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This paper focuses on the development of a homogenized energy model which quantifies certain facets of the direct magnetomechanical
effect. In the first step of the development, Gibbs energy analysis at the lattice level is combined with Boltzmann principles to quantify
the local average magnetization as a function of input fields and stresses. A macroscopic magnetization model, which incorporates the
effects of polycrystallinity, material nonhomogeneities, stress-dependent interaction fields, and stress-dependent coercive behavior, is
constructed through stochastic homogenization techniques based on the tenet that local coercive and interaction fields are manifestations
of underlying distributions rather than constants. The resulting framework incorporates previous ferromagnetic hysteresis theory as a
special case in the absence of applied stresses. Attributes of the framework are illustrated through comparison with previously published
steel and iron data.

Index Terms—Ferromagnetic materials, magnetic hysteresis, magnetomechanical effects, magnetostrictive devices, modeling,
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I. INTRODUCTION

THE characterization of magnetoelastic effects is a classical
problem which has significant ramifications for both mate-

rial characterization and magnetic transducer design. The gen-
eration of strains due to field-induced moment rotation or do-
main wall movement is fundamental for actuator design whereas
characterization of magnetization changes due to input stresses
is crucial for magnetic sensors as well as actuators operating in
high stress regimes [1]–[4]. The coupling between the two ef-
fects adds to the complexity of the phenomena.

In this paper, we focus on the characterization of the direct
magnetomechanical effect, or Villari effect, which constitutes
changes in the magnetization due to stress-induced domain wall
movement and moment rotation. This effect is delineated by a
number of cooperative phenomena including: 1) stress-depen-
dent behavior of the anhysteretic magnetization , anhys-
teretic induction , remanent magnetization , remanent
induction , and coercive field ; 2) asymmetric magnetiza-
tion response to compressive and tensile stresses; and 3) decay
of the magnetization to (equivalently to ).

We consider the discussion of material properties and subse-
quent model development at two scales: lattice-level and macro-
scopic. To define the former, we consider a reference volume
comprised of cells, each of which is assumed to contain one
spin or magnetic moment. We assume that within this volume,
magnetic and elastic material properties are uniform and homo-
geneous which in turn implies that local coercive fields and
interaction fields are uniform. For model development, we
construct relations for the Helmholtz and Gibbs energies and
local average magnetization at this lattice level.
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The macroscopic material behavior represents the aggregate
response which combines both the isolated lattice-level be-
havior and interactions between the regions. Hence, material
properties such as the macroscopic coercive field reflect the
collective behavior of all local coercive fields. To incorporate
the effects of polycrystallinity, material nonhomogeneities,
inclusions, and texture, we assume that local coercive fields
are manifestations of an underlying distribution with density

. Analogous treatment of the interaction fields yields a
macroscopic modeling framework which incorporates a wide
range of ferromagnetic mechanisms.

Following the convention which is common in the magnetics
literature, we employ the notation for both the local and
macroscopic coercive fields. For homogeneous, single crystal
materials, the two are the same whereas for polycrystalline ma-
terials with nonhomogeneous magnetic and elastic properties,
the context clearly dictates the appropriate scale. Measured data
values of the coercive field are denoted by .

A. Stress Dependence of and

The effect of stress on the anhysteretic and hysteretic be-
havior of steel is illustrated in Fig. 1 with data from Pitman [5].
Similar behavior is reported in Bozorth [6] for 68 permalloy
and nickel and Calkins [7] for Terfenol-D. It is observed that
as stresses are changed from 100 to 400 MPa, transi-
tions from almost constant behavior at to a highly molli-
fied curve with decreased maximal values. For the hysteresis
curves, the differential permeability is nearly con-
stant for MPa which indicates a small degree of pre-
remanence switching and yields a large remanence induction

. Conversely, there is significant preremanence switching for
MPa which increases the coercive field and sig-

nificantly diminishes .
The hysteresis data in Fig. 1 illustrates one effect of stresses

on local interaction fields . The data collected with
MPa exhibits little preremanence switching and hence
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Fig. 1. Hysteretic (––) and anhysteretic (���) H–B behavior of steel data from Pitman [5] for differing input stress levels: (a) 100 MPa, (b) 0 MPa,
(c) �200 MPa, and (d) �400 MPa.

negligible interaction fields. For large compressive stresses,
however, local interaction fields are sufficiently large that
effective fields produce switching far in advance
of remanence. As detailed by Goodenough [8], the decrease
in for tensile stresses can be attributed in part to stress-
enhanced common easy axes between grains. The ramifications
of these observations for model development will be discussed
in Section III-C.

The data obtained with fixed compressive stresses also
illustrates that both the local coercive fields and local
interaction fields are manifestations of underlying distribu-
tions rather than constant coefficients. The distributed nature
of is reflected in the observation that is finite
at whereas the variance in is indicated by the fact
that is changing as the applied field is reduced to
zero—materials having a small variance in would exhibit
nearly linear behavior in the differential permeabilities at
remanence. The incorporation of densities for and to
accommodate the effects of polycrystallinity, material non-
homogeneities, and various stress dependencies is one of the
hallmarks of the framework.

To further illustrate the anhysteretic behavior of steel, we plot
in Fig. 2 anhysteretic data from Jiles and Atherton [9] collected
at higher field inputs than the Pitman steel data shown in Fig. 1.
The crossing of the anhysteretic curves at different field and
stress values constitutes the Villari reversal and plays a funda-
mental role in the determination of appropriate Gibbs energy

Fig. 2. Stress-dependent anhysteretic data from Jiles and Atherton [9].

functionals. Additionally, it has been observed in [10], [11] that
when operating about a biased input field, the magnetization
or induction can approach offset anhysteretic curves associated
with biased minor loops. Hence, theory must also accommo-
date this effect since transducers typically operate in such biased
regimes.

The physical mechanisms which produce these macroscopic
effects are complex and, for many materials and operating
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Fig. 3. �-B behavior of steel data from Craik and Wood [12] at field levels of (a) 26.6 A/m and (b) 132 A/m.

conditions, are not well understood. We summarize here only
certain mechanisms which are pertinent for subsequent model
development.

From a theoretical perspective, the anhysteretic magnetiza-
tion (or induction) represents the global equilibrium configu-
ration of the magnetization (or induction) for a specified field
level. The pinning sites and easy axes provide local minima in
underlying energy relations which determine the magnetization
(or induction) unless sufficient energy is provided to overcome
the local barriers and achieve the global minimum provided by

.
In the model developed in this paper, depends on the

choices of Gibbs energy and interaction field behavior. The
stress dependence and Villari reversal illustrated by the data in
Figs. 1 and 2 are accommodated through the choice of Gibbs
functional and interaction field density.

B. Asymmetry of Magnetization (Induction) Changes for
Tensile and Compressive Stresses

Asymmetry properties of the magnetomechanical effect for
compressive and tensile stresses are illustrated in Fig. 3 with
steel data from Craik and Wood [12] collected at fixed field
levels of 26.6 and 132 A/m. For the first case, it is observed that
for low stress levels (e.g., less than 10 MPa), positive and nega-
tive stress inputs produce similar changes in . This forms the
basis for Brown’s theory [13] which posits that at low levels,
positive and negative stresses have the same influence on 90
domain walls and hence produce equal changes in the magne-
tization or induction. However, some asymmetry between pos-
itive and negative stresses is observed at essentially all input
levels and the asymmetry is profound at higher stress levels.

Additional observations which prove important for model de-
velopment are the following.

1) For A/m, changes sign at ap-
proximately MPa and MPa. This
represents the tensile and stress levels required to drive

to the anhysteretic curve at this fixed field
level—see Section III-A for additional details regarding
this phenomenon.

2) The slope is discontinuous at the minimum
value.

It will be demonstrated in Section IV that similar properties are
shared by data from other compounds.

Fig. 4. (a) Manner through which the magnetization near positive remanence
is driven to the anhysteretic curve through application of compressive stresses;
(b) and (c) steel data from Pitman [5] quantifying the �-B behavior for steel
near positive and negative remanence.

In concert, these properties demonstrate that stress-induced
pressure on 90 domain walls does not provide the sole mech-
anism producing magnetomechanical effects and additional
mechanisms which must be incorporated include stress-in-
duced changes in the anhysteretic magnetization (induction),
stress dependence of local coercive fields , and anisotropic
phenomena associated with preferential alignment with easy
axes that coincide with applied stresses.

C. Approach to the Anhysteretic Curve

Fig. 4 further illustrates the manner through which the ap-
plication of an applied compressive stress drives the induction
(equivalently, magnetization) near positive and negative rema-
nence ( A/m) to the anhysteretic value .
As detailed in [5], a steel specimen was driven to both posi-
tive and negative saturation and then held at the constant field
value 80 A/m while compressive stresses were applied and sub-
sequently released. A comparison of the data plotted in Fig. 4(b)
and (c) illustrates that in both cases, the induction was driven to

by input stresses of approximately MPa. These
stresses are thus sufficiently large to eliminate local minima as-
sociated with pinning sites so that the induction equilibrates
to the global minimum associated with . In other words,
local coercive fields have been reduced to zero. Close exami-
nation of the - relations upon stress release reveals that they
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are not constant thus reiterating the observation that the global
minima associated with are stress dependent as illustrated
in Figs. 1 and 2.

Additionally, it has been observed that the rate and manner
in which the induction or magnetization approaches the anhys-
teretic are also dependent on the stress rate . This rate
dependence was likely first noted by Ewing, who observed that
the remanence values and hysteresis associated with a soft iron
wire were significantly reduced by a series of impacts [11], [14]
whereas Brown [13] noted that for certain materials, a single im-
pact was sufficient to drive to . Hence, when modeling
this phenomenon, we quantify the dependence of local coercive
fields on both and .

The stress-induced reduction in local coercive fields can be
attributed in part to non-180 switching (90 domain wall move-
ment in iron and steel). As noted previously, however, sole con-
sideration of 90 domain wall movement does not explain the
asymmetric changes shown in Fig. 3 for compressive and ten-
sile stresses. Hence, 90 domain wall processes motivate aspects
of the characterization framework but do not constitute the sole
mechanism in the model.

D. Model Development

An early model for the direct magnetomechanical effect
was provided by Brown [13] based on the tenet that at low
levels, stress-induced changes in the magnetization obey
Rayleigh’s law. Whereas this theory predicts phenomena
such as shock-induced magnetization changes, it does not
accommodate the asymmetric tensile-compressive behavior
shown in Fig. 3. In [15] and [16], Jiles and Li provide a
model which does accommodate a number of the phenomena
illustrated in Fig. 1–4. This model extends the framework of
Jiles and Atherton [9], [17]—which is based on the construc-
tion of anhysteretic, irreversible and reversible magnetization
components —through the incorporation of
stress dependence in and a law of approach based on
the elastic energy. For feedback control applications, however,
this framework can have limited utility since biased minor
loop closure can only be enforced with a priori knowledge
of turning points—with feedback control, turning points are
dictated by state behavior which is typically unknown when
control is initiated. Finally, we note that the characterization
of magnetoelastic coupling mechanisms via nonequilibrium
thermodynamics theory is addressed in [18].

In this paper, we construct a model for the direct magnetome-
chanical effect with the goal of providing sufficient accuracy for
material characterization and sufficient efficiency for optimal
device design and real-time control implementation. To accom-
modate a wide range of magnetic actuator and sensor applica-
tions, the framework is constructed to encompass a broad range
of inputs, operating conditions, and constituent materials, and
to provide the robustness required for control design.

The model is based on the framework developed in [19]–[21]
to quantify the hysteretic and nonlinear – and – be-
havior of ferromagnetic materials. In the first step of that devel-
opment, Helmholtz and Gibbs energy relations are constructed
at the lattice level to quantify the local average magnetization
for homogeneous materials and effective fields. In the second

step of the development, the effects of polycrystallinity, mate-
rial nonhomogeneities, and variable effective fields are incor-
porated by positing that local coercive fields and interaction
fields are manifestations of underlying distributions rather
than constants. Stochastic homogenization in this manner pro-
vides macroscopic models which accurately characterize a wide
range of material behavior—including closure of biased minor
loops when appropriate, magnetic after-effects and thermal re-
laxation, and anhysteretic behavior—and are sufficiently effi-
cient to permit subsequent control implementation.

Here, we extend that framework to accommodate the
stress-dependent magnetization behavior associated with the
direct magnetomechanical effect. In the lattice-level energy
relations, this requires extension of the Helmholtz and Gibbs
energy expressions to incorporate elastic and magnetoelastic en-
ergy components associated with measured - - -
and - behavior. In the stochastic homogenization com-
ponent, we determine phenomenological expressions for the
densities and , associated with the local coercive field

and interaction field , which accommodate the decay
in coercivity observed in Fig. 4 and changing interaction field
behavior shown in the hysteresis data in Fig. 1.

In [19], it is demonstrated that the original framework pro-
vides constitutive relations which can subsequently be used to
construct distributed models for a wide range of actuators with
field inputs. Similarly, the extended magnetomechanical model
can be used to construct distributed models for magnetic sensors
and actuators subjected to field and/or stress inputs.

In Section II, we summarize the hysteresis framework of
[19]–[21], and in Section III, we extend it to construct the mag-
netomechanical model. Attributes of the model are demonstrated
in Section IV through fits to experimental steel and iron data.

II. MAGNETIC HYSTERESIS MODEL

To provide the underlying framework for the magnetome-
chanical model, we summarize first the model developed in
[19]–[21] which quantifies the hysteresis and constitutive
nonlinearities inherent to the – and – behavior of fer-
romagnetic materials. The model was developed in the context
of uniaxial materials but is generally applicable to isotropic
and weakly anisotropic materials. The framework provides the
capability for incorporating magnetic after-effects and thermal
relaxation but does not include eddy-current losses; hence, it
should be employed for low-frequency regimes or transducer
architectures for which eddy-current losses are minimal.

As detailed in [19]–[21], application of mean field theory at
the lattice level yields the Helmholtz energy relation

(1)

which quantifies the internal energy at temperature . Here,
and respectively denote the Curie point for the ma-

terial, a bias field, and the saturation magnetization. We note that
(1) yields a double well potential for and a single well
for so that delineates the transition between ferro-
magnetic and paramagnetic phases.
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Fig. 5. (a) Helmholtz energy  and Gibbs energy G for increasing field
H(H > H > 0). (b) Dependence of the local average magnetization �M
given by (4) or (5) on the field in the absence of thermal activation.

For fixed temperature regimes, the efficiency and robustness
of subsequent models can be improved by truncating Taylor ex-
pansions of (1) about the stable and unstable equilibria to obtain
the piecewise quadratic relation

(2)

where . As shown in Fig. 5, the local remanence
value occurs at the positive is the positive
inflection point, and is the reciprocal of the slope for the hys-
teresis kernel after switching. For simplicity, we will focus on
(2) throughout the remainder of the discussion while noting that
analogous theory holds for (1) as detailed in [19]–[21].

The Gibbs energy relation

(3)

incorporates the magnetostatic energy which quantifies
work due to an applied field ( denotes the permeability). The
behavior of for and is depicted in Fig. 5(a).

For operating regimes in which relaxation phenomena or
magnetic after-effects are negligible, the local average magne-
tization is determined directly through minimization of .
For the Helmholtz relation (2), enforcement of the sufficient
condition yields

(4)

where, again, for positively oriented moments and
for those with negative orientation. To quantify in terms

of initial moment configurations and previous switches, we let
designate the initial orientation and take

and

and .

(5)

Here

(6)

delineates the local coercive field and

or

denotes transition times where is the final time under con-
sideration. The behavior of given by (4) or (5) is depicted in
Figs. 5(b) and 6(b).

We note that enforcement of with given by
(1) yields the familiar Ising relation

(7)

where and . The
incorporation of the magnetization in the effective field

guarantees that hysterons specified by (7)
exhibit noncongruency as measured for certain materials or
operating regimes—e.g., Stoner–Wohlfarth particles. We note
that the Ising kernel (7) saturates at high fields whereas the
piecewise linear kernel (4) or (5) exhibits linear – be-
havior. As illustrated in Section IV, the latter provides accurate
characterization at moderate to high drive levels but (7) should
be employed if the quantification of saturation behavior is
required.

For regimes in which thermal relaxation or magnetic after-ef-
fects are significant, the Gibbs energy and relative thermal en-
ergy are balanced through the Boltzmann relation

(8)

which quantifies the probability of obtaining the energy level
—see [19, Sec. 2.6.2] for an energy derivation of (8). Here

and respectively denote Boltzmann’s constant, a refer-
ence volume, and an integration constant chosen to ensure inte-
gration to unity.

As detailed in [19], [20], the local average magnetization ex-
pression which incorporates thermal relaxation is

(9)

where and respectively denote the fractions of moments
having positive and negative orientations and are
the associated average magnetizations. The latter are quantified
by the relations

(10)
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Fig. 6. (a) Gibbs energy profile with a high level (���) and low level
(––) of thermal activation in the Boltzmann probability �(G) = Ce .
(b) Local magnetization �M given by (9) with high thermal activation (���)
and limiting magnetization �M specified by (4) or (5) in the absence of thermal
activation (––).

The evolution of moment fractions are quantified by the differ-
ential equations

(11)

where

(12)

respectively denote the likelihoods that moments switch from
positive to negative, and conversely. In these relations, is a
small positive constant and denotes the material-dependent
relaxation time so that quantifies the frequency at
which moments attempt to switch.

As depicted in Fig. 6, the local magnetization relation (9) in-
corporates moment switching due to thermal processes in ad-
vance of fields required to eliminate minima of . This molli-
fies the switching profile and reduces the local coercive field as
compared with the thermally inactive hysteron (4). It is proven
in [19] and [20] that the thermally active magnetization relation
(9) converges to the relation (7) in the limit of neg-
ligible relative thermal energy.

To incorporate the effects of polycrystallinity, material and
field nonhomogeneities, inclusions, and texture, we assume that
lattice nonhomogeneities produce a distribution of Gibbs energy
relations of the form (3). This variability can be incorporated
through the assumption that the local coercive field given by
(6) and interaction field are stochastically distributed with
respective unnormalized densities and which satisfy the
decay criteria

defined for

(13)

for positive . These assumptions enforce the phys-
ical properties that local coercive fields are positive, low-field

Rayleigh loops are symmetric [22], and local coercive and in-
teraction fields decay as a function of distance.

As detailed in [19]–[21], one choice for and which facil-
itates implementation and provides sufficient accuracy for var-
ious materials and applications is

(14)

where are positive constants and ;
if the densities are normalized, we note that . It is shown
in [23] that the mean and variance of the lognormal distribution
satisfy the properties

(15)

if is large compared with .
Alternatively, one can estimate general density relations using

the techniques detailed in [24] for the analogous ferroelectric
model.

The resulting macroscopic magnetization model is

(16)

where is the effective field and is given by
(4), (5) or (9). Approximation of the integrals in (16) yields

(17)
where are abscissas, are quadrature weights,
and denote the number of quadrature points.

Because local coercive fields play no role in the anhysteretic
material behavior, the global anhysteretic model is

(18)

For thermally inactive regimes, the kernel is given by

(19)

whereas one would employ the kernel (9) to incorporate
magnetic after-effects. Details regarding the construction,
implementation, and accuracy of these models for various
ferromagnetic materials can be found in [19]–[21].

III. MAGNETOMECHANICAL MODEL

To incorporate the magnetomechanical effects detailed in
Section I and illustrated in Figs. 1–4, we consider three exten-
sions to the hysteresis framework outlined in Section II. 1) We
first formulate a more general Gibbs energy relation which
incorporates the elastic energy and effects of magnetome-
chanical coupling. 2) Secondly, we develop a stress-dependent
expression for the mean , employed in the relation (14),
which incorporates the asymmetric behavior shown in Fig. 3
and decay exhibited in Fig. 4. 3) Finally, we develop a stress-
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dependent relation for the variance of the interaction field
density , employed in the hysteresis model (16) and an-
hysteretic model (18), which incorporates the stress-dependent
interaction field variance exhibited by the data plotted in Fig. 1.
We note that in the absence of stresses or instance of negligible
applied stresses, the magnetomechanical model reduces to the
ferromagnetic hysteresis framework summarized in Section II.

A. Gibbs Energy

We consider material characterization and actuator and sensor
designs for which applied fields and stresses are co-axial which
permits the use of scalar magnetization and strain relations. To
incorporate the stress-dependent anhysteretic behavior shown in
Fig. 2, we extend the Gibbs relation (3) to

(20)

where is given by (2). Here denotes the Young’s mod-
ulus at constant magnetization, is the uniaxial strain,
and are stress-dependent magnetoelastic coupling coeffi-
cients, and is a constant magnetoelastic coefficient.

For a fixed magnetization level, enforcement of the sufficient
condition yields the nonlinear constitutive relation

(21)

where

(22)

denotes the stress-dependent magnetostriction. Following the
approach in Jiles [15], we employ two-term Taylor expansions

(23)

for the coupling coefficients. It should be noted that the an-
hysteretic curves will not cross if and hence only
quadratic magnetoelastic coupling terms are employed in the
Gibbs energy. Moreover, if the magnetostriction is independent
of stress, and hence , the anhysteretic
curves will cross at a single point. The anhysteretic behavior
shown in Fig. 2 dictates the retention of all four components.
Additionally, the quartic term is included to main-
tain continuity between the internal energy quantified by the
Helmholtz energy and the magnetoelastic energy. The coeffi-
cients and are identified through
a least squares fit to the data.

For operating regimes in which thermal excitation is suffi-
cient to cause discernible magnetic after-effects, the local mag-
netization is specified by (9) with the Gibbs relation (20) em-
ployed in (10)–(12). For regimes in which thermal activation is
negligible, enforcement of the sufficient condition
yields the stress-dependent local average magnetization relation

(24)

For model construction, this cubic relation can be solved either
using a gradient-based optimization method or directly using the
cubic formula summarized in Appendix A.

B. Stress Dependence of

It is illustrated in Figs. 2 and 3 that for fixed field inputs, the
application of sufficiently large compressive or tensile stresses
will drive the magnetization to the anhysteretic curve
(equivalently to ). As noted in Section I-C, this can be
interpreted as stress-induced elimination of local minima asso-
ciated with pinning sites and easy axes so that the magnetization
achieves the global minimum associated with . One mani-
festation of this phenomenon is that local coercive fields are
driven to zero since single-valued anhysteretic curves indicate
the absence of .

One mechanism which contributes to this “approach to the
anhysteretic” is 90 switching and 90 domain wall movement.
As discussed in Section I-B, however, the measured asymmetry
between compressive and tensile stresses prohibits a sole re-
liance on this mechanism and a complete characterization of en-
ergy phenomena contributing to this effect presently precludes
the development of macroscopic models that are sufficiently ef-
ficient for transducer design and control implementation. In-
stead, we provide a phenomenological characterization of the
coercive field mean which accommodates
the phenomena discussed in Sections I-B and I-C. Consider the
representation

(25)

where and .
The fourth term in the exponential incorporates the slope dis-
continuity discussed in item 2) of Section I-B. The second and
fourth terms provide symmetry for low compressive or tensile
stresses whereas the first and third terms provide asymmetry.
For fixed stresses, we note that . The be-
havior of with positive and is
illustrated in Fig. 7.

The relation (24) quantifies the reduction in coercive fields
achieved during the application of tensile or compressive
stresses but it does not designate the retention of achieved
coercive fields when applied stresses are released. To illustrate,
consider the Pitman data shown in Fig. 4(c). The relation
(25) is used to quantify as compressive stresses are
increased from 0 MPa to 400 MPa but the mean remains at

as stresses are returned to 0 MPa. For
this complete compressive cycle, the mean coercive field is
quantified by the relation

(26)

where MPa for this example. Similarly, a single
tensile cycle would be quantified using the expression

.
(27)

Analogous relations based on previous minima and maxima can
be used to characterize the mean coercive field for multiple
cycles.

To construct the density given by (14) for a specific
material, the parameters and are estimated
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Fig. 7. Behavior of �H (�) given by (25) with Ĥ ; k ; k ; k > 0 and (a) k = 0, (b) k > 0.

Fig. 8. Interaction field density � (H ) with (a) small variance b , and (b) large variance b .

through a least squares fit to data. As illustrated in Section IV,
suitable accuracy can be obtained for certain materials and op-
erating conditions with null values for certain parameters.

Remark: We note that (24)–(27) can be interpreted as para-
metric representations for an unnormalized density for the local
coercive field mean.

C. Stress Dependence of

It is noted in Section I-A and illustrated in Fig. 1 that ap-
plied stresses can significantly alter both the remanence magne-
tization (or remanence induction ) and the differential
susceptibility or differential permeability at
remanence. The reduction in and for large com-
pressive stresses can be attributed in part to local interaction
fields which cause switching in advance of a sign reversal
in applied fields . As detailed in [8], local interaction field be-
havior and associated domains having reversed magnetization
are influenced by a number of factors pertaining to domain wall
formation including: 1) magnetic annealing and cold rolling to
reduce misalignment between grains and 2) alignment of easy
axes for varied grain orientations through the application of ten-
sile stresses. The first mechanisms provide means for control-
ling the shape of hysteresis loops and reducing the stress de-
pendence of local interaction fields—e.g., the anhysteretic and
hysteresis data reported in [9] and summarized in Fig. 2 exhibit
minimal stress dependence in compared with the Pitman
data shown in Fig. 1.

To characterize stress dependence in for materials where
it is significant, we consider the influence of stress on the density

Fig. 9. Interaction field variance with (a) saturation at large tensile stresses,
and (b) saturation for large tensile and compressive stresses.

. For large tensile stresses, the dearth of preremanence
switching indicates a small variance for and hence the
effective field —we assume no variation in the
applied field —as depicted in Fig. 8(a). For large compres-
sive stresses, there is significant preremanence switching which
indicates large as depicted in Fig. 8(b). The variance thus
exhibits the qualitative stress dependence depicted in Fig. 9(a)
and (b) depending on the degree of emphasis placed on satu-
rating effects for large compressive stresses.

In Section IV-B, we employ a polynomial relation of the form

(28)

which yields the form shown in Fig. 9(a), when characterizing
the steel data shown in Fig. 1. We note that when constructing
spline representations of the form (28) for , units should
be chosen to avoid overflow errors (e.g., MPa rather than Pa).
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TABLE I
PARAMETERS TO BE IDENTIFIED FOR MODEL CONSTRUCTION

TABLE II
PARAMETERS EMPLOYED IN THE MODEL FITS TO DATA FROM JILES AND ATHERTON [9], PITMAN [5], BIRSS, FAUNCE, AND ISAAC [25] AND CRAIK AND WOOD [12]

D. Model Parameters and Parameter Estimation

The units, definitions, and interpretations of parameters
employed in the magnetomechanical model are compiled in
Table I.

The techniques used to estimate these parameters depend
in part on the nature of available data. Stress-invariant, an-
hysteretic data represents the most fundamental form and, if
available, this can be used to estimate and . The
reciprocal slope after switching provides an initial
estimate for whereas the parameters and linearly
scale the magnetization so their values can be adjusted to
provide the correct remanent magnetization (if
is the measured remanence value). The interpretation of
is qualitative rather than quantitative with larger values of
yielding increased preremanence switching.

Stress-invariant hysteresis data represents the next level of
complexity and, if available, this type of data can be used to es-
timate and . An initial estimate for the mean local coercive
field can be obtained from the measured coercive field .
The interpretation of is similar to that of and is qualitative
in nature.

For fixed stresses ), the choices
simplify the identification process whereas the choices

can be invoked if stress-dependent variability
in is negligible.

For general stress-dependent operating regimes, it is nec-
essary to estimate all of the parameters in Table I through
a least squares fit to data. The least squares functional can
be minimized using either gradient-based algorithms (e.g.,

quasi-Newton or Levenberg–Marquardt) or simplex-type algo-
rithms (e.g., Nelder–Mead) depending upon available software.
If available, constrained optimization routines provide the ca-
pability for enforcing parameter constraints (e.g., positivity or
physical bounds) which can facilitate the optimization process.

IV. MODEL VALIDATION

To illustrate attributes of the magnetomechanical model, we
consider four examples in which it is used to characterize steel
and iron data sets from Jiles and Atherton [9], Pitman [5], Birss,
Faunce, and Isaac [25] and Craik and Wood [12] for a variety
of compounds and input conditions. Details regarding the spe-
cific materials and experimental conditions can be found in the
respective citations. Additional examples illustrating the perfor-
mance of the model in the absence of applied stresses can be
found in [19]–[21], [26].

A. Jiles and Atherton Data

The data reported in [9] was obtained from a steel sample
of length 6 cm and cross-sectional area 1 cm. The composition
(% by weight) of the sample was C (0.08), Mn (1.98), S (0.08),
P (0.015), Cu (0.055), and Mo (0.235).

The anhysteretic model (18) is more fundamental than the
hysteresis model (16) in the sense that it does not require local
coercive fields. Hence, parameters in (18) with the kernel (4)
were estimated first through a least squares fit to the anhysteretic
data shown in Fig. 2 to obtain the values summarized in Lines 1
and 5 of Table II. We note that since

. Because the data exhibits minimal interaction field
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Fig. 10. (a) Anhysteretic magnetization data from Jiles and Atherton [9], (b) model fit, and (c) comparison between experimental data and model for stresses of
�200, 0, and 200 MPa. Abscissas: field (kA/m), ordinates: �B (tesla).

variability, we employed the constant variance relation
and hence took in (28). The resulting

model fits, with induction values computed using the relation
, are shown in Fig. 10 where it is observed

that through the use of the two-term Taylor expansion (23), the
model quantifies the multiple crossing points associated with the
Villari effect.

To characterize the hysteresis data plotted in Fig. 11, the
measured coercive field kA/m was employed as an
initial value and the parameters and compiled in Table II
were estimated through a least squares fit to the symmetric
major loop data. Measured periodic fields having lower am-
plitudes were subsequently input to the model—using the
same parameter values—to obtain the symmetric minor loop
predictions which are also plotted in Fig. 11. It is observed
that the model accurately characterizes the hysteretic material
behavior throughout the drive regime, including the approxi-
mately quadratic Rayleigh loop behavior at low input fields.
The performance of the framework employing the piecewise
quadratic Gibbs relation (3) with is illustrated in [20].

B. Pitman Data

The Pitman data plotted in Figs. 1 and 4 illustrates two
manifestations of the magnetomechanical effect: 1) stress
dependence in the interaction field variance , remanence, and
coercive field for certain materials and 2) stress-induced ap-
proach to the anhysteretic magnetization or induction .

Fig. 11. Hysteresis data from Jiles and Atherton [9], major loop fit, and minor
loop predictions with � = 0.

To estimate the model parameters summarized in Table I, we
first performed a least squares fit to the hysteresis data of Fig. 1
which was collected at fixed stresses ranging from 100 MPa to

400 MPa. This yielded the parameter values summarized in
Lines 2 and 6 of Table II, except for which are zero
when , as well as the coefficients

(29)
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Fig. 12. Hysteretic and anhysteretic data from Pitman [5] and model fits for stresses of (a) 100, (b) 0, (c) �200, and (d) �400 MPa. The vertical line at 80 A/m
in (b) is the fixed field level for the stress-dependent data and model response in Fig. 13.

in the variance relation (28). The model fits in Fig. 12 illustrate
that the framework quantifies the decrease in remanence, in-
crease in coercive field, and decrease in differential permeability

which occur as compressive stresses of increasing mag-
nitude are applied to the steel rod.

To characterize the decay to the anhysteretic shown in
Fig. 3, we simulated the experimental conditions described
in Section 1-C. The model was driven to positive or negative
saturation and then held at the constant field value of 80 A/m,
indicated by a vertical line in Fig. 12(b), while compressive
stresses were applied and subsequently released. Because

, this allowed identification of the parameters
in the relations (25)–(27) used to quantify the local

coercive field behavior.
The model fits in Fig. 13 demonstrate a reasonably accurate

characterization from positive remanence but a modeled pre-
diction of which is greater than the experimental value
when starting from negative remanence. This is due, at least in
part, to a discrepancy in the data. It is observed in the data of
Fig. 12(b) that the difference between and at 80 A/m is
roughly 1.6 T whereas the data in Fig. 13(b) indicates that the
anhysteretic is achieved with less than 1.4 T. A similar, but

less significant, discrepancy is noted in the data of Fig. 13(a).
Hence, the modeled behavior in Fig. 13 illustrates that the ap-
proach to the anhysteretic is consistent with the fixed-stress data
in Fig. 12.

C. Birss, Faunce, and Isaac Data

It was noted in Section I-B that tensile and compressive
stresses can yield asymmetric changes in and , even at
low input levels. In this example, we illustrate the performance
of the model for characterizing asymmetric induction changes
using iron data from Birss, Faunce, and Isaac.

As detailed in [25], the spectrographically pure iron specimen
had a diameter of 0.3175 cm and length of 9.84 cm so there was
negligible bending compression. Furthermore, the sample was
annealed at 800 C for 1 h. In the experiments yielding the data
shown in Fig. 14, the specimen was ac demagnetized at zero
stress followed by application of a 40 A/m field. This field value
was subsequently held fixed and tensile forces up to 29 MPa
were applied and removed. Following ac and stress demagneti-
zation, the same procedure was applied with a tensile force up
to 50 MPa. The data for compressive stresses was collected in
a similar manner. Analysis of this data indicates that whereas
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Fig. 13. Pitman data [5] and modeled changes in the induction B due to compressive stresses with an initial field of 80 A/m: (a) positive remanence, and
(b) negative remanence.

Fig. 14. Data from Birss, Faunce, and Isaac [25] and model predictions for
maximum stress inputs of �29 and �50 MPa at a fixed field value of H =

40 A/m.

the response is approximately symmetric for low stress inputs,
varying degrees of asymmetry are manifested even at pascal-
level inputs. The slope reversal at approximately 25 MPa in-
dicates that the anhysteretic induction has been reached
whereas tensile stresses in excess of 50 MPa are required to
drive to .

The model implementation simulated the experimental pro-
cedure in the sense that it was initialized at zero magnetiza-
tion (see [19] and [20] for implementation details), a field of
40 A/m was applied and held fixed, and tensile and compres-
sive stresses were applied and removed. A least squares fit to
the data yielded the parameters summarized in Lines 3 and 7 of
Table II and model response shown in Fig. 14. It is noted that
the nonzero values of and accommodate the asymmetry
noted in the data. Due to the lack of – or – data to indi-
cate potential variability in , we employed the constant value

. Whereas there is a slight discrepancy between the
data and model for low compressive stresses, the framework ac-
curately characterizes the primary magnetomechanical effects
manifested in the data.

D. Craik and Wood Data

We illustrate here the performance of the model for character-
izing the asymmetric magnetomechanical behavior of mild steel
using data reported by Craik and Wood. As detailed in [12], the
specimen consisted of a steel strip freely sliding in a slotted yoke
to permit application of both tensile and compressive stresses.
The experimental procedure is similar to that detailed in Sec-
tion IV-C, and data collected at fixed field levels of 26.6, 80,
and 132 A/m with input stresses up to 100 MPa is shown in
Fig. 15(a).

The model fit in Fig. 15(b), obtained with the parameter
values in Lines 4 and 8 of Table II, illustrates that the model
characterizes the qualitative material behavior at all three field
levels including the reversal in slope when the anhysteretic is
reached. The discontinuity in at is accommo-
dated by the term in the coercive field relations (26)–(27).
Hence the model achieves criteria 1) and 2) of Section I-B.
The primary discrepancy between the model and data occurs
after the anhysteretic is achieved where the data exhibits a
loss (multivalued loop) upon stress reversal whereas the model
predicts no loss. The source of this phenomenon in the data is
unexplained and is hypothesized to be due to mechanical losses
in the supporting yoke which are not accommodated by the
magnetomechanical model.

V. CONCLUDING REMARKS

The model developed in this paper quantifies aspects of the
direct magnetomechanical effect inherent to ferromagnetic
materials. The nucleus of the model is the framework devel-
oped in [19]–[21] to quantify the hysteretic and nonlinear

– and – behavior of the materials in the absence of
applied stresses. In the first step of the development, Helmholtz
and Gibbs energy relations are constructed to quantify the
internal and magnetostatic energies. For homogeneous and
isotropic materials, minimization of the Gibbs energy provides
a macroscopic model for operating regimes in which thermal
relaxation is negligible. To accommodate thermal relaxation or
magnetic after-effects, the Gibbs and relative thermal energies
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Fig. 15. (a) Data from Craik and Wood [12], and (b) model fits for 100 MPa inputs at fixed field levels of H = 26:6 A/m, H = 80 A/m, and H = 132 A/m.
Abscissas: stress (MPa), ordinates: �B (tesla).

are balanced using Boltzmann principles. In the second step
of the development, the effects of polycrystallinity, material
nonhomogeneities and inclusions, and variable effective fields
are incorporated through the assumption that local coercive and
effective fields are manifestations of underlying distributions.
Stochastic homogenization in this manner yields low-order
models that are sufficiently accurate for a wide range of mate-
rial characterization and sufficiently efficient to be employed
for transducer design and model-based control implementation.
It is demonstrated in [19]–[21], [26] that the original ferro-
magnetic hysteresis framework accurately quantifies major
and biased minor loop behavior, certain accommodation phe-
nomena, and magnetic after-effects in the absence of applied
stresses.

The complexity of mechanisms which contribute to the mag-
netomechanical effect presently precludes construction of low-
order macroscopic models based solely on energy principles. To
achieve the efficiency required for design and control purposes,
we instead use physical principles to motivate phenomenolog-
ical representations quantifying the effect of stress on the local
coercive field mean and interaction field variance. Because the
coercive field relation can be interpreted as a parametric repre-
sentation for an unnormalized density, this approach is commen-
surate with the strategy underlying both the energy-based hys-
teresis framework [19]–[21] and various classical and extended
Preisach models of employing stochastic homogenization tech-
niques to improve model accuracy and efficiency when quanti-
fying stochastic, highly complex, or poorly understood physical
phenomena. As illustrated through comparison and prediction
of experimental data, the resulting model provides the capability
for quantifying stress dependence in the remanence, coercive
field, and interaction field variance, the approach to the anhys-
teretic, and asymmetric tensile/compressive behavior.

The present model was framed in the context of the a priori
choices (14) of a lognormal representation for the local coercive
field and a normal or Gaussian representation for the local in-
teraction field. These choices satisfy the physical requirements

(13) but can yield limited accuracy for high fidelity charac-
terization for certain materials and operating conditions. It is
demonstrated in [19], [20], [26], that the identification of gen-
eral density values and provides the frame-
work with additional accuracy and flexibility. The extension of
these techniques to magnetomechanical phenomena and the de-
velopment of techniques to identify general density representa-
tions for and are under current investigation.

The present framework does not incorporate eddy-current
losses and hence it should be restricted to drive regimes or trans-
ducer designs where these effects are minimal. It also does not
incorporate crystalline anisotropy and extension of the theory
to accommodate uniaxial and cubic anisotropies constitutes
current research. Aspects of the converse magnetomechanical
effect have been addressed in [19], [21] but comprehensive
validation of constitutive relations and transducer models in-
corporating the combined direct and converse effects is under
investigation.

APPENDIX

A. Solution of Cubic Equations

Consider the cubic equation

(30)

If we let

(31)

then the following solution criteria hold:

one real root, a pair of complex conjugate roots

all roots real, at least two are equal

all roots real, irreducible case
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The roots are given by

(32)

where

(33)

For the cubic equation (24), and are given by

For the parameter choices employed in the validation in Sec-
tion IV, so we use the real root .
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