|,
-

-0.15

-0.1

-0.05

0

0.05

0.1

0.150.25 1 1.5 2 2.5

(a)

r/R
0 0.2 0.4 0.6 0.8 1

(|
H
|−
H

ex
t)
·
µ
/
d
|T

|,
-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 MPa

1.5 MPa

1 MPa

0.25 MPa

(b)

Figure 3.14: Time domain, nonlinear magnetic diffusion response of Galfenol for
different stress amplitudes: (a) temporal response at the rod’s axis (ω = 0.25ωc) and
(b) spatial dependence of the field amplitude (ω = ωc); g = 40.

function. When the response exhibits low to moderate nonlinearity, the methods pro-

duce nearly identical results. However, when nonlinearity is significant, both methods

diverge. This prevented the computation and analysis of the diffusion response for

large stress amplitudes and forcing frequencies.

The effect of time-varying material properties on the nonlinear diffusion response

was first studied by prescribing a sinusoidal variation of the properties. When the

variation is 180 degrees out-of-phase with the dynamic stress, the parametric excita-

tion caused by the variation adds to the stress excitation, resulting in larger internal

field magnitudes. Conversely, when the variation is in-phase with the dynamic stress,

the parametric excitation counteracts the stress excitation; this reduces the internal

field magnitude unless the variation is very large relative to the stress amplitude.

Nonlinear diffusion in a Galfenol rod was investigated by using the DEA model to

calculate the material properties. A bias stress and field were selected to provide
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Figure 3.15: Frequency domain, nonlinear magnetic diffusion response of Galfenol for
different stress amplitudes: (a) non-dimensionalized dynamic field at the rod’s axis
and (b) non-dimensionalized effective (average) dynamic field.

near worst-case diffusion. At this bias, nonlinearity in the diffusion response becomes

appreciable at a stress amplitude of about 1.5 MPa. At forcing frequencies below

about 2ωc, diffusion is more pronounced for higher stress amplitudes, whereas at

higher forcing frequencies, diffusion is generally less pronounced for higher stress am-

plitudes. Calculated frequency responses suggest that the diffusion cut-off frequency

of the nonlinear response at the selected bias is about 1.4 times that of the linear

response. At high frequency, the magnitude of the calculated internal field is signif-

icantly larger than that of the linear response. Further study is needed to ascertain

the cause of this behavior. It is expected that the diffusion response will exhibit less
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nonlinearity at bias points for which the magnetic permeability has a smaller magni-

tude and a weaker dependence on stress; in this case, the linear, analytical solution

should be valid for larger stress amplitudes.

3.2 Dynamic Characterization of Galfenol

This section provides a complete record of a precise characterization of Galfenol’s

(Fe81.6Ga18.4) magnetic and mechanical responses to dynamic compressive stresses up

to 31 MPa and 1 kHz. The objective is to measure the 1D, dynamic sensing response

of the material and to quantify from the response, the frequency dependence of the

material properties for 1D sensing. This was accomplished by controlling the axial,

dynamic stress and static magnetic field over a specific region of a Galfenol rod, and

measuring the axial strain and magnetic flux density. Auxiliary variables – drive

voltage, drive current, and temperature – were also measured for reference.

At each forcing frequency, sensing-based material properties are calculated using

a frequency domain method adapted from an ASTM standard. Solid and laminated

Galfenol rods are considered. To verify the experimental setup with existing data

and to evaluate the frequency-independent performance, quasi-static actuation [129]

and sensing responses (Section 2.1) were also measured. First, the design of the

experiment is discussed in detail. This is presented in the following sections: specimen

design, sensor selection and uncertainty analysis, experimental setup and methods,

and data processing methods. Then, the complete set of dynamic measurements is

provided, along with a discussion of the observed trends. Calibration methods, testing

procedures, and additional details of the experimental and data processing methods

are reported in Appendix C.
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3.2.1 Specimen design

A cylindrical specimen was selected, because it was the standard geometry man-

ufactured by the material supplier and it allowed for the use of an existing magnetic

transducer (magnetic circuit). The magnetic circuit generated uniform magnetic fields

only over a central region of the rod, which is referred to as the gauge region. Thus,

state variables were controlled and measurements were taken within the gauge region.

Recommendations from ASTM standards

To assist with specimen design, particularly with tolerancing, relevant ASTM

standards were reviewed, and specimen specifications were recorded. A full list of the

relevant ASTM standards is given in the references. Table 3.2 summarizes geometric

specifications taken from standards for magnetic testing, compression testing, and

dynamic testing. Additionally, specimens should be free from residual stresses [11].

The most stringent of the tolerancing specifications in Table 3.2 were supplied to the

specimen’s manufacturer, ETREMA Products, Inc, who attempted to meet these very

tight tolerances. This table is presented to allow the tolerances of the manufactured

specimens (given in the Specimen geometry subsection of Section 3.2.1) to be

benchmarked against those of an ideal specimen.

To accurately control the magnetic state of the specimen over a gauge region, a

magnetic circuit was used to generate magnetic flux and guide it uniformly into the

specimen. When standard magnetic circuits are used for magnetic testing, the length

and diameter specifications from [6] help to ensure magnetic uniformity in the spec-

imen. In this experiment, both magnetic and mechanical excitations were needed.

Thus, a custom magnetic circuit (Figs. 3.16 and 3.17) was used. As suggested in [6],
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Table 3.2: Summary of geometric specifications for specimens from relevant ASTM
standards.

Parameter Specification ASTM Standard

length (L) ≥ 5 in A 314/A314M [6]

diameter (D) ≥ 0.5 in A 314/A314M [6]

L/D ratio
about 8 to 10 (for modulus of elas-
ticity testing)

E9 [17]

diameter tolerance

±0.001 in E209 [12]
≤ 1 % or 0.002 in (whichever is less) E9 [17]
±0.1 % E1875 [8], E1876 [9]
±0.010 in A 314/A314M [6]
±0.005 in D5992 [7]

surface roughness
ground smooth to ≤ 100 µin (RMS) A 314/A314M [6]
machined smooth to ≤ 63 µin (avg.) E9 [17], E209 [12]

parallelism of ends
≤ 0.0005 in/in E9 [17]
≤ 0.00025 in E209 [12]
≤ 0.1 % E1875 [8], E1876 [9]

flatness of ends ≤ 0.0005 in/in E9 [17]

perpendicularity of
ends relative to sides

≤ 0.05 degrees E9 [17]
≤ 0.25 degrees E209 [12]
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this circuit’s flux return path was composed of silicon iron laminations (0.018 in thick)

that were bolted together and operated up to a flux density (about 0.6 T) for which

their magnetic permeability was below its maximum value. To minimize eddy cur-

rents in the flux return path, laminations were separated by electrically-insulating

Kapton film (about 0.001 in thick). The circuit was symmetric and contained two

electromagnets, which were nominally identical, to improve the uniformity of the

magnetic state in the specimen. This magnetic circuit was successfully used in pre-

vious work by the authors [154, 53]. The use of this circuit constrained the diameter

of the specimen to 0.25 in and its minimum length to 3 in (to allow for the specimen

ends to be mechanically engaged); therefore, the length-to-diameter ratio specifica-

tion suggested by ASTM E9 [17] was adhered to instead of the length and diameter

specifications.

Figure 3.16: Magnetic circuit used to generate a uniform magnetic state in the gauge
region of the specimen, while allowing for independent mechanical excitation.
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(a) (b)

Figure 3.17: COMSOL Multiphysics simulation of the 3D magnetic response of the
magnetic circuit: (a) meshed circuit, magnetic base/platen, and large air volume, (b)
magnetic flux density vector (arrow length proportional to magnitude) and slice plot
of its norm (in units of Tesla) in response to a 1 A electromagnet current; the relative
magnetic permeability of the platen and Galfenol are 100, each coil is composed of
300 turns of 26 AWG wire, and the air gap between the Galfenol specimen and silicon
iron was included; note the uniformity and axial orientation of the magnetic flux
within the gauge region of the specimen.

Buckling

Buckling of specimens subjected to quasi-static, compressive, axial loads occurs

when the specimen’s 1st natural frequency of transverse bending becomes zero. The

critical buckling stress Tcrit and load Pcrit at which this occurs is given by [17],

Tcrit =
Pcrit

A
= C

π2EI

L2A
, (3.76)

where E is the Young’s modulus, I denotes the area moment of inertia about the

centroid of the cross-section, L is the specimen’s length, A denotes the specimen’s

cross-sectional area, and C is the end-fixity coefficient, which takes a value of 3.75

for the reported experiment (compression testing of flat-end specimens between flat,

rigid anvils). Comparing Eq. (3.76) with Table 3.2 reveals a tradeoff between a
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short sample (large critical buckling stress) and long sample (L/D ratio ideal for

the measurement of elastic moduli). Considering this tradeoff and the constraints

imposed by the magnetic circuit, a specimen length of 3 in was used.

If the loading is dynamic and perfectly compressive, buckling should not occur

unless the compressive load exceeds the quasi-static buckling load. However, pure

compression cannot be realized, and some amount of transverse excitation will al-

ways occur. Consequently, for dynamic compression, the excitation frequency should

be well below the 1st natural frequency of transverse vibration of the specimen. To

approximate this natural frequency of the cylindrical specimen, the transverse vi-

bration of beams subjected to axial loads was considered. The mode shapes (Wn,

eigenfunctions) are provided by [118],

Wn(x) = Z1 (cosh (s1x) + Z2sinh (s1x) + Z3cos (s2x) + Z4sin (s2x)) , (3.77)

where

s21, s
2
2 =

P

2EI
±

((
P

2EI

)2

+
ρAω2

n

EI

)1/2

, (3.78)

x is the location along the beam’s length, P is the applied axial force, ρ denotes the

density, ωn are the circular natural frequencies of transverse vibration (eigenvalues) of

the beam, and Zi are constants that depend on the boundary conditions. Application

of fixed-fixed boundary conditions to Eq. (3.77) gives the frequency equation

2s1s2 (1 − cos (s2L) cosh (s1L)) + sin (s2L) sinh (s1L)
(
s21 − s22

)
= 0. (3.79)

An analytical expression for ωn from Eqs. (3.78) and (3.79) could not be found. Thus,

a numerical solution for ω1 as a function of P was calculated. For comparison, an

assumed relation between ω1 and P was developed based on the analytical relation
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for a pinned-pinned beam [118],

ωn =
π2

L2

(
EI

ρA

)1/2(
n4 − n2 P

Pcrit

)1/2

, (3.80)

and the known bounds of the curve – Eq. (3.76) and the 1st transverse bending

natural frequency of a fixed-fixed beam for zero axial stress [118],

ω1 = (βL)21

(
EI

ρAL4

)1/2

, (βL)1 = 4.730041. (3.81)

The assumed relation has the form

ω1 =

(
Y − V

P

Pcrit

)1/2

, (3.82)

where application of the bounds gives

Y = V = (βL)41

(
EI

ρAL4

)
. (3.83)

To accurately compare the numerical and assumed relations, an end-fixity coeffi-

cient of 4 (perfectly fixed-fixed boundary conditions) was temporarily used to derive

the assumed relation. The comparison in Fig. 3.18(a) shows a near perfect agreement;

thus, the assumed relation with realistic boundary conditions (end-fixity coefficient

of 3.75) could be used to analyze the Galfenol specimen. The assumed relation for

the Galfenol specimen is plotted in Fig. 3.18(b) for the minimum and maximum val-

ues of Galfenol’s Young’s modulus. At the maximum applied compressive stress of

60 MPa, the specimen’s 1st transverse bending natural frequency will approximately

fall in the range 1950 to 2900 Hz. The maximum excitation frequency in this exper-

iment (1000 Hz) was well outside this range, which suggested that buckling should

not occur. Further, Galfenol exhibits low to moderate damping [159]. Consequently,

any magnitude or phase distortion introduced in the results due to bending should
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be minimal. However, it is acknowledged that resonant frequencies are system-level

properties that depend on the effective mass loading during experimentation. A larger

mass would result in greater reductions in the resonant frequencies.

(a) (b)

Figure 3.18: (a) comparison of the numerical and assumed relations between the 1st
transverse bending natural frequency and compressive stress for perfectly fixed-fixed
boundary conditions (end-fixity coefficient of 4), and (b) Assumed relation between
the 1st transverse bending natural frequency and compressive stress for the Galfenol
specimen with realistic boundary conditions (end-fixity coefficient of 3.75) and its
minimum (35 GPa) and maximum (72 GPa) Young’s modulus.

Lamination

The goal of the material characterization was to measure Galfenol’s response to

dynamic, axial stresses and constant magnetic fields (applied at the surface). In mag-

netostrictive rods, dynamic, axial stresses produce a time-varying, axial magnetic

flux in the material. According to the Faraday-Lenz law, this time-varying magnetic

flux induces electric fields that circulate around the rod’s axis. Due to the material’s
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finite resistivity, these electric fields drive circulating currents, which generate a time-

varying, axial magnetic field that is superposed on the constant applied magnetic

field (Fig. 3.19(a)). Consequently, the magnetic field is non-uniform along the radial

direction of the rod (Fig. 3.19(b)), which prevents a well defined and accurate char-

acterization. This effect has been termed mechanically-induced magnetic diffusion

by the authors. Simplifying the problem by assuming constant Galfenol properties

(valid in the “burst” region) allows for an analytical solution for this effect in solid

rods (Fig. 3.19) [134]. Model parameters are given in Table 3.3. In Fig. 3.19(b),

the minimum magnetic field is used to show a time-independent profile of the largest

deviation of the internal field from the surface value at each point along the rod’s

radius.

(a) (b)

Figure 3.19: Mechanically-induced magnetic diffusion for the Galfenol specimen: (a)
temporal response of the normalized magnetic field at varying locations along the
radial direction for a 1000 Hz stress, and (b) normalized minimum magnetic field as
a function of radial position (normalized by the radius) for varying stress frequencies.
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Table 3.3: Model parameters used for the solution of the mechanically-induced mag-
netic diffusion problem.

Electrical Conductivity,
S/m

Relative Magnetic
Permeability

Piezomagnetic Coefficient,
T/Pa

5.96 × 106 350 40 × 10−9

Radius,
mm

Bias Magnetic Field,
kA/m

Stress Amplitude,
MPa

6.35 6 5

The analytical solution shows that the magnitude of the time-varying magnetic

field increases toward the rod’s axis and that the effect is more significant as the stress

frequency increases. The conventional method for mitigating the effects of magnetic

field-induced magnetic diffusion is to laminate the material, whereby the material

is cut into thin laminates then bonded back together with an electrically-insulating

adhesive. This constrains eddy currents to circulate within each laminate – a condi-

tion for which the analytical solution is invalid. In determining a laminate thickness,

there is a tradeoff between minimizing eddy currents (thin laminates) and practical

manufacturing limitations (thicker laminates). Thinner laminates also reduce the vol-

ume fraction of Galfenol for a given rod diameter. A laminate thickness of 0.033 in

(26 % of the radius) was chosen to balance this tradeoff, with more weight placed on

reducing eddy currents.

Specimen geometry

The purchased alloy was <100> oriented, polycrystalline Fe81.6Ga18.4. Although

the specimen was polycrystalline, the manufacturer’s expertise allowed them to pro-

duce highly-textured polycrystals (misorientation angle of gains was very small),
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whose performance can approach that of single crystalline material. Solid and lami-

nated rods were cut from the same bulk rod, which was grown using the free standing

zone melt method at about 25 mm/hr (a rate used to produce research-grade ma-

terial). Specimens cut from the same bulk rod can still be expected to have some

variation in their properties. The geometry of all specimens is depicted in Fig. 3.20,

where the tolerances reflect the capabilities of the material supplier. The most strin-

gent ASTM-recommended tolerance for surface finish, diameter variation, and paral-

lelism could not be met. A tolerance for flatness of the rod’s ends was not specified,

because the supplier does not measure flatness. The laminated rod had 0.033 in thick

laminates.

Figure 3.20: Dimensions and tolerances of the highly-textured, < 100 > oriented,
polycrystalline Galfenol (Fe81.6Ga18.4) rods purchased from Etrema Products, Inc.;
all specifications have units of in, except for the surface roughness, which is specified
in units of µin.
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3.2.2 Sensor selection and uncertainty analysis

When possible, the uncertainty of each calculated quantity uR was quantified by

the standard formula for the propagation of error given by [68],

uR = ±

[
n∑

i=1

(
∂R

∂xi
uxi

)2
]1/2

, (3.84)

where uxi
is the uncertainty in the measured variable xi and n denotes the number

of variables on which the result R depends. Eq. (3.84) is valid when individual

uncertainties uxi
are small. Individual uncertainties were calculated as

uxi
=
(
u20i + u2ci

)1/2
, (3.85)

where u0i is the interpolation error,

u0i = ±1

2
(resolution), (3.86)

and uci is the instrument error, which is a combination of elemental errors eki (e.g.,

sensitivity and linearity errors),

uci = ±

[
K∑
k=1

(
e2ki
)]1/2

. (3.87)

For most sensors, uci , and thus uR, is a function of the magnitude of the measured

quantity. This is illustrated in Appendix C.1, which details the uncertainty analysis

for each measured quantity. Table 3.4 summarizes the estimated range of uncertainty

for each measurement and compares it to the suggested maximum uncertainty from

ASTM standards. In most cases, the expected uncertainty approximately met ASTM

recommendations. The magnetic flux density uncertainty exceeded its recommenda-

tion due to a high range-dependent uncertainty, which resulted from having a low

signal-to-range ratio of 15 %.
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Table 3.4: Estimated uncertainty in the measured quantities.

Physical quantity
Measurement
uncertainty,
±% of span

ASTM-suggested
uncertainty,
±% of span

Distance 0.20 0.10–0.50
Area 0.41 1.0

Force
0.065–1.0 (static),
1.1–1.3 (dynamic)

1.0

Stress
0.065–1.1 (static),
1.1–1.3 (dynamic)

–

Temperature ±2.0 ◦C ±1.0 ◦C
Strain 0.21–0.46 0.10–1.0

Magnetic field strength 0.92–1.3 1.0
Magnetic flux density 1.4–1.9 1.0

The method, experimental setup, and results for the calibration of each sensor and

the linear power amplifier are detailed in Appendix C.2. Most of the calibrations were

conducted by comparing the device’s output to an absolute reference or the output

of a calibrated sensor. However, the strain gauges were shunt calibrated, whereas the

magnetic flux density sensing (pick-up) coil was calibrated by measuring the magnetic

response of a 0.25 in diameter Ni 200 rod and comparing the resulting B-H loop to

accurate measurements from the literature [139].

The instruments used in the experiment are as follows. A Kepko BOP 72-6M

linear amplifier, operated in current control mode, was selected based on its avail-

ability. Static force was measured using an Interface 1010ACK-500-B fatigue rated

load cell and MTS 493.21 signal conditioner. As discussed in Section 3.2.3, dynamic

forces vibrate the specimen and fixtures, resulting in inertial forces that cause error
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in measurements of the force applied to the specimen. To minimize this error, the dy-

namic force was measured with a Kistler 9001A piezoelectric load washer and Kistler

5010 charge amplifier, instead of the Interface load cell. A Type K thermocouple and

Omega DRG-SC-TC signal conditioner were used to measure the temperature of the

specimen. Strain measurements were obtained using Vishay Micro-Measurements

EA-06-250BF-350/L strain gauges and a Vishay Micro-Measurements 2310 signal

conditioner. An Allegro A1321LUA Hall chip was selected to measure the surface

magnetic field, while a Lake Shore Model 480 fluxmeter and custom pick-up coil were

used to measure the magnetic flux density.

3.2.3 Experimental setup and methods

This section details the physical setup of the experiment and the reduction of

inertial force error and strain gauge noise. A wiring diagram of the experiment, a

discussion of the magnetic field control, and a discussion of the sensor reset process

are contained in Appendices C.3.1, C.3.2, and C.3.3, respectively.

Physical setup

An MTS 831.50 dynamic load frame was used to excite the Galfenol specimen

with quasi-static and dynamic axial forces up to -2000 N and 1 kHz (Fig. 3.21). Due

to the high stiffness of the specimen, the load frame was operated in force control

mode, instead of displacement control mode; this was realized using an MTS 793

FlexTest GT controller. A closer look at the test setups used for quasi-static and

dynamic testing is provided in Fig. 3.22. Here, the thermocouple, Hall chip, sensing

coil, and strain gauges can be seen installed on the Galfenol rod. Surrounding the

rod is the electromagnetic circuit used to generate the magnetic field.
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Fig. 3.22(a) focuses on the quasi-static test setup. The Interface load cell, shown

at the bottom of the picture, was used to measure the force in the rod and to pro-

vide feedback to the controller. Above the load cell was an aluminum platen, which

supported the Galfenol rod and the electromagnetic circuit that surrounded the rod.

There was also a thin plate sitting on the platen, which had a through hole for cen-

tering the rod. Above the setup was the load frame piston with a steel platen that

was used to engage the sample.

As discussed in the following section, the mass in-between the load cell and the

sample (i.e., the platen, alignment plate, and the electromagnetic circuit) generated

significant inertial forces that limited the accuracy of the load cell measurement at

high frequency. As a result, the test setup was modified for dynamic testing to include

an auxiliary force sensor. The physical setup is shown in Fig. 3.22(b). Here, a load

washer was placed on top of the platen. A circular scribe mark on the platen was used

to visually center the load washer. Then a small steel part, shaped like a puck, was

used to connect the sample to the load washer. The puck had a pin on the bottom

side for alignment with the load washer, and a circular scribe mark on the top for

alignment with the sample.

Inertial force error reduction

Any moving mass in-between the force transducer and sample will generate inertial

force that corrupts the measurement. In the testing standard [15], it is recommended

that the inertial force error be ≤ 0.5 % of the loading span. A lumped parameters

model, as shown in Fig. 3.23, was used to estimate the error for the test setups used

in this experiment. Here, case 1 corresponds to the quasi-static test setup, where

force is measured with the load cell, and case 2 corresponds to the dynamic setup,
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Figure 3.21: MTS 831.50 load frame with experiment installed.

where force is measured with the load washer. The sample and force transducers are

modeled as springs, while the fixtures are modeled as masses.

The inertial force error is defined as the difference between the transducer force

and the sample force, normalized by the loading span (the peak-to-peak dynamic

force) of the sample force. Equations for the inertial force error associated with cases

1 and 2 are derived in Appendix C of [129] and can be expressed, respectively, as

|E1| =

⏐⏐⏐⏐F3 − F2

2 |F2|

⏐⏐⏐⏐ =
m3ω

2

2 |k3 −m3ω2|
(3.88)

and

|E2| =

⏐⏐⏐⏐F2 − F1

2 |F1|

⏐⏐⏐⏐ =
1

2

(
1 +

⏐⏐⏐⏐ k2 (k3 −m3ω
2)

m2ω2 (m3ω2 − (k2 + k3))

⏐⏐⏐⏐)−1

, (3.89)

where ω is the circular frequency of the excitation force. In both cases, the error

magnitude increases with the mass in-between the sample and force transducer. The

errors for cases 1 and 2 are plotted in Fig. 3.24 versus frequency along with the
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Figure 3.22: Detail of the (a) quasi-static and (b) dynamic experiments.

threshold specified in the ASTM standard. Accordingly, the forcing frequency for

case 1 is limited to 213 Hz, while for case 2 the forcing frequency may be up to

1077 Hz before exceeding the error threshold. As noted in Section C.1, forces up to

100 Hz were measured using the Interface load cell, whereas forces above this cut-off

were measured using the piezoelectric load washer. At 100 Hz, the error magnitude

for case 1 is 0.11 % of the loading span. At 1000 Hz, the error magnitude for case 2

is 0.41 % of the loading span.

Strain gauge noise reduction

As detailed in Section 3.1, a time-varying magnetic flux through a surface (e.g.,

the cross-section of the Galfenol rod) induces a circulating electric field along the

boundary of the surface. This electric field creates noise voltages in the grid of the

strain gauges that were attached to the rod’s surface. Since the gauges used in this
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Figure 3.23: Schematic of the load path and mechanical model for inertial force error
cases 1 and 2.

experiment were oriented to measure axial strain in the rod, the noise voltage was only

generated in the narrow, horizontal links of the grid; thus, long and narrow strain

gauge grids were ideal for minimizing electromagnetic noise. The electromagnetic

noise can be directly measured at the strain gauge terminals after setting the bridge

excitation to 0 V.

To investigate the effect of electromagnetic noise Vnoise on a quarter bridge strain

measurement, the circuit shown in Fig. 3.25 was analyzed in Appendix B of [129].

The normalized strain error due to the electromagnetic noise is

Eϵ =
ϵmeas − ϵtrue

ϵspan
=
Vr (FGϵtrue + 2)

FGϵspan (1 − Vr)
, (3.90)

where ϵmeas is the measured strain, ϵtrue is the true strain, ϵspan is the strain span

(1350 × 10−6 for this experiment), FG is the gauge factor, and Vr is the normalized

noise voltage,

Vr =
Vnoise
Vex

. (3.91)

158



(a) (b)

Figure 3.24: Measurement error in the force applied to the specimen due to the
inertial force of fixturing: (a) case 1 and (b) case 2; kLoadCell = 175 × 106 N/m,
kLoadWasher = 1 × 109 N/m, mPuck = 0.025 kg, and mPlaten = 0.965 kg.

The strain error is plotted in Fig. 3.26. Clearly, the strain error is a very weak

function of the true strain magnitude; however, the error increases significantly as

a function of the normalized noise voltage. For a typical bridge excitation of 10 V,

an electromagnetic noise voltage of 10 mV results in a strain error of about 100 %.

Fig. 3.27 shows a direct measurement of the electromagnetic noise voltage during a

3 MPa amplitude, 1 kHz excitation of a Galfenol rod in a similar experiment, where

no noise reduction techniques were utilized. The measured noise voltages correspond

to strain errors of 200 % or larger. Thus, noise reduction techniques were required for

accurate strain measurement, especially for high frequency, large amplitude forces.

Electromagnetic noise was reduced by (a) weaving leadwires in the pattern shown

in Fig. 3.28(a), (b) routing leadwires as far away from the noise sources as possible

and in a direction orthogonal to the rod’s circumference and the perimeter of the

laminates’ cross section, and (c) wiring the two gauges in series such that the noise
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Figure 3.25: Wheatstone quarter bridge strain measurement circuit considering elec-
tromagnetic noise Vnoise (leadwire resistance neglected).

(a) (b)

Figure 3.26: Error in the strain measurement due to electromagnetic noise: the effects
of (a) true strain magnitude and (b) normalized noise voltage; FG = 2.155.

induced in one cancels that induced in the other (Fig. 3.28(b)). Typically, strain

is measured separately by two gauges located on opposite sides of the rod, and the

average strain is reported [156]; this allows for the identification of bending-induced

differences in the strains and, if necessary, the correction of the specimen’s mount.

Wiring two identical strain gauges in series (as shown in Fig. 3.28(b)) to form a

Wheatstone quarter bridge causes the individually measured strains to be averaged,
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Figure 3.27: Electromagnetic noise voltage induced in two strain gauges and their
leadwires in response to a 3 MPa amplitude, 1 kHz axial stress applied to a Fe81.6Ga18.4

rod; strain gauges were oriented along the axis of the rod; no noise reduction tech-
niques were used.

but it does not allow for an assessment of the specimen’s mount. Although the

ends of the specimen were ground to a tight tolerance (see the Specimen geometry

subsection of Section 3.2.1) and the load frame is very stiff and well aligned, achieving

even contact pressure between the platens and specimen necessitates the use of a

spherical platen, especially when the specimen is stiff [17]. However, a lightweight

spherical platen was not available. Thus, bending of the specimen is a point of

uncertainty in this experiment.

To quantify the performance of the noise reduction techniques, the electromagnetic

noise in the strain measurement was measured in situ by dynamically exciting the

Galfenol specimen while measuring the strain with the strain bridge excitation voltage

set to zero. The noise was measured for a constant current of 0.3 A applied to the

electromagnets and an applied force of

F = 681 + 586sin (2πft) N. (3.92)
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(a) (b)

Figure 3.28: (a) weaving pattern for strain gauge leadwires to reduce electromagnetic
noise induced in the wires [77] and (b) wiring of a strain gauge pair to simultaneously
cancel bending strains and electromagnetic noise; gauges are bonded to opposite sides
of the rod, but in otherwise identical locations and orientations.

At quasi-static frequencies, this loading caused the largest and steepest change in

flux density (see Section 8.2.1 of [129]). Thus, this loading provided the worst-case

scenario for electromagnetic noise throughout the forcing frequency range. The re-

sulting electromagnetic noise for the solid Galfenol specimen over a range of forcing

frequencies is shown in Fig. 3.29(a). The noise reduction techniques were very effec-

tive, as the electromagnetic noise peaks at about 10 × 10−6, or 0.74 % of the strain

span. As seen in Fig. 3.29(b), the amplitude of the magnetic flux density response

decreased significantly with frequency, which was due to eddy currents in the solid

Galfenol rod. This behavior helped to reduce the electromagnetic noise, because the

induced voltage is directly related to the time derivative of the flux density. For the

laminated Galfenol rod, the decay of the flux density amplitude was less severe, which

likely led to slightly larger electromagnetic noise.
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(a) (b)

Figure 3.29: (a) measured electromagnetic noise in the strain measurement for the
solid Galfenol specimen and worst-case loading under constant current to the electro-
magnets (the noise is quantified in terms of its RMS and the amplitude of its primary
harmonic) and (b) amplitude of the magnetic flux density response at each frequency.

3.2.4 Data processing methods

This section includes the calibration of each measurement channel’s phase response

and the method used for calculating material properties. Calibration of each mea-

surement channel’s amplitude, filtering of the data, and the method for evaluating the

level of reversibility in the constitutive response are discussed in Appendices C.4.1,

C.3.2, and C.4.3, respectively.

Phase calibration

Each signal conditioner and corresponding anti-aliasing filter created a different

phase shift, resulting in misalignment of the measured sensor signals. This mis-

alignment created error in the size of the material characterization hysteresis loops.

Typically, force and displacement signals are aligned by testing a sample that has

near zero energy loss [7]. This technique could not be applied for this system, as the
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mechanical and magnetic sensor signals needed to be mutually aligned. Instead, a

new technique was used.

As shown in Fig. 3.30 and explained below, the sensors were removed and the

sensor signals were simulated by manipulating a voltage signal produced by a function

generator.

• Strain sensor: This sensor uses a strain bridge circuit, which produces a millivolt

level signal in proportion to the applied strain. This was simulated using a

voltage divider to attenuate the function generator signal while presenting the

bridge resistance to the signal conditioner.

• Load cell: This sensor also uses a strain bridge circuit, producing a millivolt

level signal proportional to the applied force. The same voltage divider circuit

used for the strain sensor was used.

• Load washer: This sensor uses a piezoelectric crystal that generates charge in

proportion to the applied stress. A capacitor was therefore placed in series with

the function generator, so that the voltage signal was converted into a charge

signal. Considering that charge = capacitance × voltage, the capacitance was

scaled to create a charge level similar to the sensor.

• Magnetic field sensor: This sensor produces a voltage proportional to the applied

field. The function generator was used directly to represent this signal.

• Pick-up coil: This sensor produces a voltage proportional to −dB/dt, where B

is the magnetic flux density. This implies a phase shift of π/2 between the flux

density and voltage signals. This phase shift was not simulated. However, the
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fluxmeter is an integrator, and therefore introduced an additional π/2 phase

shift. Consequently, the total phase shift was implemented in post processing

by multiplying the flux density signal by -1. Here, a voltage divider circuit was

used to adjust the voltage level and match the resistance of the pick-up coil.

Additionally, an isolation amplifier was placed in-between the function generator

output and the voltage divider, because the fluxmeter requires a floating input

to operate correctly.

The phase delay of each channel was measured with respect to the magnetic field

sensor channel at multiple frequencies. During a test, the function generator signal

was simultaneously sent to the magnetic field sensor channel and the channel under

test. The output data was then acquired and saved.

Figure 3.30: Experimental setup for measuring the phase response of the conditioning
electronics for strain, load cell, load washer, and flux density signals.

Assuming that the electronics behave linearly, each channel in Fig. 3.30 can be

represented as a block diagram, where each piece of equipment is described by a
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transfer function Gi(s). To illustrate how the phase response of each measurement

channel was calculated, the magnetic flux density channel is considered (Fig. 3.31).

Figure 3.31: Block diagram of the magnetic flux density channel during phase re-
sponse measurement.

For harmonic generator signals, the measured signal in Fig. 3.31 is

B(jω) = KG4(jω)G3(jω)G2(jω)G1(jω)X(jω). (3.93)

By expressing each transfer function by its magnitude Mi(ω) and phase φi(ω), Eq.

(29) becomes

B(jω) = M(ω)exp [jφ(ω)]X(jω), (3.94)

where M(ω) and φ(ω) are the magnitude and phase response, respectively, of the

measurement channel in Fig. 3.31,

M(ω) = KM4(ω)M3(ω)M2(ω)M1(ω) (3.95)

and

φ(ω) = φ4(ω) + φ3(ω) + φ2(ω) + φ1(ω). (3.96)

From Eq. (3.96), it is clear that the phase response of each measurement channel is

simply a summation of the phase responses of the conditioning electronics. Further,

the phase response of the magnetic flux density channel relative to the magnetic
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field channel, φB/H(ω), can be calculated by subtracting the phase responses of the

isolation amplifier and magnetic field channel, i.e.,

φB/H(ω) = φB(ω) − φH(ω) = φ(ω) − φ1(ω) − φH(ω). (3.97)

By applying the time shift property of Laplace transforms to Eq. (3.94) followed by

an inverse Laplace transform, the measured signal can be written in the time domain

as

B(t) = M(ω)X

(
t+

φ(ω)

ω

)
u

(
t+

φ(ω)

ω

)
= M(ω)X (t− td)u (t− td) , (3.98)

where u(t) is the step function and td = −φ(ω)/ω is the time delay imposed by the

measurement system. If the flux density signal is phase referenced to the field signal,

the time delay becomes the time delay of the flux density channel relative to the time

delay of the field channel,

td → −φ
B/H(ω)

ω
= −φ

B(ω) − φH(ω)

ω
= tBd − tHd = t

B/H
d . (3.99)

Points on the phase response φB/H(ω) were measured by first generating a single

tone sinusoid and extracting the phase of the measurement and field signals at the

frequency of the sinusoid from discrete Fourier transforms (DFTs) of the two signals.

Then the phase response of the isolation amplifier (measured independently) and field

channel were subtracted according to Eq. (3.97). Finally, the relative time delay was

calculated as the slope of a linear, least-squares regression of φB/H(ω). The relative

phase response and time delay of the other channels were measured in an analogous

manner. This method assumes that the phase response of the A/D converter is equal

for all channels.

Fig. 3.32 presents the measured phase response of each measurement channel

(conditioner and corresponding low-pass filter) relative to the magnetic field channel,
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which only includes scaling of the magnetic field sensor’s signal and the common,

low-pass filtering. Table 3.5 summarizes the linear, least-squares regression of each

response. The dynamic force channel has a −π offset, because the charge amplifier

contains an inverting op-amp. The flux density channel has a −π/2 offset as dis-

cussed above. Unexpectedly, the relative time delay of the flux density channel is

negative. Although the fluxmeter’s manufacturer has not measured the fluxmeter’s

phase response, the instrument’s designers suggested that the observed behavior may

result from interactions between the inverting op-amp stage and other internal stages.

Nonetheless, the absolute phase of the fluxmeter and flux density channel are always

negative. For frequencies below about 100 Hz, the phase response of the charge am-

plifier becomes nonlinear due to discharge circuitry, which creates a high-pass filter

effect. Consequently, only higher frequencies were used for linear regression.

(a) (b)

Figure 3.32: Phase response of the strain, static force, dynamic force, and magnetic
flux density conditioning electronics (the phase offset in the dynamic force and flux
density channels was removed for visualization purposes); (a) full response and (b)
detail.

168



Table 3.5: Linear, least-squares regression of the phase responses of the conditioning
electronics – phase offsets and relative time delays.

Linear fit: y = −mx+ b Linear fit
correlation, R2b, phase offset (rad) m, relative time delay (s)

dynamic force -3.146 6.694 × 10−6 0.9993
flux density -1.571 −5.950 × 10−6 0.9990
static force −8.141 × 10−4 6.026 × 10−5 1.0000

strain −4.159 × 10−5 9.965 × 10−6 1.0000

Calculation of material properties

The constitutive behavior of magnetostrictive materials can be represented by the

piezomagnetic equations,

B = [µ]T H + [d∗]H T, (3.100)

S = [d]T H + [s]H T, (3.101)

where B, H, S, and T are the magnetic flux density, magnetic field, strain, and stress

vectors, respectively, [d]T and [d∗]H are piezomagnetic coefficient matrices, [s]H is the

compliance matrix, [µ]T is the magnetic permeability matrix, and the superscripts

H and T denote measurement at constant magnetic field and constant stress, re-

spectively. In this work, excitation was applied axially (typically denoted as the 3

direction) and outputs were measured along the axial direction. For these conditions,

Eqs. (3.100) and (3.101) become

B3 = µT
33H3 + d∗33

HT3, (3.102)

S3 = dT33H3 + sH33T3. (3.103)
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The quasi-static material properties are derived from the slope of B3 versus H3 and

S3 versus H3 curves measured at constant stress, as well as the slope of B3 versus

T3 and S3 versus T3 curves measured at constant field. To simplify the notation of

subsequent quantities, the 3 and 33 subscripts are dropped. To mitigate the noise

amplification from numerical differentiation, small sections of each curve were fit by

polynomials, which were analytically differentiated to calculate the slope at the center

of each section [154, 120, 47, 156]. Fourth order polynomials were used in this work.

A 75 % overlap of adjacent sections was used to ensure smooth material property

curves. The Young’s modulus EH was calculated as the inverse of sH [47]. Since

constitutive responses were also measured at constant current to the electromagnets,

the piezomagnetic coefficient and Young’s modulus were also calculated at constant

current: EI and d∗I , respectively.

Under dynamic mechanical excitation, the sensing properties are complex and fre-

quency dependent due to mechanically-induced magnetic diffusion (i.e., stress-induced

eddy currents), as detailed in Section 3.1. Therefore, a frequency domain method

adapted from [7] was used to calculate the dynamic material properties. First, the

measured strain and stress signals (S and T , respectively) were transformed to the

frequency domain (S̃ and T̃ , respectively) using DFTs. The complex, fundamental

component (denoted by (1)) of each transformed signal, S̃(1) and T̃ (1), was then

extracted. After, these fundamentals, which are linear, harmonic waveforms, were

represented as phasors that differed in only magnitude and phase. The dynamic,

complex elastic modulus was then calculated using a vector relationship,

Ẽ = T̃ (1)/S̃(1). (3.104)
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The elastic component E of the dynamic modulus and the loss factor ηE were deter-

mined using the phase angle by which the stress leads the strain δT/S,

E = Re
(
Ẽ
)

= Ẽcos
(
δT/S

)
(3.105)

and

ηE = Im
(
Ẽ
)
/Re

(
Ẽ
)

= tan
(
δT/S

)
. (3.106)

The phase angle δT/S is simply the phase difference between the stress phasor and

the strain phasor. Eqs. (3.104) to (3.106) are analogous to those presented in [7]

for the calculation of the elastic component and loss factor of the dynamic stiffness.

The calculation procedure is illustrated in Fig. 3.33. In an analogous manner, the

lossless component d∗ of the dynamic piezomagnetic coefficient d̃∗ and the associated

loss factor ηd∗ were determined using the phase angle by which the stress leads the

magnetic flux density δT/B,

d∗ = d̃∗cos
(
δT/B

)
(3.107)

and

ηd∗ = tan
(
δT/B

)
, (3.108)

where

d̃∗ = B̃(1)/T̃ (1). (3.109)

The use of this method is valid for the analysis of minor loop responses, because,

for the applied excitation, the minor loop responses were nearly linear and the sens-

ing properties were essentially constant at each forcing frequency. Loss factors are

computed as shown in Eqs. (3.106) and (3.108). However, for a linear response,

Eq. (3.106) is equivalent to the mechanical loss factor ηmech [150]

ηmech =
Wd,mech/2π

Wosc,mech

=

(
AL ·

∮
TdS

)
/2π

AL · 1
2
E|S̃1|2

, (3.110)
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where Wd,mech is the mechanical energy dissipated by the specimen per cycle, Wosc,mech

is the steady-state oscillation energy stored by the specimen. Wosc,mech is taken as

the stored mechanical energy at maximum deflection in a lossless, linear spring of

stiffness AE/L, where A and L are the cross-sectional area and length of the rod,

respectively [150].

Although this method neglects the harmonics of each signal, the areas of the

hysteresis loops formed by the fundamentals and by the raw signals are equal [7].

Thus, the hysteresis (energy density) loss per cycle in the B versus T and S versus

T responses – W̄B−T and W̄S−T , respectively – can be accurately calculated as

W̄B−T = πT̃ B̃sin
(
δT/B

)
(3.111)

and

W̄S−T = πT̃ S̃sin
(
δT/S

)
. (3.112)

Figure 3.33: Frequency domain method used to calculate the dynamic material prop-
erties at each forcing frequency (adapted from [7]).
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3.2.5 Dynamic sensing measurements

To verify the experimental setup with existing data and to evaluate the frequency-

independent performance, quasi-static actuation and sensing responses were first mea-

sured. These measurements are reported in [129] and Section 2.1.

For the dynamic minor loops, the bias conditions were those for which the quasi-

static magnetomechanical coupling of the solid rod was maximized (i.e., maximum

sensitivity and minimum elastic modulus): 0.30 A and -9.93 MPa for constant current

tests and 2.46 kA/m and -7.96 MPa for constant field tests (see Section 2.1 and [129]).

Dynamic major loops were measured for a mechanical bias of -31.9 MPa (roughly the

midpoint of the stress range) and the same magnetic biases as used for dynamic minor

loops. To determine the effect of forcing frequency on positive and negative saturation,

dynamic major loops were also measured for a 0.80 A bias. The stress amplitude for

major and minor loops was 2.88 and 31.4 MPa, respectively. Measurements are shown

for forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 1000 (or 975) Hz.

Appendix C.5 details the measurement procedure, whereas Table C.8 summarizes the

loading conditions for each group of tests. Throughout testing, temperature increases

above the 23 ◦C ambient were < 5 ◦C.

Solid Galfenol rod, constant current

The major loop sensing responses at constant current are shown in Figs. 3.34

and 3.35 for bias currents of 0.30 and 0.80 A, respectively. The performance of

the current control is shown by the current versus stress responses in Figs. 3.34(a)

and 3.35(a). Two performance metrics – the maximum and standard deviation of the

variation – were calculated at each forcing frequency and are presented in Figs. 3.34(b)
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and 3.35(b). For both bias currents, current variation increases nearly linearly with

frequency, but remains below 14 mA for all cases. The strain curves in Figs. 3.34(c)

and 3.35(c) are successively shifted along the strain axis starting with the 10 Hz

curve to more clearly visualize the behavior. At 4 Hz, there is an elbow in the strain

response where the magnetostriction saturates and the elastic modulus reaches its

stiff or saturated value. For stresses greater than the elbow stress, magnetostriction

occurs and the effective elastic modulus of the material is reduced. As frequency

increases, the elbow disappears and the region of softened behavior stiffens until

it coincides with the saturated, purely-elastic regime. Evident in the flux density

versus stress plots in Figs. 3.34(d) and 3.35(d), hysteresis increases and sensitivity to

stress decreases with frequency. These trends imply that at high frequency, magnetic

moment rotation is severely inhibited in the solid Galfenol rod. Although the stress

amplitude was not large enough to reach both positive and negative saturation in

the same test (i.e., to measure full hysteresis loops), these saturation states were

separately reached in Figs. 3.34 and 3.35. The results separately show that the

flux density magnitude at positive and negative saturation is frequency independent,

which suggests that the limits of full hysteresis loops (i.e., the saturation states) are

also frequency independent.

Minor loop responses are depicted in Fig. 3.36. The current variation and its

metrics are given in Figs. 3.36(a) and 3.36(b), respectively. Current variation is

very small at all frequencies. The mechanical and magnetic responses are shown

in Figs. 3.36(c) and 3.36(d), respectively. Due to the low amplitude excitation and

the bias condition, the response is nearly linear throughout the frequency range.

An increase in hysteresis with frequency is clear in the strain versus stress and flux
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density versus stress plots. Similar to the major loop responses, but to a much lesser

extent, the active behavior (i.e., flux density changes and a softened elastic modulus)

is suppressed as frequency increases. Material properties calculated from the minor

loops are shown along with those for the laminated rod in Fig. 3.41 in the Dynamic

sensing properties and energy loss subsection of this section.
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(a) (b)

(c) (d)

Figure 3.34: Major loop dynamic sensing response of the solid Galfenol rod for a
bias current of 0.30 A, bias stress of -31.9 MPa, stress amplitude of 31.4 MPa, and
forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 1000 Hz: (a) variation
in current about the current bias versus stress, (b) current variation metrics versus
forcing frequency, (c) strain versus stress (successively shifted by −125 × 10−6 for
visualization purposes), and (d) flux density versus stress; color changes from blue to
red as the frequency increases.
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(a) (b)

(c) (d)

Figure 3.35: Major loop dynamic sensing response of the solid Galfenol rod for a
bias current of 0.80 A, bias stress of -31.9 MPa, stress amplitude of 31.4 MPa, and
forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 1000 Hz: (a) variation
in current about the current bias versus stress, (b) current variation metrics versus
forcing frequency, (c) strain versus stress (successively shifted by −125 × 10−6 for
visualization purposes), and (d) flux density versus stress; color changes from blue to
red as the frequency increases.
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(a) (b)

(c) (d)

Figure 3.36: Minor loop dynamic sensing response of the solid Galfenol rod for a
bias current of 0.30 A, bias stress of -9.93 MPa, stress amplitude of 2.88 MPa, and
forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 1000 Hz: (a) variation
in current about the current bias versus stress, (b) current variation metrics versus
forcing frequency, (c) strain versus stress (successively shifted by −35 × 10−6 for
visualization purposes), and (d) flux density versus stress; color changes from blue to
red as the frequency increases.
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Solid Galfenol rod, constant field

Fig. 3.37 presents the dynamic, major loop sensing responses of the solid Galfenol

rod at constant magnetic field. The variation in field about the bias field and the field

control metrics are depicted in Figs. 3.37(a) and 3.37(b), respectively; the performance

of the field controller significantly degrades as frequency increases. For comparison,

the change in magnetic field during major loop constant current tests was about

2.4 kA/m at low frequency and 2.1 kA/m at high frequency. This suggests that the

magnetic field controller has a limited impact above 100 to 200 Hz. For this reason,

the dynamic sensing behavior of the laminated rod was only measured at constant

current. Figs. 3.37(c) and 3.37(d) present the strain and flux density responses.

Trends in these curves mirror those in the constant current responses.

Fig. 3.38 shows the dynamic, minor loop response at constant field. The effec-

tiveness of the magnetic field controller is shown in Figs. 3.38(a) and 3.38(b). The

absolute variation in the magnetic field is considerably lower than for dynamic, major

loop tests. However, the change in magnetic field during dynamic, minor loop con-

stant current tests was only about 0.9 kA/m, compared to a change of 2.1 kA/m for

major loops. Thus, the maximum variation in the controlled field is about 50 % of the

variation in the uncontrolled field. Since the minor loop response is nearly linear at

each forcing frequency, the analytical solution of the mechanically-induced magnetic

diffusion problem (Section 3.1.1) was used to estimate the effective (average) mag-

netic field inside the Galfenol rod at each forcing frequency. The results are depicted

in Section 9.1.2 of [129]. The effective magnetic field exhibits more variation than

observed in the surface magnetic field, particularly for frequencies below 400 Hz. The

variation in the Mechanical and magnetic responses are given in Figs. 3.38(c) and
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3.38(d). The slope of the flux density versus stress and strain versus stress responses

decreases with frequency faster than at constant current due the combined effects

of suppressed magnetic moment rotation and degraded constant field control. The

dynamic modulus and piezomagnetic coefficient of the solid rod at constant field is

depicted in Fig. 3.41.
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(a) (b)

(c) (d)

Figure 3.37: Major loop dynamic sensing response of the solid Galfenol rod for a bias
magnetic field of 2.46 kA/m, bias stress of -31.9 MPa, stress amplitude of 31.4 MPa,
and forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 1000 Hz: (a) variation
in field about the field bias versus stress, (b) field variation metrics versus forcing
frequency, (c) strain versus stress (successively shifted by −125×10−6 for visualization
purposes), and (d) flux density versus stress; color changes from blue to red as the
frequency increases.
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(a) (b)

(c) (d)

Figure 3.38: Minor loop dynamic sensing response of the solid Galfenol rod for a bias
magnetic field of 2.46 kA/m, bias stress of -7.96 MPa, stress amplitude of 2.88 MPa,
and forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 1000 Hz: (a) variation
in the surface field about the surface field bias versus stress, (b) surface field variation
metrics versus forcing frequency, (c) strain versus stress (successively shifted by -35
x10-6 for visualization purposes), and (d) flux density versus stress; color changes
from blue to red as the frequency increases.
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Laminated Galfenol rod, constant current

The dynamic sensing response of the laminated rod was only measured for con-

stant current, because the measurements of the solid rod in the preceding subsection

indicate that the magnetic field controller has a limited impact above 100 to 200 Hz.

Major and minor dynamic sensing responses of the laminated Galfenol rod are

shown in Figs. 3.39 and 3.40, respectively. The magnetic and mechanical bias condi-

tions were identical to the constant current testing of the solid rod. For visualization

purposes, strain versus stress responses (Figs. 3.39(c) and 3.40(c)) and flux density

versus stress responses (Figs. 3.39(d) and 3.40(d)) are successively shifted downward

starting with the 10 Hz response. The variation in the current about the current

bias is presented in Figs. 3.39(a) and 3.40(a), while the current control metrics are

depicted in Figs. 3.39(b) and 3.40(b). Although slightly worse than for the solid rod,

current control still performs well. Compared to the solid rod, hysteresis increases

much slower with frequency and the quasi-static behavior extends to higher frequen-

cies. These trends are consistent with an appreciable reduction in eddy currents.

Differences in the quasi-static behavior of the solid and laminated rods can account

for the remaining disparities in the dynamic responses; in particular, the change in

flux density is considerably less for the laminated rod and the active behavior occurs

over a different stress range.

At 400 Hz and above, the major loop strain versus stress responses exhibits re-

peatable, yet erratic oscillations within each forcing cycle. The magnitude of these

oscillations seems too large to be an artifact of imperfect current control or electro-

magnetic strain noise. This may be a result of imperfect load control. However, this

behavior is nearly absent from the flux density versus stress responses. The root
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cause is currently unknown and further investigation is needed. Dynamic material

properties were calculated from the minor loop responses and are shown in Fig. 3.41

along with the dynamic properties of the solid rod.

184



(a) (b)

(c) (d)

Figure 3.39: Major loop dynamic sensing response of the laminated Galfenol rod for
a bias current of 0.30 A, bias stress of -31.9 MPa, stress amplitude of 31.4 MPa, and
forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 975 Hz: (a) variation
in current about the current bias versus stress, (b) current variation metrics versus
forcing frequency, (c) strain versus stress, and (d) flux density versus stress (strain and
flux density responses are successively shifted by −125×10−6 and -0.25 T, respectively,
for visualization purposes); color changes from blue to red as the frequency increases.
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(a) (b)

(c) (d)

Figure 3.40: Minor loop dynamic sensing response of the laminated Galfenol rod for
a bias current of 0.30 A, bias stress of -9.93 MPa, stress amplitude of 2.88 MPa, and
forcing frequencies of 4, 10, 50, 100, 200, 400, 600, 800, and 1000 Hz: (a) variation
in current about the current bias versus stress, (b) current variation metrics versus
forcing frequency, (c) strain versus stress, and (d) flux density versus stress (strain and
flux density responses are successively shifted by −10×10−6 and -0.03 T, respectively,
for visualization purposes); color changes from blue to red as the frequency increases.
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Dynamic sensing properties and energy loss

The frequency dependence of the dynamic sensing properties of the solid and

laminated Galfenol rods is shown in Fig. 3.41, where the dashed line denotes the

expected trend in the regime where field control was inadequate and data is not

reported. At low frequency, there is a distinct difference between the sensing prop-

erties of the solid and laminated specimens. This was also observed in quasi-static

actuation and sensing measurements [129]. Thus, the difference can be attributed to

fundamental differences in the microstructure of the specimens. As shown in prior

work [120, 154], the response of a solid rod under constant field is significantly more

sensitive than that under constant current at low frequency. The solid rod exhibits

a strong dependence on forcing frequency over the 0 to 1 kHz range due to eddy

currents, which dampen domain wall motion, causing the piezomagnetic coefficient

to decay toward 0 and the Young’s modulus to monotonically approach its satu-

ration value (72.1 GPa). This strong frequency dependence was expected because

the theoretical mechanically-induced magnetic diffusion cut-off frequency [134] of the

solid rod at the constant field and constant current bias points is about 69 Hz and

81 Hz, respectively; these estimates were calculated using an approximate electrical

conductivity (σ = 2.15× 106 S/m) [160] and magnetic permeabilities estimated from

measurements (constant field: µ ≈ 370µ0, constant current: µ ≈ 310µ0) [129, 55].

From Fig. 3.41(a), the experimental cut-offs are about 44 Hz and 105 Hz for constant

field and constant current conditions, respectively. This behavior illustrates the need

for frequency-dependent measurements and the inaccuracy, even for linear operating

regimes, of dynamic properties [147] calculated via linear piezomagnetic models from

experimental responses to electrical excitation.
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Figure 3.41: (a) dynamic piezomagnetic coefficient and (b) dynamic Young’s modulus
of the solid and laminated Fe81.6Ga18.4 rods measured at constant current (Tbias =
−9.93 MPa, Ibias = 0.3 A) and constant field (Tbias = −7.96 MPa, Hbias = 2.46 kA/m),
(top) lossless component and (bottom) loss factor; dashed line denotes the expected
trend (not measured data); dotted line denotes the linear fit: ηE = 0.6262 × 10−3f +
0.0398.

The dynamic sensing properties of the laminated rod display a weak dependence

on frequency up to 1 kHz. In particular, the experimental cut-off is about 1 kHz and

the theoretical cut-off is about 7 kHz when an effective conductivity (σ/ (8 + 1)2) is

used to approximate the laminated rod as a solid rod [59]. It is emphasized that

EI of the laminated rod decreases appreciably between 100 and 300 Hz. Over this

frequency range, d∗33
I is nearly constant, which suggests that the magnetomechanical
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behavior is not the cause. It is hypothesized that a softening of the adhesive occurs

over this frequency range.

Energy dissipation in the Galfenol rods was also investigated from the minor

hysteresis loops measured under constant current. The energy dissipated per cycle

is highly dependent on stress amplitude; thus, it is useful to consider a normalized

energy loss, such as the mechanical loss factor, which is equal to ηE in Fig. 3.41(b) as

mentioned above. The dotted line in Fig. 3.41(b) denotes a linear fit of the measured

ηE of the solid rod. Below the cut-off frequency, the solid rod exhibits a nearly linear

increase in loss factor with frequency, suggesting that excess eddy current losses are

low and there is a high density of magnetic domain walls [25]. This is supported

by magnetic domain observations in single crystals of similar Galfenol alloys [110],

which show that magnetic domains are about 100 µm wide (about 102 times smaller

than the specimen’s diameter). As frequency increases above the cut-off, domain

wall motion is significantly suppressed and the loss factor of the solid rod levels off.

At high frequency, the loss factor slowly increases due to conventional viscoelastic

damping. The loss factor of the laminated rod displays a moderately flat response

up to 800 Hz, after which it increases nearly linearly as a result of the finite laminate

thickness (i.e., eddy currents) and viscoelastic damping.

To further investigate the magnetomechanical energy loss under constant cur-

rent, Fig. 3.42 presents the frequency dependence of the energy density components

during steady-state oscillation: (1) supplied mechanical,
∮
TdS, (2) dissipated mag-

netic (based on the surface field),
∮
HdB, (3) dissipated magnetic (based on an

approximate average internal field),
∮
HavgdB, and (4) supplied minus dissipated,
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Figure 3.42: Supplied mechanical (◦), dissipated magnetic (�), dissipated magnetic
(with correction) (♦), and supplied minus dissipated (corrected) (×) energy densities
per cycle associated with the minor hysteresis loops of the (a) solid and (b) laminated
Fe81.6Ga18.4 rods under constant current.

∮
TdS −

∮
HavgdB. The energy densities per cycle were calculated from the funda-

mental component of each signal as explained in ASTM D5992 [7]. Havg is calcu-

lated from the measured T and H using the aforementioned magnetic permeabilities

and conductivities as discussed by Scheidler and Dapino [134]. As expected for a

mechanical-to-magnetic energy conversion,
∮
TdS > 0 (mechanical energy is sup-

plied) and
∮
HdB < 0 (magnetic energy is dissipated) [158]. As frequency increases

in the solid rod, Havg quickly deviates from H due to magnetic diffusion; consequently,∮
HdB under-predicts the true magnetic energy loss, even at low frequencies. Con-

versely, in the laminated rod, the dissipated magnetic energy can be accurately cal-

culated using a surface field measurement, because Havg ≈ H below 1 kHz. Although

they should be equal if no other loss mechanisms exist, the mechanical energy sup-

plied to the rods per cycle is considerably larger than the magnetic energy dissipated

in them. This can be accounted for only in part by dissipation to the amplifier,
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which was approximately < 10 % of the supplied mechanical energy, and viscoelastic

damping, which is expected to be small like in other metallic materials. Similar re-

sults were found by Yoo et al. [158] for quasi-static loading, but the primary cause is

currently unknown. Separation of the energy loss can be more carefully investigated

using a revised experimental setup that establishes the magnetic bias condition using

permanent magnets rather than an electromagnet.

3.2.6 Concluding remarks

This section presented a precise and complete dynamic characterization of the

most widely used Galfenol alloy, Fe81.6Ga18.4. The objective was to measure the 1D,

dynamic sensing response of the material and to quantify from the response, the fre-

quency dependence of the material properties for 1D sensing. This was accomplished

by controlling the axial, dynamic stress and static magnetic field over a specific region

of a Galfenol rod, and measuring the axial strain and magnetic flux density. Auxiliary

variables – drive voltage, drive current, and temperature – were also measured for ref-

erence. At each forcing frequency, sensing-based material properties were calculated

using a frequency domain method adapted from an ASTM standard.

Design of the experiment was separated into six sections: (a) specimen design, (b)

sensor selection and uncertainty analysis, (c) calibration methods, (d) experimental

setup and methods, (e) data processing methods, and (f) procedure. The specimens

were designed by considering recommendations from ASTM standards, the magnetic

circuit constraints, and guidelines to avoid buckling. Solid and laminated cylindrical

rod specimens of nominal dimension 7.62 x 0.627 cm (L x D) were used. Mechanical,

magnetic, and thermal sensors were selected based on a trade study of the available
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technologies. For each sensor, calibration methods were developed and explained. In

addition, the uncertainty for each measurement was calculated at the system level

using error propagation equations. In most cases, the estimated uncertainty met

ASTM standards. However, the magnetic flux density signal is expected to have

0.4 % to 0.9 % more error than the recommended ±1 %.

The experimental setup and methods were explained in detail using photographs

and schematic drawings. The system was refined to minimize the three key sources of

error: (a) electromagnetic noise in strain signals due to Galfenol’s magnetic response,

(b) error in load signals due to the inertial force of fixturing, and (c) phase misalign-

ment between signals due to conditioning electronics. For dynamic characterization,

strain error was kept below 1.2 % of full scale by wiring two collocated gauges in se-

ries (noise cancellation) and through leadwire weaving. Inertial force error was kept

below 0.41 % by measuring the dynamic force in the specimen using a nearly collo-

cated piezoelectric load washer. The phase response of all conditioning electronics

was explicitly measured and corrected for in post processing. Control of the magnetic

field was briefly discussed; PI control was used for constant field testing.

The sensing response of the solid and laminated rods was measured for dynamic

stresses up to 31 MPa and 1 kHz. For the solid rod, both constant current and

constant field biases were investigated. Current control performed well, but the per-

formance of the field controller significantly degraded above 100 to 200 Hz. In general,

as frequency is increased, the sensing response becomes more linear due to an increase

in eddy currents, which tend to suppress the active behavior of the material. As fre-

quency increases above about 100 Hz, the elbow in the strain versus stress response
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disappears and the region of softened behavior stiffens until it coincides with the sat-

urated, purely-elastic regime. These trends imply that at high frequency, magnetic

moment rotation is severely inhibited in the solid Galfenol rod. Compared to the solid

rod, the laminated rod exhibits much slower increases in hysteresis with frequency,

and its quasi-static behavior extends to higher frequencies. Both trends suggest an

appreciable reduction in eddy currents.

The frequency dependence of the dynamic sensing properties of solid and lami-

nated Galfenol (Fe81.6Ga18.4) rods was explicitly measured under constant current and

constant field for 2.88 MPa compressive stresses up to 1 kHz at the bias states for

which the quasi-static magnetomechanical coupling of the solid rod was maximized:

-9.93 MPa, 0.3 A and -7.96 MPa, 2.46 kA/m, respectively. Due to mechanically-

induced magnetic diffusion cut-off frequencies of only about 44 Hz (constant field)

and 105 Hz (constant current), the dynamic sensing properties of the solid rod at the

given bias points vary significantly with frequency, monotonically decaying toward

their saturated (passive) values. This result illustrates the inaccuracy of frequency-

independent dynamic properties calculated via linear piezomagnetic models from ex-

perimental responses to electrical excitation. It also motivates the use of complex,

frequency-dependent properties for modeling and design. Conversely, the sensing

properties of the laminated rod exhibit a weak dependence on frequency over the

measurement range (i.e., a cut-off of about 1 kHz). The loss factor of the solid rod

under constant current initially increases almost linearly (suggesting that excess eddy

current losses are low) from a quasi-static value of about 0.040, then, at a value of

0.120, becomes nearly frequency independent from about 300 to 900 Hz. The lami-

nated rod displays a loss factor of about 0.015 up to 800 Hz, after which it increases
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nearly linearly due to eddy currents and viscous loss. The frequency dependence of

magnetic and mechanical energy densities were also presented and discussed in terms

of magnetic diffusion and thermodynamic considerations.

This novel dynamic characterization provides a detailed set of data that allows

for the validation of recently-developed Galfenol constitutive models that incorporate

rate-dependent effects. The presented frequency-dependent material properties also

permit accurate modeling of Galfenol-based systems that experience time-varying

forces.
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Chapter 4: Dynamic Stiffness Change

In this chapter, the dynamic changes in the elastic modulus of magnetostrictive

materials that result from real-time magnetic field changes are studied in two stages.

First, a magnetostrictive transducer that can electrically tune its stiffness at high

speeds is modeled, designed, and tested. Second, high-speed switching of the trans-

ducer’s stiffness is applied in a computational study of switched stiffness vibration

control of a simple mechanical system.

4.1 Magnetostrictive Variable-Stiffness Spring

In this section, a magnetostrictive transducer is designed to operate as a spring

element that has a dynamically-tunable and electrically-controllable stiffness. This

device is referred to as a magnetostrictive Varispring. The Varispring is designed by

modeling (a) the electromechanical response of the device, (b) mechanically-induced

magnetic diffusion, and (c) the effect of internal mass on the dynamic stiffness of the

active element. First, experimental and practical design considerations are discussed.

Then, the theoretical performance of Galfenol- and Terfenol-D-based Varisprings are

calculated and compared, after which the Varispring’s design is introduced. Dynamic

tuning of a prototype Varispring’s elastic response is then measured, including the

first measurement of the dynamic ∆E effect.
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4.1.1 Modeling and design

Experimental and practical considerations

Future performance testing of the magnetostrictive Varispring will involve using

the device in an experiment to simulate the variable stiffness of certain machine

components. To facilitate this future experiment, the following design constraints

were imposed on the prototype Varispring: (a) an axial stiffness of about 500 N/µm

(2.86 × 106 lbf/in), (b) a maximum applied dynamic force of 1000 N (224.8 lbf), and

(c) a maximum diameter and height of 50 mm (1.97 in) and 105 mm (4.13 in), re-

spectively. For precise stiffness tuning, it is desirable to operate the magnetostrictive

material under small amplitude dynamic stresses, such that the material’s response

is approximately linear for a fixed magnetic input. Also, since the performance of

Terfenol-D is slightly degraded above room temperature [95], air cooling of the mag-

netostrictive rod is beneficial; this necessitates an air gap between the electromagnet

and magnetostrictive rod. Consequently, the length of the magnetostrictive rod was

used as an independent design variable, while the rod’s diameter and the electromag-

net’s maximum dimensions were defined by the aforementioned criteria.

As detailed in the Inertial force error reduction subsection of Section 3.2.3,

the vibration of any mass located in-between the specimen (i.e., the magnetostrictive

rod) and force transducer introduces errors in the measurement of the dynamic force

in the specimen; this inertial force error is reduced by minimizing the mass in-between

the specimen and force transducer. To meet the ASTM-recommended inertial force

error tolerance of 0.5 % [15], the dynamic, axial force applied to the specimen was

measured by a piezoelectric load washer that was located inside the Varispring and

nearly adjacent to the specimen.
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To increase the changes in stiffness and operate in quasi-linear regimes, a me-

chanical preload was applied to the magnetostrictive rod. Typically, the preload is

applied by a softening Belleville spring operated near its maximum deflection to pre-

vent excessive preload variation during loading of the device [95]. Thus, the stiffness

of the Varispring’s central load path relative to that of its magnetic flux return path

was considered to ensure that the Belleville spring compresses during assembly of the

device.

Electrical response

The electromechanical response of a magnetostrictive transducer operated suffi-

ciently below its first mechanical resonance frequency can be modeled as

F (s) = kHs−1∆v(s) −GI(s), (4.1)

V (s) = G∆v(s) +
(
LSs+Rcoil

)
I(s), (4.2)

where s is the Laplace parameter, F represents the force in the magnetostrictive rod

(tension positive), ∆v denotes the relative velocity of the ends of the rod, I and V

are the current in and voltage applied to the electromagnet, respectively, and Rcoil

is the electromagnet’s resistance [84, 58]. To incorporate constitutive nonlinearities,

the magnetic field H and stress T dependence of the rod’s axial stiffness at constant

magnetic field kH , inductance at constant strain LS, and electromechanical coupling

coefficient G are retained,

kH(H,T ) = EH(H,T )Arodl
−1
rod, (4.3)

LS(H,T ) = N2Acoil

(
µT (H,T ) − d(H,T )2EH(H,T )

)
l−1
coil, (4.4)

G(H,T ) = d(H,T )EH(H,T )NArodl
−1
coil. (4.5)
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In Eqs. (4.3)–(4.5), µT , d, EH , lrod, and Arod denote the magnetic permeability at

constant stress, piezomagnetic coefficient, Young’s modulus at constant field, length,

and cross-sectional area of the magnetostrictive rod, respectively, and N , lcoil, and

Acoil are the number of windings in, axial length of, and cross-sectional area en-

closed by the electromagnet, respectively. The stress- and field-dependent material

properties were calculated using 1D, anhysteretic formulations of the DEA models of

Galfenol and Terfenol-D discussed in the Discrete energy-averaged constitutive

models subsection of Section 1.2.2. The models were optimized to existing measure-

ments [96, 55]. To improve computational efficiency, these models were implemented

as interpolation functions with very fine input grids.

If the magnetic flux leakage and the magnetic reluctance of the Varispring’s flux

return path are assumed negligible, the magnetic field in the magnetostrictive rod is

H(s) = NI(s)/lcoil. (4.6)

For a mechanical load of mass m, Eqs. (4.1) and (4.2) can be combined with Eq. (4.6)

to quantify the field generated in the magnetostrictive rod by an applied voltage,

H(s) =
N

lcoil

ms2 +KH

LSms3 +Rcoilms2 + (G2 + LSKH) s+RcoilKH
V (s), (4.7)

where the dependence of KH , LS, and G on H and T was dropped from the notation

for compactness. This model does not incorporate eddy current effects and is thus

more accurate for magnetostrictive rods operating below their magnetic diffusion cut-

off frequency.

To maintain compressive loading of the magnetostrictive rod during dynamic op-

eration, the Varispring is operated at a moderate compressive mechanical bias for

which the rod’s zero-field Young’s modulus is nearly saturated (i.e., the stiff state).
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From this bias, the Varispring’s stiffness is decreased by increasing the field from

zero to a tuning field Hsoft. To approximate the Varispring’s response time to a step

change in the command stiffness, the rise time to reach Hsoft from zero in response

to a voltage step was calculated as a function of the magnetostrictive rod’s length for

m = 2 kg and lcoil = lrod. Rise times were calculated using the minimum number of

windings Nmin needed to generate the tuning field with 95 % of the maximum current

Imax for a given wire gauge, i.e., Nmin = Hsoftlcoil/ (0.95Imax). In this way, the effective

electrical inductance was minimized for each design case.

The rise times for Galfenol- and Terfenol-D-based Varisprings are depicted in

Fig. 4.1. Three cases are considered: (a) Galfenol, maximum Young’s modulus

change (∆Emax ≈ 30 GPa, Hsoft, max = 11 kA/m) [129, 55], (b) Terfenol-D, near

maximum Young’s modulus change (∆Emax ≈ 90 GPa, Hsoft, max = 80 kA/m) [96],

and (c) Terfenol-D, equivalent Young’s modulus change (∆E ≈ 30 GPa, Hsoft =

35 kA/m) [96]. The bias stress Tbias for all three cases is -42 MPa.

In general, the rise time decreases with the magnetostrictive rod’s length, because

Arod decreases with its length to maintain a given nominal stiffness, which reduces

Acoil and thus the blocked inductance. The rise time also decreases with the wire

gauge, because electromagnets wound using larger wire diameters can generate Hsoft

with fewer windings due to their larger Imax. This reduces the coil’s inductance, but

at the expense of higher electrical power demands [128]. Maximal stiffness tuning

of a Terfenol-D-based Varispring is appreciably slower than that of a Galfenol-based

Varispring despite Galfenol’s significantly higher magnetic permeability (and thus

blocked inductance) due to the larger tuning field that must be generated. However,

for the same change in elastic modulus, Terfenol-D provides a slightly faster response.
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Figure 4.1: Rise time to reach Hsoft from H = 0 in response to a 250 V step voltage
input to electromagnets wound with 32, 26, and 22 AWG wire; Galfenol, ∆Emax ≈
30 GPa (solid), Terfenol-D, ∆Emax ≈ 90 GPa (dashed), and Terfenol-D, ∆E ≈
30 GPa (dotted).

Effect of dynamic stress on bias magnetic fields

As detailed in Section 3.1.1, when magnetostrictive rods are subjected to con-

stant surface magnetic fields and dynamic axial stresses, internal eddy currents are

generated, which, if the forcing frequency exceeds a diffusion cut-off frequency ωc,

significantly suppress the material’s active response. The analytical cut-off frequency

for linear constitutive regimes is given by Eq. (3.40). Since the Varispring is designed

to operate under small amplitude dynamic stresses to maximize the stiffness variation

between two bias field states, the linearity assumption is valid for dynamic loading

about each bias field.

Fig. 4.2 depicts the diffusion cut-off frequency of 6.3 mm diameter Galfenol and

Terfenol-D rods operating about a moderate compressive bias stress (about -25 to -

50 MPa) and the worst case bias field (that which maximizes µ and nearly minimizes
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E). The magnetic permeability of each rod was analytically calculated using the DEA

models.

Rod Length, cm
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Figure 4.2: Mechanically-induced magnetic diffusion cut-off frequency of 6.3 mm
diameter solid Terfenol-D, solid Galfenol, and laminated (with n laminates) Galfenol
rods operating about a moderate compressive bias stress and the worst case bias field;
Terfenol-D: σ = 1.72 S/µm [85], µT/µ0 = 9.4; Galfenol: σ = 2.15 S/µm [160, 131],
µT/µ0 = 240.

In general, the cut-off frequencies decrease with increases in the rod’s length,

because the rod’s diameter must increase accordingly to maintain a given stiffness.

The cut-off frequency of the Terfenol-D rod is nearly two orders of magnitude greater

than that of the Galfenol rod. Thus, the cut-off frequency of laminated Galfenol rods

were also calculated by approximating a laminated rod as a solid rod with an effective

magnetic permeability,

σeff = σ/ (n+ 1)2 , (4.8)

where n is the number of laminates [59]. For the properties considered, the Galfenol

rod must be laminated with 7 or more laminates for its cut-off frequency to exceed

that of the solid Terfenol-D rod.
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Effect of internal mass on dynamic stiffness

It is well known that the mass of a structure influences its dynamic stiffness and

that this effect increases with frequency. The objective of the experimental testing of

the Varispring was to measure the changes in the device’s stiffness caused by changes

in the elastic component of the magnetostrictive rod’s stiffness. Changes in stiffness

due to mass effects would have corrupted the experimental results. Consequently, the

rod was designed to minimize these effects.

Below the first mechanical resonance, the effect of internal mass m = ρArodlrod on

the dynamic stiffness D of the magnetostrictive rod can be approximated using the

lumped parameter model shown in Fig. 4.3(a), where ρ is the density. For this model,

the driving-point stiffnesses D11, D22 and cross-point stiffnesses D12, D21 are

D11(ω) = D22(ω) =
2K (2K −mω2)

4K −mω2
, D12(ω) = D21(ω) =

−4K2

4K −mω2
, (4.9)

where ω is the forcing frequency. Fig. 4.3(b) depicts the absolute value of the percent

change in the driving-point and cross-point stiffnesses of the Galfenol and Terfenol-D

rods for worst case conditions (i.e., the maximum frequency, 1000 Hz, and minimum

expected Young’s modulus of Galfenol, 33 GPa, and Terfenol-D, 18 GPa) using the

density of Galfenol and Terfenol-D, 7870 kg/m3 and 9250 kg/m3, respectively. The

effect of mass on the dynamic stiffness of the Terfenol-D rod is nearly double that

of the Galfenol rod; however, the effect is small in both rods for the parameters

considered.

Varispring design

A prototype Varispring utilizing Terfenol-D was manufactured, because the use of

Terfenol-D provides a significantly higher diffusion cut-off frequency and quasi-static
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Figure 4.3: Effect of internal mass on the dynamic stiffness of the magnetostrictive
rod, (a) lumped parameter model of the rod and (b) absolute value of the percent
change in the driving-point and cross-point dynamic stiffnesses from their static values
for worst case conditions (EH = EH

min and ω = 2π1000 rad/s), driving-point and
cross-point stiffnesses overlap.

Young’s modulus variation [96, 129] for rise times comparable to those of Galfenol-

based Varisprings. The Terfenol-D (Tb0.3Dy0.7Fe1.92) rod was purchased from Etrema

Products, Inc. and laminated with 0.762 mm (0.030 in) laminations and adhesive

layers of about 0.048 mm (0.0019 in) to further improve its dynamic performance.

The elastic modulus of the adhesive is 862 MPa. A length of 2.401 cm (0.9453 in)

was selected to balance the improved performance of shorter rods with the need to

attach sensors. A diameter of 1.271 cm (0.5005 in) provided the desired maximum

axial stiffness of the rod. For the chosen geometry of the Terfenol-D rod, the effect

of its internal mass on its dynamic stiffness is negligible.

The inertial force error was kept below the ASTM-recommended tolerance of

0.5 % [15] by measuring this dynamic force using a piezoelectric load washer nearly

co-located with the rod. During experimental testing of the Varispring, the mechan-

ical preload was applied by a load frame. When the device is used in a vibration
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control application, the preload can be generated by a softening Belleville spring

operated near its maximum deflection to minimize variations in the preload during

operation [95].

(a) (b)

Figure 4.4: (a) CAD model of the prototype Varispring and (b) manufactured
Varispring (air hose fittings removed) with capacitive displacement probe holder fix-
ture attached (left) and Terfenol-D rod with sensors installed (right); passive struc-
tural components are 1018 steel, except for the Belleville spring (high carbon steel),
bushing (Rulon J), air hose fittings (brass), and bottom cover (Al 7075).

Fig. 4.4(a) depicts a CAD model of the prototype Varispring. The central load

path – from the input through the Terfenol-D rod and along the device’s cylindrical

axis to the output – acts as an elastic member (i.e., a spring) with a variable stiffness.

In this work, stiffness was modulated via controlled changes in the electromagnet’s

current, which almost proportionally altered the axial magnetic field applied to the

Terfenol-D. The magnetic flux return path was designed using magnetostatic finite

element simulations to ensure that Terfenol-D’s magnetic state is nearly uniform

when magnetic diffusion and internal mechanical dynamics are negligible. A sleeve

bushing isolates the flux return path from forces applied to the central load path. The
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dynamic, axial force was measured using a Kistler 9001A piezoelectric load washer.

Using Eq. (3.88), the inertial force error at 1000 Hz for this design is about 0.2 %.

The electromagnet was wound using 519 turns of 22 AWG wire and was held together

by Duralco 4525 epoxy having a thermal conductivity of 1.875 W/ (m ◦K). During

testing, the Varispring was aligned to the load frame using the blind holes on its ends.

The manufactured prototype and instrumented Terfenol-D rod are depicted in

Fig. 4.4(b). The total displacement of the Varispring, i.e., the relative displacement

between the bottom of the Varispring and a cylindrical target (shown in Fig. 4.5) that

mounted to the top of the device, was measured using MicroSense 8810 capacitive

displacement probes. These probes were held by aluminum fixtures that have a

first natural frequency of 1492 Hz (calculated in COMSOL Multiphysics), which is

sufficiently above the 1000 Hz limit considered herein.

4.1.2 Experimental setup

Mechanical testing of the prototype Varispring was conducted using an MTS

831.50 high frequency load frame. The axial strain at the surface of the Terfenol-D

rod was measured using a pair of Vishay Micro-Measurements EA-06-250BF-350/L

strain gauges, which were bonded on opposite sides of the rod and wired in series to

cancel bending strains and the electromagnetic noise induced in the gauges due to

the time-varying magnetic flux density in the rod, as discussed in the Strain gauge

noise reduction subsection of Section 3.2.3. A Lake Shore Model 480 fluxmeter and

custom pick-up coil were utilized to measure the magnetic flux density in the rod.

An Allegro A1302ELH Hall chip was used to measure the axial magnetic field at the

surface of the Terfenol-D rod. The rod’s temperature was monitored with a Type K
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thermocouple to ensure that temperature increases above the 25 ◦C ambient were

< 3 ◦C.

The electromagnet was excited by a Techron LVC 5050 linear amplifier operated

in current control mode. The amplifier’s voltage monitor measured the supply volt-

age. However, the supply current was calculated from the voltage drop across a

0.1 ± 0.001 Ohm, 15 W Leeds & Northrup Co. resistor connected in series with the

Varispring, because the current monitor exhibited an erroneous offset that changed

throughout the experiment. The sensors were calibrated as explained in Section C.2,

except for the pick-up coil, which was calibrated by measuring the static magnetic

field generated in air between the poles of a large electromagnet using the pick-up

coil and calibrated Hall sensor. The calibration factor of the pick-up coil (NA) was

then scaled to correct for the presence of glue layers in the laminated Terfenol-D rod,

(NA)cor = (NA)Asolid/Alam, (4.10)

where Alam and Asolid respectively are the cross-sectional areas of Terfenol-D in the

laminated rod and a solid rod of the same diameter. Measurement signals were phase

aligned in post processing by correcting for the phase response of the conditioning

electronics, as detailed in the Phase calibration subsection of Section 3.2.4.

The experimental setup is shown in Fig. 4.5. When dynamic forces were directly

applied to the displacement probe target by the steel platen, the load frame’s force

control performed poorly due to the Varispring’s large, high-speed stiffness changes

(a disturbance to the force control system). Consequently, during dynamic stiffness

tuning experiments, a soft compression spring was inserted between the platen and

target to act as a mechanical low-pass filter and attenuate the disturbance; the im-

proved force control, depicted in Fig. 4.6, performed very well up to 1 kHz. However,
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Figure 4.5: Experimental setup (the compression spring used to improve the force
control during dynamic stiffness tuning tests is not shown).

due to the large motion of the steel platen that resulted, the displacement probes

were removed from the experimental setup during dynamic stiffness tuning tests to

prevent the possibility of damaging the probes. Thus, the Varispring’s stiffness could

not be calculated; instead, the strain response and Young’s modulus of the Terfenol-D

rod are used to study the Varispring’s time-varying elastic state.
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Figure 4.6: Force control performance during dynamic stiffness tuning tests when
using the soft compression spring; 5.80 MPa amplitude, 25 Hz sinusoidal forcing and
1.5 A amplitude sinusoidal current at different frequencies.
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4.1.3 Dynamic tuning

First, the quasi-static sensing response of the Terfenol-D rod was measured under

constant current over the stress range of interest. The Young’s modulus of the rod,

shown in Fig. 4.7, was calculated by differentiating 4th order polynomials that were

fit to 0.75 MPa wide sections of each half of the hysteretic responses. When the

maximum current, and thus magnetic field, is limited (e.g., to prevent excessive rise

times), the ∆E effect improves as the compressive bias is increased. At the bias stress

for which the Varispring was designed (-25 MPa), the maximum change in the minor

loop Young’s modulus (51 GPa) occurred when the current was increased from 0 A

to 3.08 A. However, to prevent full compression of the required isolation spring, the

bias was constrained to > −6 MPa. This reduced the achievable Young’s modulus

variation during dynamic tuning experiments, because the current was limited.
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Figure 4.7: Quasi-static Young’s modulus of the laminated Terfenol-D rod at constant
currents of 0, 0.909, 1.72, 2.59, 3.52, and 4.82 A (±0.2 mA); bias current increases
from blue to red (direction shown by the arrow); stress increasing (solid), stress
decreasing (dashed).
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Dynamic tuning of the Varispring’s elastic state was conducted in two stages.

First, the stiffness was continuously varied by applying a 1 to 1000 Hz sinusoidal

current having a nominal amplitude of 1.50 A and bias of 1.56 A. Second, high-speed

switching of the stiffness was realized via a 1 to 500 Hz square wave current having

a bias of 1.56 A. To prevent instability of the amplifier’s current control system, the

nominal amplitude of the square wave current was reduced to 0.50 A. In each case,

the Varispring was excited with a 2.00 to 5.80 MPa amplitude, 25 Hz sinusoidal stress.

The strain response of the Terfenol-D rod to 100 Hz and 500 Hz sinusoidal currents

is depicted in Fig. 4.8. Since the current actuates the rod while varying its elastic

state, the strain response has harmonic content at 25 Hz and the frequency of the

current. The blue and red annotations respectively indicate the approximate Young’s

modulus at the maximum and minimum current (EImax and EImin), which, at the

intended operating bias, would correspond to the low and high modulus, respectively.

However, Fig. 4.7 illustrates that at a -5.90 MPa bias, the minimum modulus occurs

for a small, but nonzero current. Consequently, ∆ = EImax − EImin increases when

the current amplitude is slightly reduced; this is shown in Table 4.1, which gives the

current amplitude and approximate moduli for each testing condition. The amplifier

did not maintain a consistent current amplitude, despite using the same current

control voltage for each case; with this caveat, the Terfenol-D rod is stiffer for a

smaller stress amplitude, as also observed by Kellogg and Flatau [96]. The rod’s

modulus tunability is roughly maintained through 500 Hz, but is degraded at 1 kHz.

Magnetic diffusion in the flux return path may contribute to this reduction, although

this was not investigated.
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Figure 4.8: Strain response of the Terfenol-D rod inside the prototype Varispring to
a (a) 100 Hz and (b) 500 Hz sinusoidal current and a 25 Hz, 2.00 MPa amplitude
stress with -5.90 MPa bias.

The current control performance during testing of the dynamic ∆E effect (i.e.,

square wave elastic modulus tuning) is depicted in Fig. 4.9. Even though the ampli-

fier’s current control system was tuned according to the manufacturer’s suggestions,

a significant amount of overshoot is observed. The settling time of this overshoot

is about 2 ms; thus, a 500 Hz square wave current could not be produced and the

500 Hz strain response is not shown.

The strain response of the Terfenol-D rod to 1 Hz and 100 Hz square wave cur-

rents is illustrated in Fig. 4.10. As seen in the inset of Fig. 4.10(b), the strain

response exhibits an overshoot that mirrors the current overshoot. This implies that

the Varispring’s rise time is < 1 ms, as predicted by the nonlinear electromechanical

model in the Electrical response subsection of Section 4.1.1. The approximate

Young’s moduli of the rod at the high and low current states are tabulated in Ta-

ble 4.2 for each testing condition. The dynamic ∆E effect is fairly consistent from
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Table 4.1: Approximate Young’s moduli (in units of GPa) of the Terfenol-D rod inside
the prototype Varispring at the maximum and minimum current for a bias stress of
-5.90 MPa and different sinusoidal current frequencies and stress amplitudes.

Frequency,
Hz

2.00 MPa 5.80 MPa

|I|, A EImin EImax ∆ |I|, A EImin EImax ∆

1 1.50 25.5 42.1 16.6 1.29 17.8 37.8 20.0
100 1.50 15.0 34.5 19.5 1.57 14.4 28.8 14.4
500 1.21 13.9 35.8 21.9 1.28 15.3 29.8 14.5
1000 1.07 22.0 26.8 4.80 1.07 19.9 22.8 2.90
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Figure 4.9: Current control performance during testing of the dynamic ∆E effect;
25 Hz, 4.00 MPa amplitude sinusoidal forcing and current frequencies of 50 Hz (dash-
dot), 100 Hz (dashed), and 500 Hz (solid).

1 Hz through 100 Hz and for the two stress amplitudes. An increase in the ∆E effect

with a decrease in the stress amplitude would be expected if the rod’s magnetome-

chanical behavior was nearly saturated at one of the two current states [96].
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Figure 4.10: Strain response of the Terfenol-D rod inside the prototype Varispring to
a (a) 1 Hz and (b) 100 Hz square wave current and a 25 Hz, 4.00 MPa amplitude
stress with -5.90 MPa bias.

4.1.4 Concluding remarks

In this section, an electrically-controllable magnetostrictive spring capable of dy-

namically tuning its stiffness (i.e., a magnetostrictive Varispring) was designed, man-

ufactured, and tested. This Varispring has broad application to vibration control and

enables in situ stiffness tuning and stiffness switching. The design was based on (a)

a nonlinear electromechanical transducer model, (b) an analytical solution of linear,

mechanically-induced magnetic diffusion, and (c) the effect of internal mass on the

magnetostrictive material’s dynamic stiffness. Terfenol-D has a much larger potential

for Young’s modulus tuning than Galfenol. The modeling results show that for an

equal modulus change, Terfenol-D provides a slightly faster rise time to control in-

puts. A laminated Terfenol-D rod was selected as the active material for this reason

and for its significantly higher magnetic diffusion cut-off frequency. To decrease the
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Table 4.2: Approximate Young’s moduli (in units of GPa) of the Terfenol-D rod
inside the prototype Varispring at the high and low current states for a bias stress of
-5.90 MPa and different square wave current frequencies and stress amplitudes.

Frequency,
Hz

2.00 MPa 4.00 MPa

|I|, A EImin EImax ∆ |I|, A EImin EImax ∆

1 0.55 22.9 32.8 9.90 0.55 19.1 30.4 11.3
10 0.57 22.3 31.2 8.90 0.51 19.3 30.0 10.7
50 0.50 21.4 30.2 8.80 0.49 17.0 29.3 12.3
100 0.49 16.8 29.1 12.3 0.49 16.4 26.3 9.90

rise time, the electromagnet in the Varispring was wound with relatively large wire

(22 AWG) and the rod’s length (and thus its diameter) was minimized.

Dynamic tuning of the Varispring’s stiffness was investigated by measuring the

Terfenol-D rod’s strain response to dynamic, compressive, axial forces in the presence

of time-varying current inputs. Continuous and discrete Young’s modulus tuning

were realized via sinusoidal and square wave currents, respectively. To achieve an

acceptable level of force control, a soft compression spring was added to the load

path. This prevented the measurement of the Varispring’s stiffness and constrained

the bias compression to a small value, which reduced the attainable Young’s modulus

variation. Nevertheless, continuous modulus changes up to 21.9 GPa and 500 Hz are

observed for current amplitudes up to 1.5 A. Square wave modulus changes (dynamic

∆E effect) up to 12.3 GPa and 100 Hz are observed for current amplitudes up to

0.5 A. Instability and overshoot in the controlled square wave current prevented

measurement at higher current frequencies and amplitudes. The rise time of the

Varispring is < 1 ms.
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To improve the Varispring’s stiffness tunability, the device can be operated about

a more optimal bias stress, which can be realized by using a compression spring with

greater travel or by generating some of the bias with an internal Belleville spring.

During stiffness switching, stiffness tunability and tuning bandwidth can be increased

by also optimizing the current control, using voltage control, or by low-pass filtering

the square wave current to reduce its harmonic content.

4.2 Case Study: Switched Stiffness Vibration Control

This section illustrates the usefulness of a magnetostrictive Varispring by apply-

ing it to switched stiffness vibration control of a single-degree-of-freedom mechanical

system. Switched stiffness vibration control is a simple form of stiffness control in

which vibration is attenuated via coordinated switching between high and low stiffness

states [40, 117]. A computational study is presented to investigate the uncontrolled

and controlled free vibration responses of the mass. First, a model is introduced that

quantifies the electromechanical behavior of the magnetostrictive Varispring and its

effect on the vibration of the mechanical system. Then, a discussion of the control

algorithm is presented, in which modifications to the algorithm are proposed to ac-

count for the magnetostrictive force generated by the Varispring. After, vibration

control results are presented.

4.2.1 Model development

Switched stiffness vibration control using a magnetostrictive Varispring is investi-

gated for the mechanical system shown in Fig. 4.11, where the Varispring is used as

a spring mount. Electrical excitation of the Varispring generates an axial magnetic

field H in the magnetostrictive material, which is used to control the Varispring’s
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stiffness. Due to magnetostriction, the field also produces an uncontrolled magne-

tostrictive force Fmag that excites the mass; the presence of Fmag complicates the

vibration control strategy, as discussed below.

Figure 4.11: Mechanical system used to investigate switched stiffness vibration con-
trol; the magnetostrictive Varispring (dotted magenta box) has electrical inputs
(green), magnetic states (red), and mechanical outputs (blue); magnetic flux den-
sity B (not shown) is positive along the direction of H.

The equation of motion for the mechanical system is

m∆ẍ+ c∆ẋ+ ∆Fvari(H,T ) = F, (4.11)

where ∆x is the incremental displacement of mass m, c is the viscous damping co-

efficient, ∆Fvari is the total force imposed by the Varispring, and F is the applied

force. The equation is formulated in incremental form to be consistent with the

piezomagnetic equations that govern the Varispring’s magnetomechanical behavior,

∆B = µS(H,T )∆H + d(H,T )EH(H,T )∆S, (4.12)

∆T = −d(H,T )EH(H,T )∆H + EH(H,T )∆S. (4.13)
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∆B, ∆T , and ∆S respectively denote the incremental magnetic flux density, stress,

and strain along the axis of the magnetostrictive rod, which is described by its mag-

netic permeability at constant strain µS, Young’s modulus at constant field EH ,

and piezomagnetic coefficient d. µS is related to the permeability at constant stress

through µS = µT −d2EH . The material properties are functions of the total field and

stress, which depend on the bias field Hbias and bias stress Tbias according to

T = ∆T + Tbias, (4.14)

H = ∆H +Hbias. (4.15)

The voltage across the Varispring’s electromagnet is governed by Faraday’s law. As

such, the incremental applied voltage ∆V is related to the incremental current ∆i

according to

∆V = NAcoil
d∆B

dt
+Rcoil∆i, (4.16)

where Rcoil, N , and Acoil are the resistance, number of windings, and cross-sectional

area of the electromagnet, respectively.

If the magnetic flux leakage and the magnetic reluctance of the Varispring’s flux

return path are assumed to be negligible, the magnetic field in the magnetostrictive

rod is ∆H = N∆i/lcoil, where lcoil is the electromagnet’s axial length. When the mass

vibrates at frequencies sufficiently below the Varispring’s 1st resonant frequency, ∆T

and ∆S are uniform and can be calculated as ∆Fvari/Arod and ∆x/lrod, respectively,

where Arod and lrod are the cross-sectional area and length of the magnetostrictive
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rod, respectively. Insertion of these expressions into Eq. (4.13) gives

∆Fvari =
ArodE

H(H,T )

lrod
∆x− Arodd(H,T )EH(H,T )∆H,

= kH(H,T )∆x− Arodd(H,T )EH(H,T )∆H,

= kH(H,T )∆x− NArodd(H,T )EH(H,T )

lcoil
∆i,

= kH(H,T )∆x− Θ(H,T )∆i, (4.17)

where kH is the Varispring’s stiffness and Θ is an electromechanical coupling coeffi-

cient. From Eq. (4.17), the magnetostrictive force can be identified as

Fmag = −Θ(H,T )∆i. (4.18)

Inserting Eq. (4.12) and the expressions for ∆H, ∆T , and ∆S into Eq. (4.16) one

gets

∆V =
d

dt

(
NAcoild(H,T )EH(H,T )

lrod
∆x+

NAcoilµ
S(H,T )

lcoil
∆i

)
+Rcoil∆i,

=
d

dt
(Θ(H,T )∆x) +

d

dt

(
LS(H,T )∆i

)
+Rcoil∆i, (4.19)

where LS is the blocked inductance of the Varispring10 and it was assumed that

lcoil = lrod and Acoil = Arod. The ODEs governing the electrical and mechanical

responses of the system in Fig. 4.11 are found by simplifying Eq. (4.19) and inserting

Eq. (4.17) into Eq. (4.11),

m∆ẍ+ c∆ẋ+KH(H,T )∆x− Θ(H,T )∆i = F, (4.20)

Θ(H,T )∆ẋ+
dΘ(H,T )

dt
∆x+ LS(H,T )∆i̇+

(
dLS(H,T )

dt
+Rcoil

)
∆i = ∆V. (4.21)

Eqs. (4.20) and (4.21) are simultaneously solved using MATLAB’s ode45 function

after approximating the time derivatives of Θ and LS using the 2nd order, backward

10This quantity has also been referred to as the self inductance of a magnetostrictive trans-
ducer [71].
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finite difference method. The solution procedure is iterative and piece-wise linear

(i.e., the material properties are updated at the end of each time step). Accordingly,

a very small time span is used for each call of the ode45 function to maintain accuracy.

This model incorporates the mechanical vibration of the mass, the electrical

dynamics associated with voltage control of the Varispring, the magnetostrictive

force, and constitutive nonlinearities. However, the model does not incorporate

mechanically-induced or field-induced eddy current effects. To incorporate these ef-

fects, the nonlinear PDE governing magnetic diffusion (see Section 3.1.2) would need

to be solved concurrently with Eqs. (4.20) and (4.21). This would add a considerable

amount of complexity to the model. Hence, the proposed model is accurate when the

mass vibrates at a frequency that is below the Varispring’s magnetic diffusion cut-off

frequency. Considering the results of Section 4.1, a Terfenol-D-based Varispring is

considered in this section to improve the accuracy of this assumption.

4.2.2 Results and discussion

The control law for switched stiffness vibration control is simple. When the mass

is moving toward static equilibrium, switch the stiffness to the soft state. When the

mass is moving away from static equilibrium, switch to the stiff state. In terms of

energy, if the stiffness is instantaneously decreased by ∆k at the ith displacement

maximum xmax,i, the potential energy in the system decreases by 0.5∆kx2max,i. Then,

if the stiffness is instantaneously increased by ∆k at static equilibrium, the potential

energy does not increase. Thus, energy in the amount of 0.5∆kx2max,i is dissipated

every half cycle.
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In the absence of a magnetostrictive force, the performance of this control method

tends to improve as the amplitude and speed of stiffness switching increases. However,

the magnetostrictive force can have a significant magnitude; thus, it complicates the

control method and can produce unexpected motion of the mass. In particular,

resonance of the mass can be induced by the control during damped, free vibration,

as shown in Fig. 4.12. In this case, the magnetostrictive force overcomes the existing

damping and the energy lost due to stiffness switching. This can result when the

magnetostrictive force acts in only one direction, which occurs for operation about

a variety of bias conditions. Hence, the control law for switched stiffness vibration

control must be modified to that illustrated in Fig. 4.13 when a magnetostrictive

material is used to realize the stiffness changes. Ideally, the magnetostrictive force is

as small as possible and always pushes or pulls the mass toward the static equilibrium

position. However, it does not seem possible to satisfy the stiffness and force criteria

for every motion condition. As such, for half of the vibration cycle, the field is set to

the bias value and stiffness switching is inactive; during this time, the magnetostrictive

force is approximately zero.

To determine a magnetomechanical bias condition for which the tuning conditions

shown in Fig. 4.13 will be satisfied, it is beneficial to reference the Young’s modulus

of the magnetostrictive material and the electromechanical coupling coefficient of

the Varispring, which are depicted in Fig. 4.14. For a given magnetic field change

in Terfenol-D, a larger change in Young’s modulus is obtained at a moderate to

high bias compression than at a small compression. Larger bias compressions also

help to prevent unloading of the brittle Terfenol-D rod during dynamic operation.

Thus, a moderate to high bias compressive stress is considered herein. Fig. 4.14(b)
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Figure 4.12: Mechanical resonance induced by switched stiffness vibration control
due to the uncontrolled magnetostrictive force; model parameters given in Table 4.3,
H = 0+35

−0 kA/m.

shows that the electromechanical coupling coefficient is always positive for positive

magnetic fields.11 According to Eq. (4.18), the magnetostrictive force can therefore

only change sign if ∆i changes polarity during stiffness switching; this implies that

the bias magnetic field should be between the maximum and minimum tuning fields.

At moderate to high bias compressive stress, Θ decreases rapidly with field at low

bias fields; this suggests that the bias field should be closer to the maximum tuning

field than to the minimum tuning field, in order for the magnetostrictive force to have

comparable positive and negative peak values.

The modified control method was applied to the damped, free vibration of the

mass. The results are shown in Fig. 4.15, where the uncontrolled response is com-

pared to two controlled responses. The model parameters common to all three cases

are given in Table 4.3. The uncontrolled response is damped due to the resistive

11For negative magnetic fields (not shown in Fig. 4.14(b)), the electromechanical coupling coeffi-
cient is always negative.
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Figure 4.13: Tuning conditions of the magnetostrictive Varispring needed to realize
switched stiffness vibration control in the presence of a magnetostrictive force; S.E.P.
denotes the static equilibrium position.

losses associated with the current that is induced in the electromagnet according to

Faraday’s law. In both of the controlled responses, switched stiffness vibration con-

trol introduces a significant amount of damping; in particular, controlled response 2

(solid line) exhibits a level of damping that is equivalent to a viscous damping ratio of

approximately 0.15. On close inspection, controlled response 1 initially decays faster

than controlled response 2, but it converges to a steady oscillation having a small

amplitude. This is caused by a small imbalance between the positive and negative

peak values of the magnetostrictive force, as seen in Fig. 4.15(d).

Table 4.3: Model parameters for switched stiffness vibration control modeling.

dt, µs m, kg c, Ns/m Rcoil, Ω N Arod, cm2 lrod, m Tbias, MPa

2 80 0 2.5 1840 1.27 0.144 -70
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Figure 4.14: Stress and magnetic field dependence of the (a) Young’s modulus of a
Terfenol-D rod and (b) electromechanical coupling coefficient of a Terfenol-D-based
Varispring calculated using the DEA model in [34]; from blue to red (the direction
of the arrow), H increases from 0 to 100 kA/m in increments of 10 kA/m; Acoil =
1.27 × 10−4 m2, lrod = 0.144 m, and N = 1840 turns (the minimum number needed
to generate 85 kA/m at steady state with 22 AWG wire).

As with the conventional control method, the performance of the modified control

method improves with increases in the stiffness change magnitude. However, the

magnetostrictive force can play a more important role than the stiffness change. In

general, the performance of the modified method improves as the amplitude of the

magnetostrictive force is decreased by a change in the bias conditions or the bounds

of the tuning field. Optimizing the performance requires trial and error.

4.2.3 Concluding remarks

In this section, a computational study of switched stiffness vibration control using

a magnetostrictive Varispring was conducted. The Varispring was implemented as

a tunable spring mount to dampen the vibration of a single-degree-of-freedom me-

chanical system. A model was presented that incorporates constitutive nonlinearities,
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Figure 4.15: Enhanced decay of damped, free vibration using switched stiffness vibra-
tion control: no control (dashed, Hbias = 75 kA/m), controlled response 1 (dashed-
dotted, H = 75+10

−55 kA/m), and controlled response 2 (solid, H = 65+10
−45 kA/m).

mechanical vibrations, the electrical dynamics associated with voltage control of the

Varispring, and the magnetostrictive force generated by the Varispring. To greatly

simplify the model and numerical method, mechanically-induced and field-induced

eddy current effects were neglected. As evidenced by Section 4.1, this is a valid

assumption for Terfenol-D-based Varisprings operated at forcing frequencies up to

about 1 kHz.
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Free vibration of the mass under passive damping and switched stiffness vibration

control was calculated. The magnetostrictive force, which is uncontrolled, was shown

to play a significant role in the performance of the control. If the net magnetostric-

tive force over one vibration cycle is not small, the force can resonate the mass by

overcoming the energy lost due to passive damping and stiffness switching. Thus, a

modified control law was proposed to minimize the influence of the magnetostrictive

force. Stiffness switching according to the modified law was found to introduce a level

of damping that is equivalent to a viscous damping ratio of approximately 0.15. In

general, the performance of the control improved as the stiffness change magnitude

increased and the amplitude of the magnetostrictive force decreased.
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Chapter 5: Conclusions and Future Work

Although the dependence of the elastic moduli of magnetostrictive materials on

bias stress and bias magnetic field is extensively reported in the literature, this behav-

ior has been seldom applied to the development of vibration control devices. These

devices, along with many other magnetostrictive systems, are subjected to dynamic

stress, for which the constitutive behavior of magnetostrictive materials has rarely

been studied or applied. The objectives of this dissertation were to understand the

effects of dynamic stress on magnetostrictive materials and to utilize both static

and dynamic stiffness changes in the development of novel vibration control devices.

The research was organized into three chapters: (1) static stiffness change and its

implementation in adaptive vibration absorbers, (2) dynamic stress effects in magne-

tostrictive materials, and (3) dynamic stiffness change and its application to switched

stiffness vibration control. A detailed discussion of results and conclusions is in-

cluded in these chapters. This chapter summarizes the entire research, lists its key

contributions, and suggests future work in this field.
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5.1 Research Summary

Static stiffness change

In this chapter, the dependence of Galfenol’s minor loop elastic modulus on bias

stress and bias magnetic field was measured. This understanding was then applied

to the modeling of adaptive vibration absorbers composed of Galfenol-based metal-

matrix composite beams.

Major and minor strain versus stress responses of solid and laminated rods of

research grade, <100>-oriented, textured polycrystalline Fe81.6Ga18.4 were measured

under constant magnetic fields from 0.73 kA/m to 13.76 kA/m (solid rod) and under

constant currents from 0 A to 1 A (solid and laminated rods). The mechanical loading

consisted of 1 Hz or 4 Hz compressive stress ranging from -63.3 MPa to -0.5 MPa.

The maximum major loop and minor loop ∆E effects of the solid rod are 54.84 %

/ 39.01 % (constant field/current) and 37.90 % / 27.46 % (constant field/current),

respectively. Despite having a 17 % lower saturation modulus than the solid rod due

to soft adhesive layers, the maximum major loop ∆E effect of the laminated rod

under constant current (39.02 %) is essentially equal to that of the solid rod. In all

cases, the minimum modulus occurs at larger compressive stress as the bias field or

current increases. The ∆E effect of minor loops is consistently lower than that of

major loops, regardless of the magnetic bias condition. The hysteresis of constant

field responses is smaller than that of constant current responses.

Semi-active control of the resonant frequency of Galfenol-based metal-matrix com-

posite beams via changes in the bias magnetic field was studied using nonlinear, dy-

namic lumped parameter and distributed parameter models of the beams. Both mod-

els consider the variation in the Galfenol element’s elastic modulus along its length
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and thickness. The lumped parameter model was used to calculate the resonant

frequency of clamped-clamped (C-C) and cantilevered absorbers from displacement

transmissibility frequency responses as a function of input power amplitude, Galfenol

volume fraction, and Galfenol’s offset from the neutral bending axis. An input power

threshold was observed, below which the resonant frequency is controllable and above

which controllability decreases to zero. The boundary condition has a minimal effect

on the maximum resonant frequency tunability, but the C-C beam’s resonance can be

controlled over a slightly larger operating space. The maximum tunability varies be-

tween 2.5 and 49 % as Galfenol volume fraction increases from 10 to 100 % (Galfenol

located at the neutral axis) and between 2.5 and 5.5 % as Galfenol is offset from the

composite’s midplane (10 % Galfenol volume fraction).

The distributed parameter model of a C-C absorber incorporates Euler-Bernoulli

beam theory, an axial force, and viscoelastic material damping. The 1st and 3rd res-

onant frequencies of the beam were efficiently calculated using autoresonant feedback

control as a function of base acceleration and Galfenol volume fraction. An extensive

validation of the model was conducted using analytical responses and measurements.

The performance of the autoresonant control improved through careful selection of

the vibration observation point(s) and careful tuning of the mode selector (bandpass

filter). The axial force has a minimal effect on the maximum resonant frequency tun-

ability, but an appreciable effect on the operating space over which tuning can occur.

The maximum tunability does not usually degrade when the absorber is operated at

higher modes. The effect of modulus changes on the composite’s resonant frequency

will be larger for composites having softer matrices.
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Dynamic stress effects in magnetostrictive materials

This chapter investigated the effects of dynamic stress on the constitutive behavior

of magnetostrictive materials. First, the effect of mechanically-induced eddy currents

on the internal magnetic field and magnetic flux density of cylindrical ferromagnets

was studied. Then, precise measurements of Galfenol’s strain and magnetic flux

density responses to dynamic, compressive stress were presented along with a novel

experimental design.

The radial dependence of magnetic diffusion in cylindrical ferromagnets that re-

sults from the application of a constant surface magnetic field with dynamic mechan-

ical inputs was investigated analytically (for linear constitutive regimes) and numeri-

cally (for nonlinear constitutive regimes). For linear constitutive behavior, analytical

time and frequency domain solutions were derived using the method of eigenfunc-

tion expansions. The solutions were non-dimensionalized after deriving a penetration

(skin) depth and cut-off frequency, which were respectively found to be about 2.08

and 4.34 times those of field-induced magnetic diffusion. Mechanically-induced mag-

netic diffusion was shown to cause the material’s effective magnetoelastic coupling

coefficient and elastic modulus to be complex and frequency dependent. Up to about

the cut-off frequency, the magnitude of the steady-state, dynamic field increases in

proportion to f . As forcing frequency increases above that range, the magnitude

overshoots its high frequency limit, peaks, then decreases to its high frequency limit,

at which point the dynamic magnetic flux becomes zero and further increases in forc-

ing frequency have no effect. Use of the analytical solutions for design purposes was

also discussed.
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For nonlinear constitutive regimes, magnetic diffusion was studied by solving the

governing PDE using the finite difference method. The radial non-uniformity of the

applied stress was also considered. A detailed model validation was presented. When

the response exhibits significant nonlinearity, MATLAB’s fminunc and the proposed

numerical method do not converge; thus, the analysis was limited to small to mod-

erate stress amplitudes and forcing frequencies. The effect of time-varying material

properties on the nonlinear diffusion response was first studied by prescribing a si-

nusoidal variation of the properties. Then, nonlinear diffusion in a Galfenol rod at a

near worst-case bias condition was investigated by calculating the material properties

using the DEA model. At this bias, the results suggest that nonlinearity becomes

appreciable at a stress amplitude of about 1.5 MPa and the cut-off frequency for

nonlinear diffusion is about 1.4 times that of linear diffusion.

A precise dynamic characterization of solid and laminated rods of the most widely

used Galfenol alloy (Fe81.6Ga18.4) to dynamic, compressive stress up to 31 MPa and

1 kHz was conducted. A novel experimental design was reported, wherein a detailed

discussion of specimen design, sensor selection, uncertainty analysis, calibration, error

sources, and data processing methods was included. From these measurements, the

frequency dependence of dynamic material properties and energy loss components is

presented. The estimated uncertainties met ASTM standards in most cases. The

experimental setup was refined to minimize the three key sources of error: (a) elec-

tromagnetic noise in strain signals due to Galfenol’s magnetic response, (b) error in

load signals due to the inertial force of fixturing, and (c) phase misalignment between

signals due to conditioning electronics. For dynamic characterization, strain error was
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kept below 1.2 % of full scale by wiring two collocated gauges in series (noise can-

cellation) and through leadwire weaving. Inertial force error was kept below 0.41 %

by measuring the dynamic force in the specimen using a nearly collocated piezoelec-

tric load washer. The phase response of all conditioning electronics was explicitly

measured and corrected for in post processing.

Constant current and constant field bias conditions were investigated. In the solid

rod, as frequency is increased above about 100 Hz, the sensing response becomes more

linear due to an increase in eddy currents, which suppress magnetic moment rota-

tion. Compared to the solid rod, the laminated rod exhibits much slower increases in

hysteresis with frequency, and its quasi-static behavior extends to higher frequencies,

suggesting an appreciable reduction in eddy currents. The frequency dependence of

the dynamic sensing properties were calculated from the measurements. Due to ex-

perimental magnetic diffusion cut-off frequencies of only about 44 Hz (constant field)

and 105 Hz (constant current), the dynamic sensing properties of the solid rod vary

significantly with frequency, monotonically decaying toward their saturated (passive)

values. This illustrates the inaccuracy of frequency-independent dynamic properties

calculated via linear piezomagnetic models from experimental responses to electrical

excitation. It also motivates the use of complex, frequency-dependent properties for

modeling and design. The laminated rod exhibits a cut-off of about 1 kHz. The

loss factor of the solid rod under constant current initially increases almost linearly

(suggesting that excess eddy current losses are low), then, at a value of 0.13, be-

comes nearly frequency independent above 300 Hz. These measurements allow for

the validation of rate-dependent Galfenol constitutive models and permit the accurate

modeling of Galfenol-based systems that experience time-varying forces.
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Dynamic stiffness change

In this chapter, the dynamic changes in the elastic modulus of magnetostrictive

materials that result from real-time magnetic field changes are studied in two stages.

First, a magnetostrictive transducer that can electrically tune its stiffness at high

speeds (a magnetostrictive Varispring) is modeled, designed, and tested. Second,

high-speed switching of the transducer’s stiffness is applied in a computational study

of switched stiffness vibration control of a simple mechanical system.

The Varispring was designed based on (a) a nonlinear electromechanical trans-

ducer model, (b) the aforementioned analytical solution of magnetic diffusion, and

(c) the effect of internal mass on the magnetostrictive material’s dynamic stiffness. A

laminated Terfenol-D rod (instead of a laminated Galfenol rod) was selected as the

active material due to its larger modulus tunability, slightly faster rise time to control

inputs, and significantly higher magnetic diffusion cut-off frequency. The rise time

was further decreased by winding the contained electromagnet with relatively large

wire (22 AWG) and by minimizing the rod’s length (and thus its diameter). The

Terfenol-D rod’s strain response to dynamic, compressive forces in the presence of

sinusoidal and square wave current inputs was measured to quantify continuous and

discrete modulus changes, respectively. To improve the force control, the Varispring

had to be operated about a small bias compression, which reduced the attainable

Young’s modulus variation. Continuous and square wave modulus changes up to

21.9 GPa / 500 Hz and 12.3 GPa / 100 Hz, respectively, are observed for current

amplitudes up to 1.5 A and 0.5 A, respectively. Instability and overshoot in the con-

trolled square wave current prevented measurement at higher current frequencies and

amplitudes. The rise time of the Varispring was < 1 ms.
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In the computational study of switched stiffness vibration control, the Varispring

was implemented as a tunable spring mount to dampen the vibration of a single-

degree-of-freedom mechanical system. The free vibration response of the mass under

passive damping and vibration control was calculated using a model that incorporates

constitutive nonlinearities, mechanical vibrations, the electrical dynamics associated

with voltage control of the Varispring, and the magnetostrictive force generated by the

Varispring. To greatly simplify the numerical solution procedure, eddy current effects

were not considered. The (uncontrolled) magnetostrictive force plays a significant role

in the performance of the control, particularly when the net magnetostrictive force

over one vibration cycle is not small. Hence, a modified control law was proposed

to minimize the influence of the magnetostrictive force. Stiffness switching according

to the modified law was found to introduce a level of damping that is equivalent

to a viscous damping ratio of about 0.15. In general, the performance of the con-

trol improved as the stiffness change magnitude increased and the amplitude of the

magnetostrictive force decreased.

5.2 Contributions and Findings

Static stiffness change

• Experimental characterization of the major loop and minor loop strain responses

of solid and laminated Galfenol (Fe81.6Ga18.4) to quasi-static compressive stress

under constant magnetic field and constant current bias conditions (paper [55])

– Minor loop Young’s moduli and ∆E effects of the solid rod are stiffer and

smaller, respectively, than their major loop counterparts
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– The saturation modulus of the laminated rod is smaller than that of the

solid rod due to soft adhesive layers, but the ∆E effect is approximately

equal

– Hysteresis is smaller for constant field bias conditions

• Validated, nonlinear, dynamic model and quantified performance of adaptive

vibration absorbers composed of Galfenol-based composite beams (papers [125,

126, 133])

– An input power threshold exists, below which the absorber’s resonant fre-

quency is controllable and above which the controllability decreases to zero

due to high stress

– Resonant frequency tunability increases as the Galfenol element’s volume

fraction and offset from the neutral bending axis increase

– Autoresonant feedback control is a very efficient numerical technique for

tracking the resonant frequency of complex nonlinear systems undergoing

changes in system parameters

– Magnetic field-induced axial forces in clamped-clamped composites appre-

ciably affect the tuning parameters, but they have a minimal effect on the

maximum resonant frequency tunability

Dynamic stress effects in magnetostrictive materials

• First ever analysis and solutions of linear and nonlinear mechanically-induced

magnetic diffusion in cylindrical ferromagnets (paper [134])
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– Analytical, non-dimensionalized time and frequency domain solutions for

the radial dependence and spatial average of the internal magnetic field

– Analytical expressions for skin depth and cut-off frequency

– Mechanically-induced magnetic diffusion causes the material’s effective

magnetoelastic coupling coefficient and elastic modulus to be complex and

frequency dependent

– Up to about the cut-off frequency, the magnitude of the steady-state, in-

ternal field increases in proportion to forcing frequency

– Parametric excitations caused by material property variations add to the

stress excitation when they are 180 degrees out-of-phase with the dynamic

stress and counteract the stress excitation when they are in-phase with the

dynamic stress

– At a near worst-case bias condition, nonlinearity in Galfenol’s magnetic

diffusion response becomes appreciable at a stress amplitude of 1.5 MPa;

the cut-off frequency for nonlinear diffusion is about 1.4 times that of linear

diffusion

• Novel characterization of the mechanical and magnetic responses of solid and

laminated Galfenol to small amplitude and large amplitude dynamic forces up

to 1 kHz (papers [132, 131])

– Experimental methodology for the precise measurement of the dynamic

stiffness and sensitivity of magnetostrictive materials (paper [129])
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– As forcing frequency increases above about 50 Hz, the solid rod’s response

becomes more passive and linear due to the supression of magnetic domain

rotation by eddy currents

– The dynamic sensing properties of the solid rod vary significantly with

frequency, monotonically decaying toward their saturated (passive) values

above cut-off frequencies of about 44 Hz (constant field) and 105 Hz (con-

stant current); properties of the laminated rod exhibit a weak dependence

on frequency up to 1 kHz

– The mechanical loss factor of the solid rod reaches 0.13 due to eddy current-

induced damping

Dynamic stiffness change

• Modeling, design, and testing of a magnetostrictive Varispring – a magne-

tostrictive transducer that can change its axial stiffness at high speeds (papers

[128, 130])

– When magnetic diffusion is negligible, the rise time of Terfenol-D- and

Galfenol-based transducers to stiffness control inputs can be on the order

of 0.1 ms, suggesting that stiffness tuning bandwidths on the order of 1 kHz

are feasible

– Terfenol-D performs better than Galfenol for dynamic tuning of axial stiff-

ness due its slightly faster rise time, significantly higher magnetic diffusion

cut-off frequency, and larger elastic modulus tunability
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– Continuous Young’s modulus changes up to 21.9 GPa and 500 Hz, modulus

switching up to 12.3 GPa and 100 Hz, and a rise time below 1 ms are

measured using a demonstration transducer

• Computational study of switched stiffness vibration control of a lumped me-

chanical system using a magnetostrictive Varispring (paper [127])

– Modified control law that accounts for the effect of a magnetostrictive force

– Control-induced damping equivalent to a viscous damping ratio of about

0.15

Constitutive modeling

• Framework of an improved discrete energy-averaged model for Terfenol-D (Ap-

pendix A)

– The unphysical kinks and slow approach to saturation previously observed

in simulations can be corrected with a coordinate transformation that does

not compromise computational speed or the explicitness of the model

5.3 Future Work

This research has provided a greater understanding of the ∆E effect and its ap-

plication to adaptive vibration absorbers. This research also unveiled the effects of

dynamic stress on magnetostrictive materials and opened a new field of research on

real-time stiffness tuning and stiffness control of magnetostrictive materials. These

contributions bring to light the following opportunities for future work:

• Measurements in this research suggest that giant magnetostrictive materials

have the potential to simultaneously provide high stiffness and high energy
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dissipation in a compact, solid-state package. Using the reported experimental

methodology and analytical magnetic diffusion solutions as a platform, an in-

depth study of shunt damping and mechanically-induced eddy current damping

can be undertaken.

• Nonlinear mechanically-induced magnetic diffusion was studied using a solu-

tion procedure that exhibited numerical instability in highly nonlinear regimes.

The development of a more robust numerical method can reveal the diffusion

behavior for large amplitude, high frequency stress excitations.

• The possibility of mitigating mechanically-induced diffusion effects using a dy-

namic, surface magnetic field (i.e., using field-induced magnetic diffusion) can

be numerically explored.

• Switched stiffness vibration control of forced vibrations using a magnetostrictive

Varispring can be investigated using the model presented herein. An important

extension to this model would be the inclusion of mechanically-induced and

field-induced magnetic diffusion; due to constitutive nonlinearities, this will

require a numerical solution of the nonlinear PDE that governs diffusion.

• Experimental testing of the magnetostrictive Varispring was limited by over-

shoot in the controlled current and an imperfect bias stress. A revised ex-

periment can uncover the maximum capabilities of the Varispring, including

stiffness tunability and tuning bandwidth, by increasing the bias compression

(e.g., with an internal Belleville spring) and improving the electrical excitation

(e.g., by optimizing the current control, using voltage control, or by low-pass

filtering the square wave signal). The refined Varispring and control system can
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then be used to demonstrate switched stiffness vibration control of a mechanical

system; this demonstration would highlight the strengths and weaknesses of the

Varispring while collecting data for model validation.

• The concept of real-time stiffness tuning and stiffness control can be extensively

studied. It may be possible to actively control moderate to high frequency

vibrations via small amplitude, high frequency magnetostrictive forces while

modulating the nominal stiffness via the conventional ∆E effect (i.e., a large

amplitude, low frequency magnetic field).
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Appendix A: Improved Discrete Energy-Averaged Model for

Terfenol-D

As explained in the Application of the DEA model to Terfenol-D subsection of Sec-

tion 1.2.2, the current DEA model for accurately modeling the constitutive response

of Terfenol-D is implicit, which increases computation time and prevents the deriva-

tion of a material Jacobian. In this appendix, a simple modification to Evans and

Dapino’s original DEA model [61] is proposed that eliminates the unphysical kinks

in the responses (see Fig. A.1) and provides a slow approach to saturation while also

retaining the explicit nature of the original DEA model.

The DEA model is applicable to cubic magnetostrictive materials (e.g., Galfenol

and Terfenol-D) that are excited by a 3D magnetic field and stress. In Evans and

Dapino’s original formulation, these inputs are defined relative to the coordinate

system of the material’s cubic crystal structure, rather than the coordinate system

of the specimen. In a typical Galfenol specimen, this distinction is not important,

because the material is manufactured such that the < 100 > direction of its crystals

is nominally aligned with the specimen’s primary axis (i.e., the symmetry axis of

a cylindrical rod or the length direction of a sheet). However, Terfenol-D rods are

grown along a < 112 > crystal direction, as shown in Fig. A.2; consequently, the field

and stress applied to the rod during a characterization experiment differ from those
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Figure A.1: Unphysical kinks in the magnetostriction response of Terfenol-D calcu-
lated using Evans and Dapino’s original DEA model [61]; plot reproduced from [34].

which are applied to the material in the original DEA model. This discrepancy can

be easily accounted for using an appropriate coordinate transformation. It will be

shown that the accurate implementation of this coordinate transformation eliminates

the unphysical kinks and provides a smooth approach to saturation without the need

for introducing a field- and stress-dependent smoothing factor (as was done in [34].

First order tensors (e.g., magnetic field and magnetization) are transformed using

a transformation matrix U according to

XG = UTXM, (A.1)

XM = UXG, (A.2)

where XG and XM represent the tensor relative to the global and material coordi-

nate system, respectively. Second order tensors (e.g., strain and stress) transform
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Figure A.2: Crystal structure of a Terfenol-D rod; adapted from [31] and reproduced
from [96].

according to

XG = UXMU
T, (A.3)

XM = UTXGU. (A.4)

As detailed by Chakrabarti [32], U contains the normalized direction vectors (defined

in the material coordinate system) that point along the global coordinate axes,

U =

[
ux

∥ux∥
,

uy

∥uy∥
,

uz

∥uz∥

]
. (A.5)
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It is convenient to take the rod’s axis as the global z-direction; hence, uz = [112].

For axisymmetric models, ux and uy are taken as the radial and circumferential

directions, ur and uθ, which depend upon the circumferential angle θ. If a Cartesian

global coordinate system is used, ux and uy can be any vectors that are mutually

orthogonal and orthogonal to uz. Herein, ux = [1̄1̄1] and uy = [11̄0].

The DEA model for Terfenol-D is improved as follows. First, the stress and mag-

netic field applied to the rod (defined relative to the global, i.e., the rod’s, coordinate

system), TG and HG, respectively, are transformed into the stress and field applied

to the cubic crystal structure (defined relative to the material, i.e., the crystal’s,

coordinate system) using

TM = UTTGU, (A.6)

and

HM = UHG, (A.7)

Evans and Dapino’s original DEA model [61] is then followed using TM and HM

as inputs. It is emphasized that the 3D formulation of the DEA model is required

even for 1D inputs, because a uniaxial stress and field applied to the rod are a 3D

input from the material’s perspective. Once the solution is obtained in the material

coordinate system, the magnetostriction and magnetization of the rod in the global

coordinate system are respectively calculated as

λG = UλMU
T, (A.8)

and

MM = UMG. (A.9)
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Figure A.3: Comparison of the improved DEA model for Terfenol-D with mag-
netostriction measurements from Etrema Products, Inc. [85] for compressive bias
stresses of 6.9, 27.6, 55.2, and 110.4 MPa.

To validate the proposed DEA model for Terfenol-D, computational and mea-

sured actuation responses are compared in Fig. A.3, where the experimental data

was provided by Etrema Products, Inc. [85]. The model parameters, which are sum-

marized in Table A.1, were obtained using a coarse, preliminary optimization of the

form detailed in [34]. A modeling error of about 18 % is found; although this error

is considerably larger than that acheived by Chakrabarti and Dapino’s model [34],

a refined optimization procedure was not developed or conducted, because it is out-

side the scope of this dissertation. Also, it is stressed that the proposed model does

not exhibit kinks or a sharp approach to saturation; further, the proposed model is

explicit, thereby permitting an analytical material Jacobian,12 and is approximately

20 % faster than the current art ([34]).

12See Section 5.2.1 of [32] for a discussion of how to calculate the material Jacobian defined relative
to the global and material coordinate systems.
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Table A.1: Model parameters for the improved DEA model for Terfenol-D, obtained
using a coarse optimization of the form detailed in [34].

K, J×105/m3
1,2

K0, J×105/m3
3,4

K0, J×105/m3
5,6,7,8

K0 , J×105/m3 µ0Ms, T
2.739 0.8007 0.8565 0.8620 0.6000

λ100, ×10−3 λ111, ×10−3 Ω, kJ/m3 c kp, MJ
0.4999 0.9905 6.600 0.8019 0.1649
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Appendix B: Galfenol Vibration Absorbers: Distributed

Parameter Modeling

B.1 Stiffness and damping matrices

For the 2nd order central difference approximation of the damping and flexural

forces (Eqs. (2.30) and (2.31)), the global damping and stiffness matrices are, respec-

tively,

[C]=a(∆x)−4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C2 +G2 B2 A2 0 · · · 0
D3 C3 B3 A3 0 · · ·
G4 D4 C4 B4 A4 0

...

0
. . . . . . . . . . . . . . . 0

... 0 GN−3 DN−3 CN−3 BN−3 AN−3

· · · 0 GN−2 DN−2 CN−2 BN−2

0 · · · 0 GN−1 DN−1 CN−1 + AN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.1)

and

[K]=(∆x)−4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̄2 +G2 B̄2 A2 0 · · · 0
D̄3 C̄3 B̄3 A3 0 · · ·
G4 D̄4 C̄4 B̄4 A4 0

...

0
. . . . . . . . . . . . . . . 0

... 0 GN−3 D̄N−3 C̄N−3 B̄N−3 AN−3

· · · 0 GN−2 D̄N−2 C̄N−2 B̄N−2

0 · · · 0 GN−1 D̄N−1 C̄N−1 + AN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.2)

where the elements are evaluated using Eq. (2.32).
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For increased accuracy, the 4th order central difference method can be used to

approximate the damping and flexural forces as

FC
i (t) ≈ a(144∆x)−4(Hi ˙̄wi+3 + Ji ˙̄wi+2 + Li ˙̄wi+1 +Ni ˙̄wi

+Oi ˙̄wi−1 +Qi ˙̄wi−2 +Ri ˙̄wi−3),
(B.3)

and

FK
i (t) ≈ (144∆x)−4

(
Hi ˙̄wi+3 + (Ji + 12P̄ ) ˙̄wi+2 + (Li − 192P̄ ) ˙̄wi+1

+(Ni + 360P̄ ) ˙̄wi + (Oi − 192P̄ ) ˙̄wi−1 + (Qi + 12P̄ ) ˙̄wi−2 +Ri ˙̄wi−3

)
= (144∆x)−4

(
Hi ˙̄wi+3 + J̄i ˙̄wi+2 + L̄i ˙̄wi+1 + N̄i ˙̄wi

+Ōi ˙̄wi−1 + Q̄i ˙̄wi−2 +Ri ˙̄wi−3

)
,

(B.4)

where

Hi = 3EIi+2 − 24EIi+1 − 24EIi + 24EIi−1 − 3EIi−2,

Ji = −23EIi+2 + 176EIi+1 + 318EIi − 208EIi−1 + 25EIi−2,

Li = 23EIi+2 − 56EIi+1 − 1416EIi + 568EIi−1 − 55EIi−2,

Ni = 30EIi+2 − 480EIi+1 + 2244EIi − 480EIi−1 + 30EIi−2,

Oi = −55EIi+2 + 568EIi+1 − 1416EIi − 56EIi−1 + 23EIi−2,

Qi = 25EIi+2 − 208EIi+1 + 318EIi + 176EIi−1 − 23EIi−2,

Ri = −3EIi+2 + 24EIi+1 − 24EIi − 24EIi−1 + 3EIi−2.

(B.5)
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Using Eqs. (B.3) – (B.5), the 4th order accurate damping and stiffness matrices can

be written as

[C] = a(144∆x)−4⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ(C2+
G2)

τB2 τA2 0 · · · 0

O3+R3 N3 L3 J3 H3 0 · · ·
Q4 O4 N4 L4 J4 H4 0 · · ·
R5 Q5 O5 N5 L5 J5 H5 0

...

0
. . . . . . . . . . . . . . . . . . . . . 0

... 0 RN−4 QN−4 ON−4 NN−4 LN−4 JN−4 HN−4

· · · 0 RN−3 QN−3 ON−3 NN−3 LN−3 JN−3

· · · 0 RN−2 QN−2 ON−2 NN−2 LN−2+HN−2

0 · · · 0 τGN−1 τDN−1
τ(CN−1+
AN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.6)

and

[K] =(144∆x)−4⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ(C̄2+
G2)

τB̄2 τA2 0 · · · 0

Ō3+R3 N̄3 L̄3 J̄3 H3 0 · · ·
Q̄4 Ō4 N̄4 L̄4 J̄4 H4 0 · · ·
R5 Q̄5 Ō5 N̄5 L̄5 J̄5 H5 0

...

0
. . . . . . . . . . . . . . . . . . . . . 0

... 0 RN−4 Q̄N−4 ŌN−4 N̄N−4 L̄N−4 J̄N−4 HN−4

· · · 0 RN−3 Q̄N−3 ŌN−3 N̄N−3 L̄N−3 J̄N−3

· · · 0 RN−2 Q̄N−2 ŌN−2 N̄N−2 L̄N−2+HN−2

0 · · · 0 τGN−1 τD̄N−1
τ(C̄N−1+
AN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.7)

where τ = 144. Since the 4th order approximations of the damping and flexural

forces at node i depend upon nodes i− 3 and i + 3, the 2nd order central difference

method must be used at nodes i = 2, N − 1 to avoid the inclusion of fictitious nodal

displacements in the 4th order damping and stiffness matrices. The 4th order method

can be used at the remaining interior nodes after considering Eq. (2.33).
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B.2 Analytical response of the passive beam

The analytical free and forced vibration of the passive beam (i.e., uniform flexural

rigidity and no axial force) are derived as follows. By the method of modal analysis,

the solution for the beam vibration can be written as

w̄(x, t) =
∞∑
r=1

Wr(x)ηr(t), (B.8)

where ηr(t) are the modal coordinates and Wr(x) are the eigenfunctions of the un-

damped clamped-clamped beam, which are provided by Rao [118],

Wr(x)=Cn

[
sinh(βrx)−sin(βrx)+

(
sinh(βrL)−sin(βrL)

cos(βrL)−cosh(βrL)

)
(cosh(βrx)−cos(βrx))

]
, (B.9)

cos(βrL)cosh(βrL) = 1. (B.10)

Inserting Eq. (B.8) into the governing PDE Eq. (2.25), neglecting the beam’s non-

uniformity and axial force, premultiplying by Ws(x), and integrating over the length

of the beam yields

∞∑
r=1

((∫ L

0

ρAWsWrdx

)
η̈r + a

(∫ L

0

EIWsW
(4)
r dx

)
η̇r

+

(∫ L

0

EIWsW
(4)
r dx

)
ηr

)
=

∫ L

0

Wrfeqdx. (B.11)

Using the orthonormality conditions [106] derived from the eigenvalue problem, only

the sth terms in Eq. (B.11) survive, giving the modal equations,

η̈s + 2ζsωsη̇s + ωs
2ηs = Φssin(ωut), s = 1, 2, . . . , (B.12)

where the modal damping ratio ζs is

ζs =
aωs

2
. (B.13)

248



Assuming harmonic base excitation with frequency ωu and magnitude B(ωu), the

forcing magnitude Φs is

Φs = ρAB(ωu)ωu
2

∫ L

0

Wsdx. (B.14)

For underdamped modes, the solution of Eq. (B.12) can be written as

ηs = exp(−ζsωst) (Asin(ωdst) +Bcos(ωdst)) + Φs

⏐⏐⏐G̃s(iωu)
⏐⏐⏐ sin(ωut+ φs), (B.15)

where ωds is the damped natural frequency of the sth mode, the magnitude and phase

of the modal frequency response, respectively, are⏐⏐⏐G̃s(iωu)
⏐⏐⏐ =

1

ωs
2

⎛⎝(1 −
(
ωu

ωs

)2
)2

+

(
2ζs

ωu

ωs

)2
⎞⎠−1/2

, (B.16)

φs = −tan−1

⎛⎝2ζs
ωu

ωs

(
1 −

(
ωu

ωs

)2
)−1

⎞⎠ , (B.17)

and the undetermined coefficients A and B are

A = ηs(0) − sin(φs)Φs

⏐⏐⏐G̃s(iωu)
⏐⏐⏐ ,

B =
η̇s(0) + ζsωsηs(0)

ωds

− ζsωssin(φs) + ωucos(φs)

ωds

Φs

⏐⏐⏐G̃s(iωu)
⏐⏐⏐ . (B.18)

Insertion of Eqs. (B.15) and (B.9) into Eq. (B.8) gives the time domain response of

the passive beam to initial conditions and base excitation. The frequency response

of the displacement transmissibility can be written as

G(x, iωu) =
w̄

u
= ρAωu

2

∞∑
s=1

Wr(x)

(∫ L

0

Wsdx

) ⏐⏐⏐G̃s(iωu)
⏐⏐⏐ exp(iφs)

=
∞∑
s=1

Ωs(x, iωu)exp(iφs).

(B.19)

The magnitude and phase of G(x, iωu) are

|G(x, iωu)| =

⎛⎝( ∞∑
s=1

Ωs(x, iωu)cos(φs)

)2

+

(
∞∑
s=1

Ωs(x, iωu)sin(φs)

)2
⎞⎠1/2

,

∠G(x, iωu) = tan−1

(∑∞
s=1 Ωs(x, iωu)sin(φs)∑∞
s=1 Ωs(x, iωu)cos(φs)

)
.

(B.20)
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Appendix C: Dynamic Characterization of Galfenol:

Uncertainty and Calibration

C.1 Uncertainty Analysis

This section details the selection of sensors and an uncertainty analysis for each

measured quantity.

Distance and area

Area was measured to calculate the axial stress in the rod. Table C.1 summarizes

the recommended accuracy of distance measurements from ASTM and JIS standards.

As recommended by ASTM E9, distances were measured using micrometers [17].

The micrometers had 0.001 in gradations and 0.0001 in accuracy (interpolation and

instrument uncertainties of 0.0005 in and 0.0001 in, respectively). For the 0.25 in

diameter specimen, these resulted in diameter and area uncertainties of 5.1x10-4 in

(0.2 %) and 2.0x10-4 in2 (0.4 %), respectively.

Force and stress

The force applied to the ends of the specimen was measured to calculate the axial

stress in the rod according to Eq. (C.2). Applied forces were in the range -1.96 to 0 kN

(-441 to 0 lbf), where a negative force indicates compression. For quasi-static and
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Table C.1: ASTM and JIS recommendations for distance measurements.

Parameter Measurement Accuracy ASTM/JIS Standard

diameter

0.001 in (dimensions > 0.1 in),
use avg.

E9 [17], E209 [12], E466 [10]

≤ 0.1 % at 3 locations, use avg. E1875 [8], E1876 [9]

≤ 0.5 % at 2 orthogonal locations,
use avg.

JIS Z 2273 [91]

area ≤ 1 % E111 [11]

dynamic experiments, small amplitude (89 N / 20 lbf) and large amplitude (980 N /

220 lbf) forces were applied to the specimen. Table C.2 summarizes the recommended

accuracy of force measurements from ASTM standards. Quasi-static forces were

measured using an Interface 1010ACK-500-B fatigue rated load cell (2224 N / 500 lbf

range) and MTS 493.21 signal conditioner. This load cell is very stiff and accurate,

and is rated for 108 fully reversed loading cycles.

Table C.2: ASTM recommendations for force sensors.

Parameter Measurement Accuracy ASTM Standard

force (static) ± 1 % error, ≤ 1 % repeatability E4 [14]
force (dynamic) ± 1 % error E467 [15]

As discussed in the Inertial force error reduction subsection of Section 3.2.3, dy-

namic forces vibrate the specimen and fixtures, resulting in inertial forces that cause

error in measurements of the force applied to the specimen. This error was reduced by
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minimizing the mass of fixturing located between the specimen and force sensor. The

large masses of the platen and magnetic circuit prevented the accurate measurement

of dynamic forces by the load cell. Inertial force errors below 0.41 % were possible by

using a piezoelectric load washer. The load washer could be located almost directly

below the specimen, such that the inertial forces of the platen and magnetic circuit

did not influence the measurement. Specifically, dynamic forces (> 100 Hz) were

measured using a Kistler 9001A piezoelectric load washer (7.5 kN / 1686 lbf range)

and Kistler 5010 charge amplifier. This frequency cut-off was selected, because the

load washer’s phase response is nonlinear below this cut-off (see the Phase calibration

subsection of Section 3.2.4).

The interface load cell was used for force control of the dynamic load frame.

To compensate for inertial force errors during dynamic testing, the force command

signal was increased until the load washer readout indicated the desired dynamic force

amplitude.

Table C.3 gives the uncertainty for the load cell and load washer. The uncertainties

of the MTS conditioner were not specified. However, as detailed in Section C.2, the

entire static force measurement system was calibrated to the accuracy specified in

ASTM E4 (≤ ± 1 % of the reading) [14]. The uncertainty in the calculation of

dynamic force was determined from the load washer’s uncertainty, Eq. (3.84), the

charge amplifier’s sensitivity (SensChargeAmp in V/pC) and uncertainty (± 0.5 %), and

the expression for the dynamic force ,

FDynamic = qLoadWasherSensChargeAmpX, (C.1)

where qLoadWasher is the charge generated by the load washer in pC and X is the range

setting in N/V. The uncertainty in the static and dynamic stress measurements was
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estimated using the force uncertainties, Eq. (3.84), and the equation for axial stress,

T =
F

A
. (C.2)

The force and stress uncertainties are plotted as a function of the measured force in

Fig. C.1.

Table C.3: Uncertainties of the force sensors.

Device
Interpolation
Uncertainty,

N (lbf)

Instrument
Uncertainty,

N (lbf)

Device
Uncertainty,

N (lbf)

static
force

Interface
1010ACK-500-

B 13

≈ 0 ± 1.3 (0.29) ± 1.3 (0.29)

dynamic
force

Kistler 9001A 14 ± 0.005 (0.001) ± 23 (5.1) ± 23 (5.1)

Temperature

The temperature of the specimen was monitored to prevent excessive temperature

variation during repeated testing. If the temperature increase from room tempera-

ture exceeded 7 ◦C, tests were paused and the specimen was allowed to return to

room temperature. Table C.4 outlines the recommended uncertainty of temperature

measurements and the allowable temperature variation. Temperature was measured

using a Type K thermocouple and an Omega DRG-SC-TC signal conditioner, which

has an uncertainty of ± 2 ◦C. The Omega conditioner also has a very low bandwidth

(about 4 Hz). However, for the specified purpose, this bandwidth and uncertainty

13assuming isothermal conditions and neglecting load eccentricity and creep

14assuming isothermal conditions and optimal installation
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(a) (b)

Figure C.1: Uncertainty in the (a) force and (b) stress calculations; the force and stress
spans (maximum value minus minimum value), 2000 N and 63 MPa, respectively, are
the same for static and dynamic measurements.

was sufficient, although the uncertainty did not meet the recommendations shown in

Table C.4.

Table C.4: ASTM and ISO recommendations for temperature sensors and constant
temperature testing.

Parameter Specification ASTM/ISO Standard

temperature ± 1 ◦C ISO 4664-1 [87]
allowable temperature variation during
constant temperature testing

± 5.5 ◦C E1875 [8]
± 3 ◦C E209 [12]

Displacement and strain

A strain (or displacement) sensor was intended to measure (or calculate) the av-

erage, axial surface strain in the gauge region of the rod. Galfenol’s elastic modulus

is a function of magnetic field and stress. The magnetic circuit only controlled the

magnetic state over a gauge region (Fig. 3.17b). Consequently, the elastic modulus
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varied along the specimen’s length; thus, displacement or strain measurements had

to be confined to the gauge region. This precluded the use of many sensors, including

capacitive displacement probes, laser displacement sensors, and potentiometers. Ex-

tensometers and strain gauges were suitable. However, laser extensometers have an

insufficient resolution, while extensometers have a lower bandwidth relative to strain

gauges and add an eccentric mass to the specimen. Semiconductor and piezoelectric

strain gauges have multiple advantages, but could not conform to the small curvature

of the specimen. Therefore, metal foil strain gauges were selected. Recommended

specifications of strain sensors from ASTM and ISO standards are summarized in

Table C.5.

Table C.5: ASTM and ISO recommendations for strain sensors.

Parameter Measurement Accuracy ASTM/ISO Standard

strain
± 1 % ISO 4664-1 [87]
± 0.1 % to ± 1 % E9 [17], E83 [16]

strain gauge resistance ± 0.1 %, repeatability ≤ 0.04 % E251 [13]
strain resolution ≤ 0.05 % to ≤ 0.5 % E9 [17], E83 [16]

Selection of a metal foil strain gauge was guided by the discussions in [75]. Con-

stantan sensing alloy was chosen for its minimal magnetic effects. A long, but nar-

row gauge pattern was selected to average the strain over multiple material grains,

allow for easy alignment, and reduce the magnitude of electromagnetic noise. A

self-temperature-compensation number of 6 (i.e., 6 µm/m/◦F correction) provided

compensation for the thermal expansion of Galfenol, which is 6.4 µm/m/◦F [48].

The largest available gauge resistance was selected to reduce leadwire effects and
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heat generation, which allowed for larger excitation voltages and thus a larger signal-

to-noise ratio [75, 74]. Considering these factors and availability, the Vishay Micro-

Measurements EA-06-250BF-350/L strain gauges were selected. Vishay’s magnetic

field strain gauge (H06A-AC1-125-700) could not be used due to its 17 week lead

time. However, electromagnetic noise was quantified and minimized as detailed in

the Strain gauge noise reduction subsection of Section 3.2.3.

To minimize the electromagnetic noise, axial strain was measured using two iden-

tical strain gauges (resistance RG = 350 Ω, gauge factor FG = 2.155) wired in series

and located on opposite sides of the rod. These gauges together formed the active

arm of a Wheatstone quarter bridge circuit. It can be shown that this circuit can be

analyzed as a quarter bridge containing a single, effective strain gauge having a re-

sistance of R1 = 2RG and gauge factor of FG. This analogy holds if the strain gauges

are identical and experience the same axial strain, but opposite bending strain. The

uncorrected strain ϵ′ for this circuit was calculated as

ϵ′ =
4

FG

∆E0

E
, (C.3)

where E is the excitation voltage and ∆E0 is the bridge output voltage relative to

the zero strain state. The uncorrected strain can be corrected for the quarter bridge

nonlinearity and the resistance imbalance δR between the active bridge arm R1 and

its adjacent arm R2 using

ϵ′′ =
ϵ′
(

2 + δR
R2

)2
4
[(

1 + δR
R2

)
− FGϵ′

4

(
2 + δR

R2

)(
1 + δR

R2

)] . (C.4)

The effect of leadwire resistance on the bridge nonlinearity can be neglected, because

the leadwire resistance was only 0.07 % of the gauge resistance [78]. A correction for
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the strain output due to thermal effects can then be applied as follows [76],

ϵ′′′ =

[
ϵ′′ −

(
ϵT/0 + ∆ϵT/0

) 2

FG

]
1

1 + ∆FG

100
∆Troom

, (C.5)

where ∆FG is the variation in gauge factor with temperature (specified as a percent-

age per 100 ◦C by the manufacturer), ∆Troom is the difference between the testing

temperature and room temperature (75 ◦F / 24 ◦C), ϵT/0 is the thermal output of the

gauge relative to the thermal output at the temperature for which the strain indicator

is zeroed, and ∆ϵT/0 is a correction to the thermal output due to the surface curvature

of the installation location [67],

∆ϵT/0 =
1

r
[(1 + 2vA−B) (hAαA + hBαB) − 2vA−BαS (hA + hB)] ∆Tref, (C.6)

where r is the radius of curvature, αS, αA, and αB are the coefficient of thermal expan-

sion of the specimen, adhesive, and backing, respectively, hA and hB are the thickness

of the adhesive and backing, respectively, vA−B is the average Poisson’s ratio of the

adhesive and backing, and ∆Tref is the difference between the testing temperature and

the temperature at which the strain indicator is zeroed. The uncertainty of the mea-

sured variables is summarized in Table C.6. The uncertainty in the corrected strains

ϵ′′ and ϵ′′′ was calculated using Eq. (3.84) and is shown in Fig. C.2 as a function of the

strain level. The required partial derivatives were determined using the commercial

symbolic software Maple (http://www.maplesoft.com/products/Maple/).

15from the multimeter data sheet (Agilent 34410A) and Eqs. (3.85)–(3.87)

16from Section C.1 and Eq. (3.84)

17from [48]

18from the manufacturer

19from Section C.1

20from the strain conditioner data sheet (Vishay 2310) and Eqs. (3.85)–(3.87)
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Table C.6: Uncertainty of measured variables used to calculate the strain uncertainty.

uδR uR2 ur uαS

± 0.11 Ω 15 ± 0.08 Ω 15 ± 6.5 × 10−6 m 16 ± 0.4 × 10−6 1/◦C 17

uFG
u∆FG

uT u∆T

± 0.5 % (0.0108) 18 ± 0.2 % 18 ± 2 ◦C 19 ± 2.8 ◦C 19

u∆E0 uE
± 1.06 × 10−5 V 20 ± 0.0034 V 20

Figure C.2: Uncertainty in the strain calculation.

During repeated testing, temperature increases above the 25 ◦C ambient were

typically 3 to 4 ◦C, and no more than 7 ◦C. Using Eqs. (C.5) and (C.6) and specifica-

tions for the strain gauge, these 4 and 7 ◦C changes caused a thermal strain output

of 7.31 × 10−6 and 10.4 × 10−6 (0.54 and 0.77 % of the span), respectively. The

thermal strain can be corrected for, but at the expense of an appreciable increase in

uncertainty. Since the strain uncertainty is exacerbated in the calculation of elastic

properties, the thermal strain was not corrected for in the reported data.
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Magnetic field

A magnetic field sensor was needed to measure the axial, surface magnetic field

in the gauge region of the rod. The applied magnetic field was in the range -18 to

18 kA/m (-226 to 226 Oe). The recommended accuracy of magnetic field sensors

is ± 1 % [6]. Magnetic fields can be measured with H coils, Flip H coils, Rogows-

kiChattock coils, giant magnetoresistive (GMR) sensors, and Hall effect sensors. The

pick-up coils can only estimate the field at the surface of the specimen based on mul-

tiple measurements away from the surface. GMR sensors have an insufficient range

(≤ 8 kA/m) and about 5 % uncertainty. Hall probes provide the best accuracy, but

must be located using a fixture and have a sensing region about 1.5 to 4 mm (0.059

to 0.160 in) from their tip. Hall chips are less accurate than Hall probes, but can

be directly mounted to the specimen’s surface, and have a sensing region only 0.3 to

1.5 mm (0.012 to 0.059 in) from their surface. Consequently, an Allegro A1321LUA

Hall chip was selected, which could measure ± 35 kA/m over the temperature range

-40 to 150 ◦C.

The selected Hall chip has an interpolation uncertainty of 0.0208 V and an instru-

ment uncertainty (in units of V) of

ucHall
= ±9.425

(
10−4

)
H, (C.7)

where the magnetic field H is in units of kA/m (assuming isothermal conditions and

a constant supply voltage). The uncertainty in the magnetic field was calculated

using these uncertainties, Eqs. (3.84) and (3.85), the Hall chip’s sensitivity (SensHall,

V-m/kA) and uncertainty (± 5 %), and the expression for the magnetic field,

H =
VHall

SensHall

. (C.8)
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The primary source of uncertainty in the calculated field was the uncertainty in the

sensitivity. Through calibration (see Section C.2), the uncertainty in the sensitivity

could be reduced below ± 1 % (Fig. C.3a). The magnetic field uncertainty with and

without an point calibration is shown in Fig. C.3b.

(a) (b)

Figure C.3: Uncertainty in (a) the Hall chip’s sensitivity and (b) the magnetic field
calculation after an n point calibration of the sensitivity; see [129] for the calculation
of the uncertainty in the sensitivity.

Magnetic flux density

The intent of this sensor was to measure the average magnetic flux density within

the gauge region of the rod. The range of magnetic flux density was -1.65 to 1.65 T.

For magnetic flux density measurements, it is recommended that (a) sensors have

≤ 1 % of span accuracy, (b) sensing/pick-up coil voltage integrators have drift ad-

just circuitry with drift ≤ 100 Mx-turns/min (1 µWb-turns/min), and (c) the cross-

sectional area enclosed by the pick-up coil and its number of turns be known to

≤ 0.5 % accuracy [6]. As detailed earlier in Section C.1, the uncertainty in the area

was 0.4 %.
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Integration of the pick-up coil voltage is the preferred method of measuring mag-

netic flux (over ballistic galvanometers and moving coil fluxmeters), because of the

integrator’s superior accuracy, stability, and ease of operation [6]. Consequently, a

Lake Shore Model 480 integrating fluxmeter was used with a custom pick-up coil.

The integrator drift of this fluxmeter is ± 1 µVs/min (± 1 µWb-turns/min), while

its accuracy is ± (1 % of the reading + 0.33 % of the range). Using a calibrated

pick-up coil (see Section C.2), the uncertainty in the magnetic flux density is shown

in Fig. C.4. Due to the sensitivity of the pick-up coil and the magnitude of the

signal, the signal was only about 15 % of the optimal fluxmeter range; thus, the

range-dependent uncertainty was about 1.4 % of the signal’s span.

Figure C.4: Uncertainty in the magnetic flux density.

C.2 Calibration Methods

This section describes the methods and experimental setups used to calibrate each

of the sensors and the linear power amplifier used to drive the excitation coils.
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Linear power amplifier

A power amplifier was used to drive the excitation coils of the magnetic circuit

and produce a magnetic field. For this experiment, a Kepco BOP 72-6M linear

amplifier was selected based on its availability. The amplifier was operated in current

control mode, so that the excitation coils produced magnetic fields proportional to the

amplifier’s input signal, where the proportionality factor is a function of the stress-

and field-dependent magnetic permeability of the Galfenol rod.

The experimental setup for the calibration of the Kepco amplifier is shown in

Fig. C.5. Static control voltages were used to generate static currents in the load.

The current output was calculated by measuring the voltage across a purely resis-

tive load using an Agilent 34410A precision multimeter, which was calibrated by the

NASA GRC Metrology and Calibration Lab within the previous year. The load re-

sistance was measured at room temperature by the 4-wire method using the Agilent

34410A multimeter. The load was formed by 4 high power resistors placed on a thick

aluminum plate to minimize temperature changes, which cause resistance changes.

The current and voltage monitors were calibrated using a linear, least-squares regres-

sion as shown in Fig. C.6.

Figure C.5: Experimental setup for the calibration of the linear power amplifier.
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(a) (b)

Figure C.6: Calibration of the linear power amplifier: (a) voltage monitor, (b) current
monitor.

Load cell

The Interface load cell, its conditioning electronics, and its data acquisition chan-

nel were calibrated according to ASTM E4 [14] by Absolute Calibration & Consulting

Services, LLC within the previous year.

Load washer

The Kistler load washer and charge amplifier were calibrated together using the

setup shown in Fig. C.7. Since the load washer cannot measure static forces, cali-

bration was conducted quasi-statically at 10 Hz. To verify that 10 Hz was within

the passband of the load washer system, the calibration was repeated for a 40 Hz

force; results were within 0.2 % of the 10 Hz calibration. The calibration factor was

determined by comparing the magnitude of the primary harmonic (located at 10 Hz)

of the load washer and load cell signals (Fig. C.8). The signals were measured at the

same time with the same sampling rate and duration.
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This calibration assumed that (a) the inertial force error in the Interface load cell

measurement was negligible at the calibration frequency of 10 Hz and (b) the resulting

load washer calibration factors were constant throughout the operating frequency

range (up to 1 kHz). Using Eq. (3.88), the stiffness of the Interface load cell (1 GN/m),

and the mass of the steel platen, the inertial force error at 40 Hz was 0.0067 %. The

unloaded 1st natural frequency ω1
1 of the load washer is 65 kHz (m1 = 0.003 kg). The

decrease in the 1st natural frequency due to added mass was approximated using

ω2
1 = ω1

1

√
m1

m2

, (C.9)

where m2 > m1. Using a conservative estimate for the effective mass during calibra-

tion, m2 = 2 kg, the natural frequency reduced to 2.5 kHz, which was well above the

frequency range of interest. This suggested that the calibration factor measured at

10 Hz should be valid up to 1 kHz.

Figure C.7: Experimental setup for the calibration of the Kistler load washer and
charge amplifier (schematic not to scale).
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(a) (b)

Figure C.8: Calibration of the Kistler load washer and charge amplifier for a 10 Hz
force: (a) 0 to 500 N range (250 N offset, 3.72 pC/N load washer sensitivity), (b) 0
to 2000 N range (1000 N offset, 3.87 pC/N load washer sensitivity); each data point
is the average of the results from six time captures.

Thermocouple

The thermocouple signal conditioner was calibrated from 0 to 100 ◦C using a Wahl

C-65 thermocouple calibration standard, which can output the precise voltage that

would be generated by a Type K thermocouple at a specified temperature. During

calibration, this voltage was the source for the thermocouple measurement system

(Fig. C.9). The calibration is shown in Fig. C.10. The calibration was validated

by measuring the temperature of boiling water and ice water baths using the Wahl

calibration standard and the thermocouple measurement system (Table C.7).

Strain gauge

The strain measurement system was shunt calibrated using the experimental setup

depicted in Fig. C.11, where the pair of strain gauges is represented by a single,

effective gauge of double the resistance (see Section C.1). The axial strain ϵaxial,simulated
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Figure C.9: Experimental setup for the thermocouple calibration.

Figure C.10: Calibration of the thermocouple.

simulated by shunting the effective gauge with a shunt resistor RC at its terminals was

found by calculating the change in resistance of the shunted arm of the Wheatstone

bridge and using the definition of the gauge factor,

ϵaxial,simulated =
−2RG

FG (2RG +RC)
. (C.10)

For a Wheatstone quarter bridge, Eq. (C.10) is exact for any strain level [78]. For the

circuit in Fig. C.11, the simulated strain was −1952.5 × 10−6. The shunt calibration

is given in Fig. C.12. This 2-point calibration accurately scaled the strain measure-

ment system. Instrument verification using a strain calibrator was not performed.
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Table C.7: Temperature measurement of boiling water and ice water baths after
calibration; tabulated values are an average of measurements obtained on two days.

Wahl calibration standard, ◦C
Thermocouple

measurement system, ◦C

ice water bath 0.2 0.7
boiling water bath 99.7 99.8

The strain gauges on the laminated rod were found to have a calibration factor of

-214.47 µm/m/V.

Figure C.11: Experimental setup for the strain calibration.

Hall effect sensor

The Hall effect sensor was calibrated by relating the Hall chip’s output voltage to

the magnetic field measured by a F.W. Bell 4048 gaussmeter and F.W. Bell 1435 Hall

probe, which were calibrated by the manufacturer. The sensors were placed in the

center of a uniform magnetic field that was generated by a Harvey-Wells Corporation

electromagnet (Fig. C.13). The electromagnet’s poles have a diameter of 12 in (about
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Figure C.12: Calibration of the strain measurement system.

2 orders of magnitude larger than each sensor’s active area); thus, fringing of the

magnetic field was negligible. Each sensor was independently rotated in the field until

a maximum output was reached. Maximum outputs were recorded for 30 different

static magnetic fields. The calibration results are shown in Fig. C.14.

Figure C.13: Experimental setup for the Hall effect sensor calibration (sensors not to
scale); the Hall chip supply voltage was 5.000 V.
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Figure C.14: 30 point calibration of the Hall effect sensor.

Magnetic flux density sensing coil

Magnetic flux density sensing coils can be calibrated using a reference magnet

or known magnetic field (e.g., a field produced by a calibrated Helmholtz coil). In

the absence of these instruments, calibration can be performed by measuring the

magnetic response of a specimen for which an accurate measurement is available. In

this experiment, calibration was conducted by measuring the magnetic response of a

commercially-pure nickel (Ni 200) rod having the same dimensions as the Galfenol

specimen (Fig. C.15). The previously calibrated Hall chip was used to measure the

applied magnetic field. The measured response was then compared to accurate mea-

surements published by [139], as shown in Fig. C.16. The calibration factor was

determined as the factor that provided the closest fit (in a least-squares sense) of the

measured response to the reference response.

In the laminated rod, the presence of adhesive layers reduces the cross-sectional

area of Galfenol and thus the total flux linked by the sensing coil, which decreases the

induced voltage in the coil. Consequently, if the calibration factor for the solid rod,

CB
solid, was used with the laminated rod, magnetic flux density measurements would
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Figure C.15: Experimental setup for the calibration of the magnetic flux density
sensing coil and fluxmeter; the magnetic circuit shown in Figs. 3.16 and 3.17 was
used to magnetize the Ni 200 rod.

Figure C.16: Calibration of the magnetic flux density measurement system, 4.673 T/V
calibration factor (30 mVs fluxmeter range).

be artificially low. A corrected calibration factor, CB
laminated, was calculated as

CB
laminated = CB

solidA
FeGa
solid

(
AFeGa

laminated

)−1
, (C.11)

where AFeGa
solid and AFeGa

laminated are the cross-sectional areas of Galfenol in the solid and

laminated rods, respectively. The thickness of the adhesive layers was given by the

manufacturer as 0.0018 to 0.002 in. Using an adhesive thickness of 0.0019 in, the
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lamination thickness (0.033 in), and the rod’s diameter (0.247 in), the corrected

calibration factor for the laminated rod was calculated as 4.936 T/V.

C.3 Experimental Setup and Methods

C.3.1 Wiring

Fig. C.17 is a schematic representing the wiring for all of the measurement chan-

nels. This includes the interconnection between the sensors, signal conditioning, and

data acquisition electronics, as well as grounding information. Noise was minimized

by eliminating ground loops, through the use of shielded wire, and by separating the

power and signal wires.

C.3.2 Magnetic field control

When the current in the electromagnet is held constant while the magnetostrictive

sample is stressed, the magnetic field in the sample changes due to its stress-dependent

magnetic permeability [22]. In Galfenol, this effect is significant, because its magnetic

permeability is a strongly nonlinear function of stress; Galfenol’s magnetic permeabil-

ity can vary by almost three orders of magnitude [53]. The variation in magnetic field

with the applied stress confounds the measured results, and so a feedback control

system was used to adjust the current to achieve a more constant field. Magnetic

field control was implemented in addition to constant current control, rather than as

a replacement for it, because constant current control could be realized over a greater

bandwidth.

The control system is schematically illustrated in Fig. C.18, for the case of a

PID-type control law. A dSPACE DS1103 board was used to implement real-time

control. Feedback was provided by the hall sensor, and the controller’s output drove
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Figure C.17: Wiring schematic for all of the measurement channels.

the amplifier’s current control input. The PID gains were tuned for disturbance

rejection by attempting to hold the field constant while dynamically loading the
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specimen. Initially, the D gain was set to zero due to the relatively noisy magnetic

field signal. To reduce the noise, an analog low-pass filter was inserted in the feedback

loop. This allowed for the derivative term to be used, but that provided a negligible

improvement in the control performance. Therefore, the D term was set to zero

(effectively PI control) and the filter was removed to reduce the time delay of the

control system. For dynamic sensing experiments, one set of gains (P=2, I=100) was

used for frequencies ≤ 600 Hz and another set (P=0.5, I=100) for frequencies> 600 Hz

in order to provide adequate control over the range of forcing frequencies. To improve

control performance, the sampling rate of the dSPACE system was maximized. The

maximum rate was 150 kHz. The control system performed well up to 100 Hz, but

the performance considerably degraded above 200 Hz.

Figure C.18: Schematic of the magnetic field control system, which was independent
of the measurement system and thus only included the signal conditioning depicted
here.

Sliding mode and lookup table methods of control were briefly evaluated as alter-

natives to PID. It was found that the sliding mode control performed comparably;

however, sliding mode control required larger voltages than for PID control. As fre-

quency was increased, the required switching voltages exceeded the capabilities of
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the amplifier. To implement lookup table control, the relationship between current,

stress, and magnetic field was measured. For each operating frequency, the data was

catalogued in a table through a series of measurements with constant applied current

and varying stress. The appropriate control output was then based on referencing

the table to find the required output current to achieve a constant field for the given

operating frequency and the measured stress level. This control method was not

successfully implemented, because it required too many measurements to produce

a lookup table of sufficient resolution. In addition, the control processor could not

access the table values fast enough to implement this method in real time at high

frequency. Given the limitations of sliding mode and lookup table control, PI control

was used for all characterization tests where constant field was desired.

C.3.3 Sensor reset

The zero offset of the magnetic field, temperature, voltage, and current sensors was

quantified during sensor calibration. However, the output of magnetic flux density

and strain sensors had to be periodically reset during testing due to thermally-induced

drift. The reference state at which these sensors were zeroed was well defined and

consistent throughout testing, as detailed below.

Drift in the magnetic flux density measurement was minimized through manual

and automatic adjustment of the fluxmeter’s drift correction circuitry. Additionally,

the fluxmeter integrator was manually reset about every minute to avoid appreciable

drift error. Typically, the integrator is reset when the magnetostrictive material is

in a zero flux state. In this work, a faster, alternative method was used due to

the extensive testing matrix. First, the fluxmeter was reset using the conventional

274



method. Then, the quasi-static sensing response of the Galfenol rod was measured

for a single constant current (or magnetic field) level. Next, a point in the saturated

region of the response was selected and the corresponding flux density, stress, and

current (or field) was recorded. Finally, when a reset was needed, the stress and

current (or field) were held constant at the recorded values while the integrator was

reset. The fluxmeter then output the flux density relative to the recorded value. Since

the recorded point was in the saturation region and Galfenol exhibits a high degree

of kinematic reversibility (see the Solid rod: major stress-strain loops under constant

field subsection of Section 2.1.2), the loading history used to reach the recorded stress

and current (or field) had a negligible influence. The integrator was reset at −50±1 N

and 1 A (or 15 kA/m), for which the flux density was 1.599 T (or 1.601 T) for the

solid Galfenol rod and 1.474 T for the laminated rod. The true flux density was

calculated in post processing by adding the recorded value to the measured flux.

To minimize the drift in the strain signal while maintaining an appropriate signal-

to-noise ratio, a Wheatstone bridge excitation of 7 V was used. This excitation was

only about 40 % of the estimated maximum excitation voltage, which was calculated

according to [74]. First, a saturating magnetic field was established, then the field

was reduced to zero. The strain signal was then zeroed at zero applied current (or

magnetic field) after disengaging the load frame piston from the specimen. Due to

hysteresis, the strain in Galfenol at this state was not zero, but rather 0.6 × 10−6

(determined from actuation measurements). Thus, all strain signals were reduced by

this value in post processing.
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C.4 Data Processing Methods

C.4.1 Amplitude calibration

Figs. C.19 and C.20 show the so-called signal flow diagram, which represents how

each sensor signal was scaled during acquisition. The green section of the diagram

shows how the signals were modified by the sensors and electronics, while the blue

section shows the calibration factors applied to restore the physical meaning of the

signals. Phase correction of the signals was handled in post-processing, as explained

in the following section.
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C.4.2 Filtering

Filtering was performed during post-processing to reduce noise. Filtering was

implemented using MATLAB’s filtfilt function combined with a digital Butterworth

low-pass filter having a passband ripple of 0.0043 dB (0.1 % after forwards and reverse

filtering). This filtering introduced zero phase distortion. Selection of the passband

cutoff frequency was guided by DFTs of the response variables (strain and magnetic

flux density). The forcing frequency and the level of nonlinearity in the response were

different for each group of measurements; thus, a different cutoff frequency was used

for each group, as discussed below.

A DFT of the magnetic flux density and strain actuation responses is shown in

Fig. C.21a for a representative bias stress (-10.23 MPa). The fundamental frequency

is 0.1 Hz. For the measured actuation responses, a 10 Hz cutoff was chosen to pre-

serve the appreciable harmonics and attenuate 60 Hz noise, which was present, but

small in magnitude. The actuation strain responses exhibit more nonlinearity than

the actuation flux density responses. Thus, to illustrate the effect of the filter, the

filtered and unfiltered actuation strain (magnetostriction) responses are compared in

Fig. C.21b; the filtered magnetostriction response for the representative case retains

the full nonlinearity of the unfiltered response.

Fig. C.22a presents a DFT of the quasi-static (1 Hz), major loop sensing response

measured at a constant current of 0.60 A. For quasi-static constant current responses,

a 25 Hz low-pass cutoff frequency was selected, because it attenuated noise while

preserving the integrity of the signals, as evidenced by the comparison of filtered and

unfiltered flux density responses in Fig. C.22b. Flux density responses are shown
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(a) (b)

Figure C.21: (a) DFT of the unfiltered actuation response of the solid Galfenol rod for
a mean bias stress of -10.23 MPa, (b) comparison of the filtered (red) and unfiltered
(black) magnetostriction responses at -10.23 MPa.

rather than strain responses, because for sensing, the flux density responses are more

nonlinear.

Since the quasi-static (1 Hz) sensing response for constant magnetic field is steeper

and more nonlinear than for constant current, a larger number of harmonics are

appreciable for constant field responses. Thus, a higher low-pass cutoff frequency was

required. A 40 Hz cutoff was found to be sufficient, as illustrated by the DFT and

comparison of filtered and unfiltered flux density responses in Fig. C.23.

For dynamic sensing measurements, the forcing frequency was varied between 4

and 1000 Hz. In general, as frequency is increased, the sensing response becomes

more linear due to an increase in eddy currents, which tend to suppress the active

behavior of the material. DFTs of the dynamic major loop responses indicate that

low-pass filtering must preserve about 20 harmonics for forcing frequencies up to

about 100 Hz, but only 5 to 10 harmonics for frequencies above that. Considering
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(a) (b)

Figure C.22: (a) DFT of the unfiltered sensing response of the solid Galfenol rod
for a mean bias current of 0.60 A, (b) comparison of the filtered (red) and unfiltered
(black) flux density responses at 0.50, 0.60, and 0.70 A.

this result and the fact that a 10 kHz analog low-pass filter had already been used

(see Figs. C.19 and C.20), only measurements for forcing frequencies up to 50 Hz

were digitally filtered (using a cutoff at the 20th harmonic). Despite this, the signal-

to-noise ratio of the unfiltered, high frequency signals is sufficient, and the majority

of the perceived variation in the responses is due to small variations in the force and

current (or field) resulting from imperfect control of these variables.

C.4.3 Evaluation of reversibility in the constitutive response

According to prior measurements of Galfenol, the material shows a very high

degree of kinematic reversibility (i.e., the order of application of stress and magnetic

field does not matter) [65, 154]. To provide confidence in the experimental setup

and reported measurements, kinematic reversibility of the solid Galfenol rod was

investigated. To enable this investigation, the actuation response of the solid rod

was measured in addition to the sensing response. Reversibility was evaluated by
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(a) (b)

Figure C.23: (a) DFT of the unfiltered sensing response of the solid Galfenol rod for
a mean bias field of 3.88 kA/m, (b) comparison of the filtered (red) and unfiltered
(black) flux density responses at 2.41 and 3.88 kA/m.

comparing each actuation curve measured at a constant stress to discrete points

obtained from all of the sensing curves measured at constant field. Actuation points

were separately obtained from the upper and lower branches of the sensing curves,

thereby generating a hysteretic set of actuation points to compare with each hysteretic

actuation curve. For more details, see [65].

C.5 Procedure

Prior to each set of experiments, all electronics were allowed to warm up for at

least 1 hour. For all experiments, the applied load was controlled using PI control.

Below, the procedure used to obtain the reported measurements is listed separately

for each testing group.

Quasi-static Actuation:

1. Set up the experiment as shown in Fig. 3.22a
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2. Tune the load control gains while magnetically actuating the specimen and

attempting to hold the load constant

3. Zero the strain signal according to Section C.3.3, if needed

4. Reset the fluxmeter integrator as discussed in Section C.3.3, if needed

5. Apply a 0 A current

6. Apply the bias force

7. Apply the low frequency, AC current

8. Record the amplitude-scaled signals (Section C.4.1) for 20 s

9. Stop the AC current

10. Repeat steps 3 to 9 for the remaining bias forces

11. Shift the strain and flux density signals as discussed in Section C.3.3 to yield

the true strain and flux density

12. Digitally filter the measured signals according to Section C.4.2

13. Calculate the stress in the rod from the force using Eq. (C.2)

14. Calculate the actuation-based material properties as discussed in the Calcula-

tion of material properties subsection of Section 3.2.4

15. Save the manipulated signals and plot the results

Quasi-static Sensing:

1. Set up the experiment as shown in Fig. 3.22a
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2. Tune the load control gains to achieve a slightly overdamped response to a 1

Hz square wave command signal

3. Zero the strain signal according to Section C.3.3, if needed

4. Reset the fluxmeter integrator as discussed in Section C.3.3, if needed

5. Apply the bias current (or field)

6. Apply the bias force

(a) for a given bias current (or field), start with the major loop then proceed

to its corresponding minor loops

7. Apply the low frequency, dynamic force

8. Record the amplitude-scaled signals (Section C.4.1) for 2 s (major loop re-

sponses) or 1 s minor loop responses)

9. Stop the dynamic force

10. Repeat steps 3 to 9 for the next bias force

11. Repeat steps 3 to 10 for the remaining bias currents (or fields)

12. Shift the strain and flux density signals as discussed in Section C.3.3 to yield

the true strain and flux density

13. Digitally filter the measured signals according to Section C.4.2

14. Calculate the stress in the rod from the force using Eq. (C.2)
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15. Calculate the sensing-based material properties as discussed in the Calculation

of material properties subsection of Section 3.2.4

16. Save the manipulated signals and plot the results

Dynamic Sensing:

1. Set up the experiment as shown in Fig. 3.22b

2. Tune the load control gains to achieve a fully overdamped response to a 1 Hz

square wave command signal

3. Zero the strain signal according to Section C.3.3, if needed

4. Reset the fluxmeter integrator as discussed in Section C.3.3, if needed

5. Apply the bias current (or field)

6. Apply the bias force

7. Apply the high frequency, dynamic force

8. Activate an amplitude-phase compensator (APC) for the load control, allow it

to stabilize, then pause the APC

9. Record the amplitude-scaled signals (Section C.4.1) for 2 s

10. Stop the dynamic force

11. Repeat steps 3 to 10 for the next forcing frequency or loading type

12. Shift the strain and flux density signals as discussed in Section C.3.3 to yield

the true strain and flux density
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13. Phase align the signals as discussed in the Phase calibration subsection of Sec-

tion 3.2.4

14. Digitally filter the measured signals according to Section C.4.2

15. Calculate the stress in the rod from the force using Eq. (C.2)

16. Calculate the sensing-based material properties as discussed in the Calculation

of material properties subsection of Section 3.2.4

17. Save the manipulated signals and plot the results

Table C.8 is a matrix of the nominal testing conditions for each measurement.

Exact bias conditions are stated in Sections 2.1.2 and 3.2.5. The stress range in this

experiment was approximately -63 MPa to 0 MPa. For major loops, it was desired to

excite the Galfenol specimen over this entire range while ensuring that compression of

the specimen was maintained. Consequently, a stress bias of -31.9 MPa and amplitude

of 31.4 MPa were chosen for major loops. For the dynamic minor loops, the bias

conditions were those for which the quasi-static magnetomechanical coupling of the

solid rod was maximized (i.e., maximum sensitivity and minimum elastic modulus).

To allow for a comparison of dynamic major and minor loops, dynamic major loops

were measured at the same bias current and field used for dynamic minor loops. An

extra group of dynamic major loops was measured at a high constant current to

compare with dynamic major loops at a low current; this allowed for the effect of

forcing frequency on positive and negative saturation to be determined.
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Notes for Table C.8

1. 0, -50, -317, -633, -950, -1267, -1584, and -1900 N (0, -1.62, -10.3, -20.5, -30.7,

-40.9, -51.2, and -61.5 MPa)

2. 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 A

3. -177, -399, -621, -842, -1064, and -1286 N (-5.73, -12.9, -20.1, -27.2, -34.4, and

-41.6 MPa)

4. 0, 0.8, 1.5, 2.5, 4, 5.6, 7.3, 9, 10.7, 12.4, and 14 kA/m (the approximate fields

at zero stress for each of the constant current levels)

288



Bibliography

[1] B.D. Agarwal, L.J. Broutman, and K. Chandrashekhara. Analysis and perfor-
mance of fiber composites. John Wiley & Sons, Inc., Hoboken, NJ, 3 edition,
2006.

[2] P.M. Anderson. Magnetomechanical coupling, DeltaE effect, and permeability
in FeSiB and FeNiMoB alloys. Journal of Applied Physics, 53:8101, 1982.

[3] William D. Armstrong. An incremental theory of magneto-elastic hysteresis in
pseudo-cubic ferro-magnetostrictive alloys. Journal of Magnetism and Magnetic
Materials, 263:208–218, 2003.

[4] O.N. Ashour and A.H. Nayfeh. Adaptive control of flexible structures using a
nonlinear vibration absorber. Nonlinear Dynamics, 28(3):309–322, 2002.
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