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Abstract

This dissertation presents robust and efficient mathematical techniques for model-

ing and simulation of smart material systems. First, passive materials are discussed

which undergo large deformations. Taking the Euler–Bernoulli cantilever beams as

an example, parametric large deflection components for the case of a combined tip

point loading are developed. Verified by comparison with numerical solutions, the

obtained parametric deflection solutions are valid for the entire beam length, and

independently and efficiently adaptable for very large loading conditions. To demon-

strate the robustness of the solutions, the piecewise parametric solutions are coded as

a stand-alone executable, BeamSol, which is envisioned to help engineering analyses

and syntheses of beam applications. Then, smart materials, in particular, magne-

tostrictive materials are discussed. A reformulation of the Discrete Energy-Averaged

model is given for the calculation of the 3D hysteretic magnetization and magne-

tostriction of iron-gallium (Galfenol) alloys, and an analytical solution procedure

based on eigenvalue decomposition is developed. This procedure avoids the singular-

ities present in the existing approximate solution by offering multiple local minimum

energy directions for each easy crystallographic direction. This improved robustness

is crucial for use in black-box finite-element codes. Also, analytical simplifications of

the 3D model to 2D and 1D applications are presented. To find model parameters,

the average of the hysteretic data is utilized. This obviates any need for anhysteretic

curves, which would require additional measurements. An efficient optimization rou-
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tine is developed that retains the dimensionality of the prior art, but improves the

accuracy and computational efficiency. Analytical derivations of the Jacobian and

Hessian matrices corresponding to this direct model are also presented. Then, a com-

putationally efficient and robust nonlinear modeling framework is presented for fast

design and optimization of nonlinear smart materials. The framework consists of a

novel 3D inversion scheme for nonlinear modeling of smart material transducers, and

a reduced 2D model for smart composite plate structures. Building on the New-

ton technique, the inversion scheme can be applied to any nonlinear smart material

system with a differentiable direct model. The nonlinear 2D magnetostrictive plate

model and the 3D inversion scheme are integrated with a finite-element software to

analyze an aluminum plate embedded with a Galfenol strip. The resulting nonlin-

ear finite-element framework is utilized to obtain major and minor magnetostriction

curves corresponding to the tip of the Galfenol patch exposed to unbiased and biased

magnetic fields. A significant advantage in computational time and numerical conver-

gence is demonstrated via comparison with an existing approach for magnetostrictive

material modeling. Finally, a globally convergent and fully coupled magnetomechan-

ical model is developed for 3D magnetostrictive systems. The inverse model finds the

unknown magnetic field and stress vectors for any specified magnetic flux density and

strain vectors. This inversion procedure is iterative, and is proposed for arbitrary

magnetostrictive materials. Built on continuation, the approach is globally conver-

gent, which makes it ideal for use in finite-element frameworks. Galfenol is chosen

as the magnetostrictive material, and the computational efficiency of the proposed

approach is shown to compare favorably against existing models.
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Chapter 1

Introduction and Background

This dissertation presents robust and efficient mathematical techniques for modeling

and simulation of smart material systems. Smart or active materials exhibit control-

lable changes in shape and properties in response to external stimuli. Such changes are

accompanied with coupling of different physical effects and conversion of energy from

one type to another. For instance, piezoelectric and electrostrictive materials con-

vert electrical energy to mechanical energy and vice versa; magnetostrictive materials

and magnetorheological fluids exhibit coupling of magnetic and mechanical effects;

shape-memory alloys and polymers respond mechanically to thermal activation; and

pH sensitive polymers swell in response to changes in external pH.

Passive materials (such as iron, steel, or aluminum) do not exhibit controllable

changes in shape and properties in response to external stimuli. In addition, their

response is not necessarily two-way coupled. For example, application of heat may

cause aluminum to deflect, but deflection of aluminum does not create substantial

heat. This one-way response is not as complex to model as that of smart materials,

but some materials (for example, epoxy), when exhibiting large deflection, reveal a

complex behavior, which is hard to model mathematically.

For the sake of completeness, techniques for both passive and active materials are

developed. In the first few chapters, the simpler materials, i.e., the passive materials,
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are discussed; then, the focus is given to the more complicated materials, i.e., the

smart materials, in the remaining chapters. In the following, overviews of passive

and smart materials, together with the major existing modeling tools are given, in

particular, for the magnetostrictive smart materials. Each section is followed by

relevant dissertation contributions.

1.1 Passive materials

Passive materials have long been used, for example, for the construction of mech-

anisms to transmit motion. If exhibiting considerable rigidity, the corresponding

materials have been utilized for designing rigid mechanisms, whose components do

not deform considerably under the load exertion. The four-bar mechanism is one

well-known example. See Ref. [1] and the references therein, for more details. On

the other hand, if exhibiting flexibility, the corresponding materials have found ap-

plications, within the last decades, for the design of a new type of mechanisms called

“compliant mechanisms”. Unlike rigid mechanisms, compliant mechanisms attain

their mobility from the flexibility of their members which, in essence, is the cause of

transmitting or transforming motion, load, or energy. Part-count reduction, reduced

assembly time, ease of manufacturing, increased reliability and precision, wear, weight

and maintenance reduction are the major advantages of compliant mechanisms over

their rigid counterparts. These advantages may be classified as production cost re-

duction and increased mechanical performance. However, compliant mechanisms pose

several challenges that may not be found in their rigid counterparts. Several factors,

such as the location, direction and magnitude of applied forces or even the material

that is used for the synthesis, may affect the motion of a compliant mechanism. The

mathematical modeling of these effects is an open and a very challenging problem.

See Ref. [2] for more details.
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Beams are slender structural members that have been the building block of many

compliant mechanisms. Beams have also found applications in mechanical engineering

in the design of shafts, gas turbines, rotor blades, engine components, wind turbine

rotors, precision engineering flexures and so on, in aerospace engineering in the design

of propellers, helicopter rotor blades, high aspect ratio aircraft wings and so on, in

civil engineering for the synthesis of buildings, highways, bridge constructions, etc.

The identification of a beam’s governing load-deformation relations, especially when

deflections are large, has emerged as a challenging problem primarily due to the

inherently severe nonlinearities caused by the geometry and the material of the beam

and even the type and position of the applied loading. See Ref. [3] for the nonlinear

composite beam theory.

Work has been done on linear beam theory to obtain explicit solutions for the small

deformation of cantilever beams subjected to tip point loading. However, these solu-

tions are not valid once the beam’s axis slope is significant. Large deflection solutions

are now necessary to address the new beam applications. The first demonstration of

the exact implicit elliptic integral solutions of an Euler–Bernoulli cantilever beam of

uniform cross section for the case of a vertical tip point force appears to be Ref. [4].

These solutions were generalized in Ref. [5] for the case of general combined tip point

loading.

However, elliptic integral solutions have imposed challenges on the solutions eval-

uations and implementations. These have motivated researchers to employ or in some

cases devise alternative approaches, such as numerical integration methods, shooting

methods, finite-element methods. See Ref. [2] for a review. Moreover, with employing

nonlinear shooting and Adomian’s decomposition methods, numerical and approxi-

mate large deflection solutions for concentrated intermediate and end point loading

were obtained in Ref. [6]. Recently, a numerical integral approach was developed in
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Ref. [7] which may be applicable for complex load and variable beam properties. The

uniqueness of large deflections of a uniform cantilever beam under a concentrated

rotational tip load was also studied in Ref. [8]. In addition, cantilever beams with

nonlinear elastic materials have been studied. Ref. [9] investigated the large deflec-

tion of cantilever beams made of a Ludwick type material subjected to combined

concentrated vertical tip point and uniformly distributed forces. The same problem

was recently studied in Ref. [10] with a bending moment formulation.

Due to the absence of explicit analytical large deflection solutions, research has

been shifted toward approximating the beam’s flexibility with Pseudo-Rigid-Body

models (PRB models), which consist of rigid segments joined with torsional springs

that compensate the compliance. These models basically employ the kinematic loop-

closure equations, thus, have been proved to simplify the analysis and the design of

beam based devices. In this regard, Ref. [11] proposed a pseudo-rigid-body model

consisting of two rigid links and an intermediate torsional spring whose geometric

specifications were identified with a one-dimensional optimization search procedure,

which minimized the tip point deflection errors exploiting the numerical elliptic in-

tegral data. The outcome was a PRB 1R model, which mimics the trajectory of the

beam’s end point for a certain domain of pure end–force parameters. An improved

variable parametric pseudo-rigid-body model was then proposed in Ref. [12] which

increased the validity range of the PRB 1R model. By adding one link and one joint

to the previous PRB 1R models, Ref. [13] proposed a PRB 2R model, which is valid

for general combined loading, especially cases causing inflection points.

1.1.1 Contributions

Motivated by the importance of closed form solutions for parametric studies of en-

gineering and scientific boundary value problems, Automatic Taylor Expansion tech-
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nique (ATET) is discussed in Chapter 2. Documented in Ref. [14], ATET is shown

to be effective when written about the domain center of the boundary value problem.

For a system of ordinary differential equations, it is shown that one may control the

accuracy of each solution independently of that of the other solutions, hence, effi-

ciently describing the nonlinearity of the entire system. Utilizing ATET, applications

from micropolar fluids, heat transfer, and theoretical biology are studied. To facilitate

parametric studies, approximate parametric closed form solution for each application

is given. In particular, for the biology and heat transfer applications, the proposed

solutions are valid, even though the differential solver of Mathematica fails to return

numerical solutions. For the case of micropolar fluids, the accuracy of each stream

function solution can be controlled independently of that of the remaining solution.

Discussed in Chapter 3 and documented in Ref. [15], parametric large deflection

components of Euler–Bernoulli cantilever beams subjected to combined tip point load-

ing are developed. The characteristic equation of the beam’s deflection is introduced,

and with employing ATET, deflection solutions to the Euler–Bernoulli boundary value

problem are presented in terms of the loading parameters. The obtained ATET de-

flection solutions, verified by comparison with the numerical solutions, are valid for

the entire beam length, and independently and efficiently adaptable for very large

loading conditions and easily implementable for engineering analyses and syntheses.

Exploiting these solutions as theoretical tools, the beam’s angular and axial deflec-

tions behavior for several tip point loading conditions are studied. Besides the widely

known axial inflection points, beam’s angular inflection points are also recognized

for the mixed loading condition, and it is shown that the parametric solutions are

intelligent in recognizing the right deflection branch for both inflection types.

In addition, cartesian and piecewise parametric large deflection solutions are de-

rived in Chapter 4 and documented in Ref. [16]. Employing the latter solutions,
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BeamSol, a stand-alone large deflection beam solver, is coded in Visual C++.

1.2 Smart materials

In contrast to passive materials, the coupling of physical effects in smart materials

enables tuning of material properties, thus, making smart materials attractive for

design of sensors [17], actuators [18], energy harvesters [19], and vibration controlling

devices [20]. See Ref. [21, 22] for more on smart materials.

Smart materials typically exhibit nonlinear and hysteretic behavior, even though

certain smart materials can be characterized using linear models within a specified op-

erational regime. For instance, piezoelectric materials like PZT, PVDF, and BaTiO3,

when poled, exhibit approximately linear behavior for low to moderate inputs [23].

These linear constitutive models are often sufficient for efficient transducer designs.

In contrast, magnetostrictives, electrostrictives, and shape memory alloys or polymers

exhibit higher order of nonlinearity and hysteresis, and cannot be fully characterized

with linear equations.

Magnetostrictive materials are a class of smart materials that exhibit nonlinear

magnetomechanical coupling. These materials undergo dimensional changes when

exposed to a magnetic field, and exhibit magnetization changes when they experi-

ence external stress fields. Two common magnetostrictive materials are terbium-

dysprosium-iron and iron-gallium alloys, known as Terfenol-D and Galfenol, respec-

tively. The former has relatively large magnetostriction (≈ 1600 ppm) at a moderate

magnetic field (≈ 200 kA/m), making it well suited for actuator designs; see for exam-

ple Chakrabarti and Dapino [24]. Referring to Ref. [26], Galfenol exhibits moderate

magnetostriction (≈ 350 ppm) at low magnetic fields (≈ 8 kA/m); possesses high ten-

sile strength (≈ 500 MPa), and a high Curie temperature (675 ◦C); and demonstrates

limited variation in magnetomechanical properties for temperatures between -20 and
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80 ◦C. When composed of less than 20% gallium, Galfenol retains the machinabil-

ity and ductility of iron, thus, it can be easily produced in sheets or wires; welded,

threaded or extruded into unprecedented complex geometries to gain significant load-

bearing capabilities. In contrast, Terfenol-D is brittle, and always requires stress

biasing to avoid tension. See Atulasimha and Flatau [27] for a review of iron-gallium

alloys.

The intrinsic nonlinearity and hysteresis manifested by magnetostrictives, elec-

trostrictives, and shape memory alloys or polymers add complexity to devise models.

To date, several methods exist to efficiently model the behavior of the aforementioned

materials. At one extreme, a phenomenological approach fits a curve or surface to

measurement data, which provides efficiency but ignores the underlying physics. At

the other extreme, microscopic models consider all known energies and are very accu-

rate. For example, a well-known paradigm to determine the magnetization evolution

in a ferromagnetic material is to solve Landau-Lifshitz equation [28]. To this end,

a Gauss-Seidel projection method was proposed by Wang et al. [29]; a boundary-

corrected algorithm for general geometry was developed by Garćıa-Cervera et al. [30];

built on fast multipole method, Van de Wiele et al. [31] presented a numerical finite-

difference scheme that employs far and near field interactions to describe the interac-

tions between finite-difference cells; the recent high-order finite-element model devised

by Kritsikis et al. [32] can handle nonlocal magnetostatic interactions in logarithmic

time with nonuniform fast Fourier transform.

Finally, a third kind of approach, namely, the macroscopic modeling, uses an inter-

mediate approach by relating the macroscopic response of the material to simplified

descriptions of the microscopic behavior. Macroscopic models, therefore, strike a

balance between efficiency, accuracy, and predictive capability. For magnetostrictive

materials, in particular, the classical macroscopic models are the Preisach model [33],
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Globus model [34], Jiles-Atherton model [35], and Stoner-Wohlfarth model [36]. Ref. [37]

compares these models in detail. For Terfenol-D, Carman and Mitrovic [38] formu-

lated a model by expanding the Gibbs free energy in a truncated Taylor series, and

found the coefficients experimentally. Later, Zheng and Sun [39] considered higher

order terms in the expansion to improve the applicability of the model for larger

magnetic field inputs. Recently, a fully coupled 3D energy-averaged model was pre-

sented by Chakrabarti and Dapino [24]. Armstrong [40] proposed an incremental

hysteretic magnetoelastic constitutive theory of pseudo-cubic ferro-magnetostrictive

alloys that can be applied to both Terfenol-D and Galfenol. The bulk magnetization

and magnetostriction are the expected values of a large collection of magnetic mo-

ments. The probability density function is a Boltzmann distribution, where minimum

energy orientations are more probable. The Armstrong model is computationally in-

efficient, as it searches for global energy minima. Atulasimha et al. [41] improved

efficiency by considering only 98 fixed orientations. Evans and Dapino [42] greatly

enhanced the previous model by solving for the local minima along only six easy

directions of Galfenol. The computational cost of this model was further reduced by

Chakrabarti [43].

1.2.1 Contributions

Discussed in Chapter 5 and documented in Ref. [44], a reformulation of the Dis-

crete Energy-Averaged model for calculation of the 3D hysteretic magnetization and

magnetostriction of iron-gallium (Galfenol) alloys is presented. An analytical solution

procedure based on eigenvalue decomposition is developed. This procedure avoids the

singularities present in the existing approximate solution by offering multiple local

minimum energy directions for each easy crystallographic direction. This improved

robustness is crucial for use in black-box finite-element codes. Analytical simplifica-

8



tions of the 3D model to 2D and 1D applications are also presented. In particular, the

1D model requires calculation for only one easy direction, while all six easy directions

must be considered for general applications. Compared to the approximate solution

procedure, it is shown that the resulting robustness comes at no expense for 1D ap-

plications, but requires almost twice the computational cost for 3D applications. To

find model parameters, the average of the hysteretic data is employed. This obviates

any need for anhysteretic curves, which require additional measurements. An efficient

optimization routine is developed that retains the dimensionality of the prior art. The

routine decouples the parameters into exclusive sets, some of which are found directly

through a fast preprocessing step to improve accuracy and computational efficiency.

In addition, as discussed in Chapter 7 and documented in Ref. [45], a compu-

tationally efficient and robust nonlinear modeling framework is presented for smart

material systems. The framework consists of a novel 3D inversion scheme for nonlin-

ear modeling of smart material systems, and a reduced dimensional model (2D) for

smart composite plate structures. Building on the Newton technique, the inversion

scheme can be applied to any nonlinear smart material system with a differentiable

direct model. The 2D nonlinear magnetostrictive plate model and the 3D inversion

scheme are integrated with a finite-element software to analyze an aluminum plate

embedded with a Galfenol strip. The resulting nonlinear finite-element framework is

utilized to obtain complete and minor magnetostriction curves corresponding to the

tip of the Galfenol patch with applying unbiased and biased magnetic fields, respec-

tively. A significant advantage in computational time and numerical convergence is

demonstrated via comparison with an existing approach for magnetostrictive material

modeling. The framework is ideal for the fast design and optimization of nonlinear

smart material based transducers.

Furthermore, Chapter 8 presents a globally convergent and fully coupled magne-
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tomechanical model for 3D magnetostrictive systems. As documented in Ref. [46],

the inverse model finds the unknown magnetic field and stress vectors for any spec-

ified magnetic flux density and strain vectors. This inversion procedure is iterative,

and is proposed for arbitrary magnetostrictive materials. The inversion requirement

is a continuous and second order differentiable direct model for any magnetostric-

tive material. The approach is globally convergent, which makes it ideal for use in

finite-element frameworks. The premise of the proposed iterative system model is

to constitute a recursive correction formula based on second order approximations

of a novel scalar error function which allows to achieve a faster convergence rate. A

continuation approach is then used to achieve global convergence for arbitrary in-

put parameters. To illustrate, Galfenol is chosen as the magnetostrictive material.

Finally, the computational efficiency of the proposed approach is shown to compare

favorably against existing models.

1.3 Organization of the Dissertation

The next chapter presents automatic Taylor expansion technique, and illustrates it

with applications from micropolar fluids, heat transfer, and theoretical biology. Uti-

lizing this technique, Chapter 3 presents parametric large deflection solutions for

Euler–Bernoulli cantilever beams subjected to combined tip point loading. Chap-

ter 4 presents cartesian and piecewise parametric large deflection solutions, which are

implemented as the stand-alone executable BeamSol. Chapter 5 presents a reformu-

lation of the discrete energy-averaged model, and an exact solution procedure for the

calculation of the 3D hysteretic magnetization and magnetostriction of iron-gallium

(Galfenol) alloys. Jacobian and Hessian terms corresponding to this model are pre-

sented in Chapter 6. Built on these derivative terms, computationally efficient and

robust nonlinear system modeling frameworks for one-way coupled and fully coupled
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smart material systems are presented, respectively, in Chapters 7 and 8. Finally,

Chapter 9 gives conclusions, and addresses suggestions for future work.
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Chapter 2

Effective Start Point for the
Automatic Taylor Expansion

Technique

This chapter discusses the Automatic Taylor Expansion technique (ATET) for the ap-

proximate analytical solution of nonlinear ordinary boundary value problems appear-

ing in, particularly, engineering and scientific applications. Documented in Ref. [14],

it is shown that highly convergent ATET solutions can be obtained if the solution

is expanded about the domain center of the boundary value problem. Employing

ATET in a symbolic fashion, approximate analytical solutions are obtained for BVPs

arising in micropolar fluids, heat transfer, and theoretical biology. In particular, for

the biology and heat transfer applications, which lead to singular boundary value

problems, the proposed solutions are valid, while the differential solver of Mathemat-

ica fails to return numerical solutions. Additionally, it is shown that the accuracy of

each stream function solution for the micropolar fluids application can be controlled

independently of that of the remaining solution.

The rest of this chapter is organized as follows. After a brief introduction, Sec-

tion 2.2 gives the problem statement. Section 2.3 discusses ATET, and introduces

a generally optimal start point choice. Section 2.4 discusses three significant ap-

plications arising in engineering and science, and gives parametric ATET solutions
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validated by numerical results. Finally, summary and conclusions are given.

2.1 Introduction

The phenomena occurring in the nature may not be fully perceived unless their mathe-

matical modelings are carried out, solved, and the results scrutinized. However, most

of the phenomena are mathematically nonlinear, the fact that hinders us from a

tangible understanding of their behavior. Although numerical methods outside the

singularities are almost always effective choices, sampling highly nonlinear surfaces

not only is inefficient, the obtained digital data are often unreadable and insufficient

to recognize a pattern by the human-being.

To this end, through the past decades, several approximate analytical methods

have been devised, by numerous researchers, to circumvent the difficulties encountered

in the solution of the nonlinear differential equations. These methods, in essence, de-

liver approximate analytical solutions, which are crucial to parametric studies of a

desired problem arising possibly in diverse fields of science and engineering. Among

these methods, perturbation method [47] appears to be pioneer, arguably limited,

in solving nonlinear differential equations. Lyapunov’s artificial small parameter

method [48] and its variant developed later as the δ-expansion technique [49] are

based on embedding a small parameter, through which power series expansion solu-

tions are computed. These methods have one requirement in common which is the

existence of small/large parameters in the target differential equations.

In essence, recent work has been shifted toward alleviating this shortcoming.

Adomian’s decomposition method (ADM) [50] irrespective of the existence of the

small/large parameters is capable of solving highly nonlinear differential equations.

Built on this technique, Ref. [51] constructs an augmented system based on an in-

homogeneity function to solve inhomogeneous differential equations without any so-
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called noise terms. A modification of ADM for solving singular boundary value prob-

lems is also given in Ref. [52]. In addition, homotopy analysis method (HAM) [53]

exploits the topological concept of a linear convex homotopy, and offers an auxiliary

parameter ~ to further control the convergence rate of the obtained approximate an-

alytical solutions. The essence of the auxiliary parameter ~ is elaborated in Ref. [54],

and further improvements on the convergence of HAM are addressed in Ref. [55]. On

the other hand, the homotopy perturbation method (HPM) [56] specialized HAM by

setting ~ = −1, which has been shown, in the literature, to be an effective choice for

many nonlinear problems. Ref. [57] gives a comparison of HAM and HPM solutions

for the temperature distribution of a straight rectangular fin with a power-law temper-

ature dependent surface heat flux, which is also studied in this chapter. Furthermore,

based on the Lagrange multipliers and variational theory, variational iteration method

(VIM) [58] was introduced, which has been shown to be effective, in general, for the

solution of initial value problems (IVPs). However, Tari [59] proposed a modified

variational iteration method, which generalized VIM for the solution of boundary

value problems (BVPs) as well.

Finally, Taylor’s method has been a well-known technique for the solution of non-

linear differential equations. Ref. [60] has shown that this method once flavored with

automatic differentiation, called Automatic Taylor Expansion technique (ATET), is

well capable of numerically approximating the unknown solutions of nonlinear ordi-

nary IVPs. However, IVPs are of infinite computational domains, thus, require in-

terval analysis. This often leads to very high order polynomial approximations with

iterative adjustment of the step size taken along the entire solution domain which

would often lead to computational inefficiencies. The numerical ATET has also been

coded to developing black-box numerical softwares as in Refs. [61–63].

In contrast to IVPs, BVPs attain relatively smaller computational domains, which
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can obviate interval analysis. However, ATET loses its explicitness for BVPs, as it

delivers implicit solutions, which depend on unknown constants. Nonetheless, the

unknowns can be identified in a second step via imposing the boundary conditions.

However, this may lead to multiple solutions, or even to no solutions for singular

BVPs. In this chapter, we show that expanding the solutions about an appropriate

point can alleviate this shortcoming. In particular, if the domain center of the BVP

is a nonsingular point, expanding about this point would lead to highly convergent

solutions.

2.2 Statement of the Problem

Let F(z,Zm(z)) = 0 be the m-order ordinary differential equation where u(i)(z) =

diu(z)
dzi

and Zi(z) = (u(z), u(1)(z), . . . , u(i)(z)) for i = 0, . . . ,m. Let further G =

∪mi=1gi(zi,Zm−1(zi)) be the set of m initial or boundary conditions constraining F at

the given points zi. In addition, assume that F may be written as

F(z,Zm(z)) = −f(z) +
m∑
i=0

Ai (z,Zi−1(z))u
(i)(z) = 0. (2.1)

When the coefficients Ai (z,Zi−1(z)) are generally defined, the differential equa-

tion F(z,Zm(z)) becomes nonlinear, and a closed form solution for u(z) is, in general,

not attainable via traditional techniques. Our goal is to find a symbolic but approx-

imate solution u(z), which is accurate enough for engineering parametric studies.

2.3 Basic Concepts of the Automatic Taylor Ex-

pansion Technique (ATET)

First, a brief review of ATET is given in the following. Then, the start point choice,

multiple solution branches, and a generalization to a system of equations are discussed
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subsequently.

2.3.1 Review of ATET

Recall that the goal is to obtain a parametric approximate solution to eq. (2.1), whose

exact closed form solution may not exist. ATET employs the Taylor series expansion,

and approximates the solution u(z) in terms of the unknown higher order derivatives

as

u(z) = lim
M→∞

M∑
j=0

u(j)(z0)

j!
(z − z0)

j, (2.2)

where z0 is an appropriate point defined optimally considering them initial, or bound-

ary conditions G. As a result, the solution of the differential equation (2.1) and the

m constraints G is reduced to obtaining M + 1 unknown coefficients of the series

solution u(z) given by eq. (2.2). For simplicity, we denote C = ∪Mk=0ck as the set of

such unknowns, where ck =
1
k!
u(k)(z0).

A set of M + 1 equations is needed to determine the unknown set C. Clearly,

there are m initial and boundary conditions (G), which can be evaluated at z0 and

written in terms of the unknowns C. Additionally, not the entire M + 1 elements

of C are actually unknown. It appears that M − m + 1 of the unknown constants

C may be eliminated by considering the fact that all of the higher order derivatives

u(j)(z0), for j = m, . . . ,M , may be written in terms of the lower derivatives u(j)(z0),

for j = 0, . . . ,m − 1. This is possible by simply differentiating eq. (2.1) successively

for j = 0, . . . ,M −m with respect to the unknown z, evaluating the results at z0, and
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reformatting it as

u(m+j)(z0) =
1

Am(z0,Zm−1(z0))

[
f (j)(z0)−

j−1∑
k=0

(
j

k

)
A(j−k)
m (z0,Zm−1(z0))u

(m+k)(z0)

−
m−1∑
i=0

j∑
k=0

(
j

k

)
A(j−k)
i (z0,Zi−1(z0))u

(i+k)(z0)

]
.

(2.3)

As a result, as j increments successively from 0 to M −m all of the derivatives

u(m+j)(z0) are at hand in terms of the first m unknowns cr with 0 ≤ r < m. This, in

turn, allows for rewriting the solution u(z) in eq. (2.2) as

u(z) =
m−1∑
j=0

cj(z − z0)
j + lim

M→∞

M−m∑
j=0

u(m+j)(z0)

(m+ j)!
(z − z0)

m+j, (2.4)

where the second summation is explicitly at hand due to the recursive eq. (2.3). Note

that the solution u(z) contains, now, only m unknown constants C = ∪m−1
r=0 cr, which

would be identified upon utilizing the m available initial or boundary conditions G.

2.3.2 Choice of the Start Point z0

Choice of z0 has a dichotomous effect, namely, on the simplicity and convergence of

the ATET solutions. As for the former, if z0 is taken, for instance, a point which ap-

pears in the initial or boundary conditions G, the ATET solutions very often become

relatively simpler as some of the unknown higher order derivatives in the unknown set

C become known. To be precise, consider initial value problems, for which all of the

higher order derivatives are already given by the initial conditions. For such cases, if

z0 is taken as the initial point, the ATET solutions are completely explicit without

further computations. This may be considered as to why the numerical codes [61–63]

were specialized only for the initial value problems.
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In addition, choice of z0 also plays an important role in the accuracy and con-

vergence of the solutions. Note that the focus of the chapter is on boundary value

problems, and a finite domain of the independent variable is under consideration, say,

z0 ∈ [zL, zR], where zL and zR are distinct finite real numbers. While either zL or

zR may be the first candidate for z0, they often lead to poorly convergent solutions.

Nonetheless, problems that arise from engineering applications are known to have

physical and real solutions, and are assumed to be differentiable on the entire finite

computational domain, as a result of which a more effective alternative start point

exists for such problems.

Let RM(z) denote the residual error introduced by the truncation of the approxi-

mate ATET solutions. The identification of the optimal start point z0 may turn into

a minimization problem, whose objective function is the accumulation of the resid-

ual errors associated with each point on the computational domain. However, the

maximum error would, in general, occur at the two extreme points, i.e., zL and/or

zR, as for a chosen start point either boundary point requires the most extrapolation.

Therefore, an optimal start point must minimize both residuals RM(zL) and RM(zR).

One way of doing this is to minimize:

RLR = |RM(zL)|+ |RM(zR)|

=

∣∣∣∣∣
∞∑

i=M+1

u(i)(z0)

i!
(zL − z0)

i

∣∣∣∣∣+
∣∣∣∣∣

∞∑
i=M+1

u(i)(z0)

i!
(zR − z0)

i

∣∣∣∣∣
=

∞∑
i=M+1

∣∣u(i)(z0)∣∣
i!

[
(z0 − zL)

i + (zR − z0)
i
]
.

(2.5)

Given the assumption that the higher order derivatives are analytic and bounded

on the entire computational domain, it is not hard to see that RLR may be minimized,

in general, if z0 = (zL + zR)/2. This is expected, since (zL + zR)/2 is the center of
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the problem domain, and compared to the other domain points attains the least

distance from both boundary points zL and zR. Thus, such a choice requires the least

extrapolation, and therefore results, in general, in the least overall error on the entire

computational domain. Nonetheless, making a decision on the choice of the start

point is application based, and often requires a trade-off between the simplicity and

accuracy.

One of the common tests to checking the convergence of the series with known

closed form terms is the well-known ratio test ; for instance, see Ref. [64]. For a

chosen start point z0, a modification of the ratio test can be utilized to check the

convergence of the corresponding solution. Let zmax = max(|z − z0|) for z on the

entire computational domain, and

Li =
Si
Sj

=
j!

i!

∣∣∣∣u(i)(z0)u(j)(z0)

∣∣∣∣ zi−jmax,

which is the ratio of the maximum absolute values of the ith and jth terms of the series

solution (2.4), where j < i is the largest index, for which Sj ̸= 0. After sifting out the

zero terms and evaluating the term-ratio values, a good test on the appropriateness

of z0 would be to check whether the term-ratio curve attains a descending slope. This

is illustrated with an example in Subsection 2.3.4.

2.3.3 Choice of the Approximation Order M

As per Stirling’s formula, M ! =
√
2πM(M/e)M(1 + O(1/M)), the increase of the

approximation order M decreases the residual RM(z0) for a convergent approximate

solution. For such a case, ifM in eq. (2.4) tends to infinity, the approximate analytical

solution u(z) converges to an exact solution. However, a large approximation order

is computationally impractical.

Let Si =
1
i!
|u(i)(z0)|zimax denote the maximum absolute value of the ith term of the
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series solution u(z) in eq. (2.4). Let further Mc = {j | Si ≈ 0, i ∈ [j + 1,∞)}. If the

series solution is convergent, we will have

|u(z)| ≤
m−1∑
j=0

|cj|zjmax +
Mc∑
j=m

Sj, (2.6)

which can be utilized as a criterion for determining the approximation order. An

example is given below.

2.3.4 Example

Consider the linear ordinary boundary value problem

y′′(x) = y(x), y′(a) = A, y′(b) = B, (2.7)

where a, b, A, and B are real numbers, and the exact solution is

yExact(x) =
1

sinh(a− b)
(A cosh(b− x)−B cosh(a− x)). (2.8)

Employing eqs. (2.3) and (2.4), one may write the ATET solution for y(x) about

the arbitrary point x0 as

y(x) = c0

[
1 +

1

2!
(x− x0)

2 +
1

4!
(x− x0)

4 +
1

6!
(x− x0)

6 +
1

8!
(x− x0)

8 +O(x10)

]
+ c1

[
x− x0 +

1

3!
(x− x0)

3 +
1

5!
(x− x0)

5 +
1

7!
(x− x0)

7 +O(x9)

]
,

(2.9)

where c0 = y(x0) and c1 = y′(x0) are easily identified upon the solution of the

linear system constructed by imposing the boundary conditions of eq. (2.7). Note

that the solution (2.9) is exactly an eight order Taylor series approximation of the

exact solution (2.8), and converges to the exact solution if more terms are retained.
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Nonetheless, we assume that no exact solution is at hand, and proceed with the

truncated series solution to illustrate the ideas proposed in the foregoing subsections.
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Figure 2.1: Maximum absolute values of the term (S) and the term-ratio (L) of the
20-order ATET solution for eq. (2.7) for x0 ∈ {0, 2.5, 5}, a = 0, b = 5, and (a)
A = −10 and B = 10; (b) A = 0 and B = 10; and (c) A = 10 and B = 10.

Figure 2.1 illustrates the maximum absolute values of the term and the term-

ratio of the 20-order ATET solution y(x) for the domain x ∈ [0, 5] and the start

points x0 ∈ {0, 2.5, 5}. Note that all of the terms, which were identically zero, have

been expunged out. All subfigures, except for some early terms, show monotonically

decreasing term-ratios for the chosen start points. This signifies that all of the chosen

start points lead to convergent solutions.

However, how to pick the most efficient one from the chosen start points may be

decided by further noting the revealed convergence rates. For example, the solution

terms associated with the start point x0 = 5 are the same in all three subfigures

and vanish for i ≥ 17. Likewise, the solution terms corresponding to the start point

x0 = 0 behave the same in Subfigures 2.1(a) and (c), but decrease slightly as in Subfig-
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Figure 2.2: Comparison of the exact solution (2.8) and the eighth order ATET solu-
tion (2.9) for x0 = 2.5 and B = 10.

ure 2.1(b) and vanish for i ≥ 14. Finally, the solution terms associated with x0 = 2.5,

common to all subfigures, are negligible for i ≥ 9. As a result, the most efficient

choice from the chosen start points is x0 = 2.5, and an eight order approximation is

needed. Figure 2.2 compares such a solution with the exact solution (2.8).

2.3.5 Multiple Solution Branches

Nonlinear BVPs may have multiple solution branches, but not all such branches may

be physical for a given set of input parameters. In fact, the actual solution may exist

either entirely on a single branch, or collectively on two or more solution branches.

The latter case rather complicates even the traditional techniques, even when exact

closed form solution branches are known explicitly. However, ATET is intelligent in

recognizing the right solution branch, as the branch selection is automatically taken

into account when solving for the unknown constants, which make up the ATET

solutions. This feature allows that a single parametric ATET solution becomes appli-

cable to arbitrary input parameter sets which is enormously desirable for engineering

parametric studies.
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2.3.6 ATET for a System of Nonlinear ODEs

Let i,mi ∈ Nk, and u(z) = {u1(z), . . . , uk(z)} be the set of k unknown univariate

functions, which construct a system of k nonlinear ordinary, possibly coupled, differ-

ential equations

F = ∪ki=1Fi(z,Umi
(z)),

where Umi
(z) = (u(z), D1u(z), . . . , Dmiu(z)), the ith differential equation Fi(z,Umi

(z))

is of order mi with respect to u(z), and finally

Diu(z) = Di1u1(z) · · ·Dikuk(z) =
di1u1(z)× · · · × dikuk(z)

dzi1+...+ik
. (2.10)

Utilizing eq. (2.2), one may write the solution components of u(z) as

ui(z) = lim
Mi→∞

Mi∑
j=0

u
(j)
i (z0)

j!
(z − z0)

j, i = 1, . . . , k, (2.11)

where Mi is the approximation order of ui(z), and the derivatives u
(j)
i (z0) are un-

known, but count to
∑k

i=1(1 +Mi) and can be identified by carrying out the same

procedure done before for the single ordinary differential equation (2.1).

It is noteworthy that the approximation order of the solution ui(z), which isMi, is

independent of that of the other solutions. This allows to desirably and independently

control the accuracy of each solution, thus, efficiently capturing the nonlinearity struc-

ture of the differential equations of the system F. This is illustrated below with the

micropolar fluids application.
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2.4 Nonlinear BVPs from Engineering and Science

In what follows, three significant applications from engineering and science are stud-

ied. For each application, a brief history is given first, and then compact parametric

ATET solutions with relevant discussions are given.

2.4.1 Application 1: Micropolar Fluids

Fluids with randomly oriented particles suspended in a viscous medium whose mi-

crostructure often reveal non-symmetrical stress tensor are commonly referred to as

micropolar fluids. Initiated in Ref. [65], the theory of micropolar fluids studies the

local effects arising from microstructure and intrinsic micro-motion of the fluid con-

stituents. The problem of the injective micropolar flow in a porous channel has gained

a significant interest in the literature. Derived in Ref. [66], the equations governing

the steady flow of an incompressible micropolar fluid past a curved surface are

 (N1 + 1)F IV (x)−N1G
′′(x)−Re(F ′′′(x)F (x)− F ′′(x)F ′(x)) = 0

N2G
′′(x) +N1(F

′′(x)− 2G(x))−N3Re(G
′(x)F (x)− F ′(x)G(x)) = 0

,

(2.12)

where the primes stand for differentiation; Re represents Reynolds number, corre-

sponding to suction when positive, and injection when negative; F (x) and G(x) are

stream functions; and N1-N3 are dimensionless micropolar parameters. Moreover, the

six boundary conditions

F (0) = F ′′(0) = G(0) = F (1)− 1 = F ′(1) = G(1) = 0, (2.13)

define a symmetric flow in the channel.
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Stream Function Solutions Behavior

Despite the extreme complexity of the BVP (2.12), application of ATET is quite

straightforward. The goal, here, is to show the effect of the start point choice and

independence of the approximation orders on ATET stream function solutions. For

illustration purposes, we take very low approximation orders to show the effectiveness

of the start point proposed in subsection 2.3.2, but will adopt higher orders when we

proceed to a parametric study afterwards.

Employing eq. (2.11), we take M1 = 4 and M2 = 3, and write the fourth and

third order approximate parametric ATET solutions for, respectively, F (x) and G(x)

about an arbitrary point x0 as

F (x) = c0 + c1(x− x0) +
c2
2!
(x− x0)

2 + c3
3!
(x− x0)

3 + (χ0+χ2N1)
(1+N1)4!

(x− x0)
4,

G(x) = c̃0 + c̃1(x− x0) +
χ2

2!
(x− x0)

2 + (χ1+c0χ2N3Re)
N23!

(x− x0)
3,

(2.14)

where

χ0 = Re(c0c3 − c1c2), χ1 = N1(2c̃1 − c3)− c̃0c2ReN3,

χ2 =
((2c̃0 − c2)N1 +ReN3(c0c̃1 − c̃0c1))

N2

,

and finally c0, c1, c2, c3, c̃0 and c̃1 are the only unknown constants, which can be

identified upon imposing the boundary conditions (2.13).

Figure 2.3 illustrates the obtained low order parametric stream function solutions

for three x0 values, namely, 0, 0.5, and 1, and compares them with those of numerical

solutions obtained from the numerical differential solver of Mathematica. Note that

taking x0 as either 0 or 1 drastically simplifies the solution procedure, as three of the

unknown constants, i.e., either {c0, c2, c̃0} or {c0, c1, c̃0}, become known parameters

due to the boundary conditions (2.13). While this is computationally favorable,
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Figure 2.3: Comparison of the numerical and ATET solutions (2.14) with M1 = 4
andM2 = 3 for F (x) and G(x) written about (a) x0 = 0, (b) x0 = 0.5, and (c) x0 = 1
for eqs. (2.12).

Figure 2.3 justifies the superior accuracy of the ATET solutions when written about

the midpoint x0 = 0.5.

Note that the stream function F (x) does not undergo significant changes as the

input parameters change. Therefore, as discussed earlier, considering lower approxi-

mation orders for F (x), while higher orders for G(x), appears to be computationally

safe and efficient. To this end, Figure 2.4 shows fourth order ATET approximate

solutions for both stream functions. Some of the solutions corresponding to x0 = 1

diverged, and the solutions corresponding to x0 = 0 remained unchanged since the

obtained G(x) turned out to be an odd function which would change only for odd

values of M2. On the other hand, as expected, the solutions associated with x0 = 0.5

considerably improved even that the approximation order is increased only by one

for only the second stream function. This last start point is chosen for the following

parametric study of the stream functions with higher order approximation orders.
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F (x) and G(x) written about (a) x0 = 0, (b) x0 = 0.5, and (c) x0 = 1 for eqs. (2.12).

Parametric Study of the ATET Stream Function Solutions

The behavior of the stream functions F (x) and G(x) depends on the four parameters

Re, N1, N2, and N3. For the sake of simplicity, four one-dimensional cases are con-

sidered. That is, for each case, three parameters are held constant, and the profile

of the stream functions for the change of the remaining parameter is plotted as in

Figure 2.5.

Subfigures 2.5(a)-(d) depict that the change in the input parameters have rela-

tively less effect on F (x) than on G(x) which is why a higher order approximation is

considered only for the latter stream function. Nonetheless, note that, compared to

Ref. [66], this partial increase in the approximation order accommodates an enormous

parameter range, e.g., Re ∈ [−150, 50], N1 ∈ [0, 40]. In addition, the increase of the

parameters Re, N1, and N3 does make G(x) diminish, but the reduction amount is

minimum for the Reynolds number. In contrast, the change of N2 has an opposite

effect. Shown in Subfigure 2.5(c), the increase of N2 increases G(x), but reduces its

absolute value. This is expected, since due to the second equation of eq. (2.12), N2

is inversely proportional to the second derivative of G(x).
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Figure 2.5: Comparison of the numerical and ATET solutions (M1 = 4, M2 = 10,
and x0 = 0.5) for F (x) and G(x) with respect to (a) Re, (b) N1, (c) N2, and (d) N3

for eqs. (2.12).

2.4.2 Application 2: Heat Transfer

The thermal characteristics of a single uniformly thick rectangular fin with a power

law type heat transfer coefficient and with/without heat transfer at the tip of the fin

was studied in Ref. [67], in which the governing equation was addressed as

θ′′(x)− ϵ2θk(x) = 0, (2.15)

where the prime stands for differentiation with respect to the nondimensional fin
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length x, the exponent k ∈ [−3, 6] ⊂ R, and ϵ2 is denoted as the fin parameter. The

boundary equations for an insulated fin tip are

θ′(0) = 0, θ(1) = 1. (2.16)

Due to the significance of the fin applications, several researchers studied the

problem and reported approximate analytical explicit solutions such as in Ref. [68]

with Adomian’s decomposition method; in Refs. [69, 70] with perturbation, homo-

topy perturbation and homotopy analysis methods; and in Ref. [71] with modified

variational iteration method. With redefining the boundary conditions, Ref. [57] re-

ported implicit HAM and HPM solutions, which improved the solutions of [69, 70].

Recently, with the aid of computer algebra software the exact, but still implicit, so-

lutions based on special functions were obtained in Ref. [72] for several domains of k

values. However, to facilitate engineering studies, we would like to obtain parametric

ATET solutions, which are in terms of more elementary functions.

The start point x0 = 0.5 leads to more accurate solutions for this application as

well, but we take x0 = 0, for which the resulting solutions are relatively simpler and of

sufficient accuracy. Employing eq. (2.4), we write the sixth order parametric ATET

solution for θ(x) for arbitrary values of k as

θ(x) = c0 +
1

2!
ck0(ϵx)

2 +
k

4!
c2k−1
0 (ϵx)4 +

k(4k − 3)

6!
c3k−2
0 (ϵx)6, (2.17)

where the constant c0 = θ(0) is the only unknown, which is identified from the

boundary constraint θ(1) = 1, namely,

c0 +
ϵ2

2!
ck0 +

kϵ4

4!
c2k−1
0 +

k(4k − 3)ϵ6

6!
c3k−2
0 − 1 = 0. (2.18)

As a consequence, obtaining the fin tip point temperature has reduced to the
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solution of the foregoing equation, which may be readily done by various numerical

approaches. However, one may convert eq. (2.18) to a polynomial by taking ckd0 as

a new variable, where kd is the denominator of the irreducible rationalized k. This

allows to obtain the entire solution set easily. Negative and imaginary solutions must

be discarded, but care must be taken in picking the right one among the remaining

real solutions. The simple criterion 0 < θ(0) ≤ 1 suffices.

It is worth illuminating that the compact parametric solution (2.17) is given, in

particular, for arbitrary values of k, while the existing solutions of Refs. [57, 69–71]

are limited to only positive values of k. In fact, the new parametric solution becomes

even superior to the numerical techniques such as the numerical differential solver

of Mathematica, which due to singularities fails to give a numerical temperature

solution for negative values of k. Before proceeding to the parametric studies, exact

solutions, which exist for some special values of k, are used to benchmark the ATET

solution (2.17).

Special case k = 0

When k = 0, eq. (2.15) becomes a linear differential equation, whose exact solution

considering the boundary conditions (2.16) is

θExact(x)
⌋
k=0

=

c0︷ ︸︸ ︷
1− ϵ2

2
+
1

2
(ϵx)2 = θ(x)

⌋
k=0

, (2.19)

which states the exactness of the parametric solution (2.17) for this special case.

Special case k = 1

On the other hand, the exact solution of eq. (2.15) and the boundary conditions (2.16)

for k = 1 may be written as
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θExact(x)
⌋
k=1

=

c0︷ ︸︸ ︷
1

cosh(ϵ)
cosh(ϵx) = c0

[
1 +

1

2!
(ϵx)2 +

1

4!
(ϵx)4 +

1

6!
(ϵx)6

]
+O(x8)

= θ(x)
⌋
k=1

+O(x8),

which is exactly the sixth order Taylor series of the exact solution for this special case.

Note that for a sufficiently higher order approximation, the ATET solution converges

precisely to the exact solution. Nonetheless, considering the fact that x ∈ [0, 1] and

ϵ does not take very large values, the sixth order ATET solution holds sufficient

accuracy for this special case.
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-0.25

 ε
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Figure 2.6: The profile of the fin tip point temperature θ(0) obtained from eq. (2.18)
for the heat transfer application.

Parametric Study of the ATET Temperature Solution Profile

Figure 2.6 depicts the profile of the fin tip point temperature θ(0) obtained from the

solution of eq. (2.18) with respect to k and ϵ. As the figure clarifies, the domain of ϵ

diminishes as k decreases. This suggests that there may not exist a valid temperature

solution θ(x) for arbitrary values of ϵ and, in particular, negative k.
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Figure 2.7: Comparison of the numerical solution and sixth order ATET solu-
tion (2.17) for the heat transfer application for (a) k = 1.5, (b) k = 2.5, (c) k = 4,
and (d) k = 6.

In addition, Figure 2.7 compares the accuracy of the obtained solution with the

numerical solution obtained from the numerical differential solver of Mathematica for

several positive values of k. The comparison justifies the sufficiency and accuracy of

the sixth order ATET solution for a variety of ϵ and positive k values for this problem.

In addition, Figure 2.8 depicts the profile of the obtained sixth order ATET solution

for arbitrary values of k, especially negative values, which we found Mathematica was

unable to solve.

Finally, Refs. [69–71] refer to the radiative heat transfer problem when k = 4.

Specialized from eq. (2.17), the approximate analytical solution

θ(x)
⌋
k=4

= c0

[
1 +

1

2!
(c

3/2
0 ϵx)2 +

4

4!
(c

3/2
0 ϵx)4 +

52

6!
(c

3/2
0 ϵx)6

]
, (2.20)

solves the radiative heat transfer problem efficiently.
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Figure 2.8: The temperature profile obtained from the ATET solution (2.17) for
arbitrary k for the heat transfer application for (a) ϵ2 = 0.2, (b) ϵ2 = 0.4, (c) ϵ2 = 1.2,
and (d) ϵ2 = 1.8.

2.4.3 Application 3: Theoretical Biology

Studied in Ref. [73], oxygen diffusion in a spherical cell with Michaelis–Menten oxygen

uptake kinetics leads to the singular boundary value problem

y′′(x) +
2

x
y′(x)− n

y(x)

k + y(x)
= 0, (2.21)

where n and k are constants, and the boundary conditions are

y′(0) = 0, 5y(1) + y′(1) = 5. (2.22)
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Numerical techniques are vulnerable to singularities posed by singular boundary

value problems. The running BVP is singular at zero, which causes numerical diffi-

culties. For the single case, when n = 0.76129 and k = 0.03119, Ref. [74] employed

variational iteration method, and reported an approximate solution.

ATET readily avoids the singularity, if written about any nonzero point. Taking

x0 = 0.5, the explicit second order ATET solution, for any combination of n and k,

is

y(x) = c0 + c1(x
2 − 1/4), (2.23)

where the constants c0 = y(0.5) and c1 = y′(0.5) are

c0 =
1

2

(
1− k − 23

120
n±

√
(1 + k)2 − 23

120
n(2− 2k − 23

120
n)

)
,

c1 =
nc0

6(k + c0)
.

(2.24)

Note that only one of the plus and minus signs leads to the favorable solution, and

the other one would lead to extraneous solution. Figure 2.9(a) depicts the explicit sec-

ond order ATET solution for various moderate values of n and k. For larger values,

we calculated fourth order ATET solutions, which are illustrated in Figure 2.9(b).

Note that the numerical differential solver of Mathematica was unable to circumvent

the singularity. Therefore, in the absence of a valid numerical solution and for vali-

dation purposes, we plugged the solutions in eq. (2.21), and monitored the residuals,

which were no more than 0.005 for the second order, and 0.001 for the fourth order

solutions.
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Figure 2.9: Solution profile based on (a) the second order, and (b) fourth order ATET
solutions for application 3.

Special case n = 0

When n = 0, eq. (2.21) is amenable to analytical solution, whose exact solution in

view of the boundary conditions is y(x) = 1. Likewise, ATET solutions are exact for

this case. To be precise, c0 = 1 and c1 = 0 for the second order ATET solution, which

lead to the same exact solution.

Special case k = 0

When k = 0, y(x) = 1 + 1
30
n(5x2 − 7) is the exact solution of eq. (2.21) and its

boundary conditions. The ATET solution is exact for this case as well. While this

may be verified algebraically for the explicit second order ATET solution, higher order

solutions may be verified only numerically.

2.5 Summary and Conclusions

It was shown that ATET solutions of boundary value problems become highly ac-

curate when written about the center of the problem domain. This enables us to

effectively solve singular boundary value problems, which pose computational diffi-
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culties for numerical techniques. In addition, for a system of equations, ATET allows

to control the accuracy of each solution independently of that of the other solution

components. Three BVPs arising in major engineering and scientific applications,

such as micropolar fluids, heat transfer, and theoretical biology were studied. For

each application, approximate analytical ATET solutions were obtained and justified

by numerical solutions. For the singular BVPs of biology and heat transfer, the ob-

tained parametric solutions, surprisingly, provided accurate solution profiles, while the

differential solver of Mathematica, due to singularities, failed to return numerical so-

lutions. For the micropolar fluids application, it was shown that the accuracy of each

stream function solution can be safely and desirably controlled without disturbing the

accuracy of the remaining solution. Besides the accuracy, the obtained parametric

solutions for the studied applications appeared to be very simple and manageable for

parametric studies. These are attributed to the automatically recognition of the form

of the solution by ATET as it takes advantage of the exact higher order derivatives

obtained form the successive differentiation of the target differential equation. While

maintaining the accuracy, this drastically reduces the size of the obtained solution.

It is envisioned that studying and exploring the pattern of the ATET solutions may

be a good starting point for obtaining exact closed form solutions for yet unsolved

nonlinear engineering phenomena.
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Chapter 3

Parametric Large Deflection
Solutions for Euler–Bernoulli

Cantilever Beams

The goal of this chapter is to present approximate analytical solutions to the large

deflection problem of elastic and uniform Euler–Bernoulli cantilever beams under

combined tip point loading. Utilizing the Automatic Taylor Expansion technique,

discussed in Chapter 2, parametric angular, horizontal, and vertical deflection com-

ponents are obtained in terms of the tip point loading parameters. The obtained

parametric solutions are easy to manipulate and implement for engineering analyses

and designs. Contents of this chapter are documented in Ref. [15].

The rest of this chapter is organized as follows. Section 3.1 gives a review of the

Euler–Bernoulli beams and their mathematical modeling. Section 3.2 reformats the

modeling equations and gives the ATET solutions with relevant discussions. Sec-

tion 3.3 introduces the characteristic equation of the beam’s deflection. Section 3.4

recognizes several load categories, and for each category, the beam’s deflection be-

havior is studied with the aid of the obtained ATET deflection solutions. Finally,

summary and conclusions are given.
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3.1 A Brief Review on Euler–Bernoulli Beams

A schematic view of a cantilever beam subjected to a tip point moment M1 and force

f with the inclination ϕ is depicted in Figure 3.1, in which E and I are the Young’s

modulus and the moment of inertia of the beam’s cross section; s and θ are the arc

length and the angular deflection of the beam; and x and y are the horizontal and

vertical coordinates of the deflected beam, respectively.

Undeflected

x
1

y
1x

y

θ
1

φ

f

M
1

s
θ

l, E, I

-

Inflection(κ=0)

Figure 3.1: A schematic view of a tip point loaded cantilever beam.

Of common beam types is an Euler–Bernoulli beam, whose large deflection (as-

suming that the cross section has a large aspect ratio) is governed by

κ(x) =
d2y/dx2

[1 + (dy/dx)2]3/2
=
M

EI
=
M1 + f sin(ϕ)(x1 − x)− f cos(ϕ)(y1 − y)

EI
, (3.1)

where κ is the curvature, and M is the axial bending moment. The boundary condi-

tions for the cantilever beam are

y(0) = 0,
dy

dx
(0) = 0. (3.2)

The behavior of the Euler–Bernoulli beam depends on the choice of the material

(E), the geometry of the cross section (I), and even the location of the applied
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load (M). For obvious reasons, it is a common practice to nondimensionalize the

parameters as s/l → s, x/l → x, and y/l → y; and finally parameterize the problem

with respect to the beam’s arc length. For the case of a beam with constant cross

sectional properties, i.e., constant E and I, the resulting equations are

d2θ(s)

ds2
= α2 sin(θ(s)− ϕ), (3.3)

θ(0) = 0,
dθ(1)

ds
= β, (3.4)

dx(s)

ds
= cos(θ(s)), x(0) = 0, (3.5)

dy(s)

ds
= sin(θ(s)), y(0) = 0, (3.6)

where α2 = fl2

EI
and β = M1l

EI
. It is well known that the exact solutions to this weakly

decoupled boundary value problem can be written in terms of the implicit elliptic

integral solutions as

s = ±
∫ θ(s)

0

dθ√
β2 + 2α2(cos(θ1 − ϕ)− cos(θ − ϕ))

, (3.7)

x = ±
∫ θ(s)

0

cos(θ)dθ√
β2 + 2α2(cos(θ1 − ϕ)− cos(θ − ϕ))

, (3.8)

y = ±
∫ θ(s)

0

sin(θ)dθ√
β2 + 2α2(cos(θ1 − ϕ)− cos(θ − ϕ))

, (3.9)

where the plus and minus signs in the foregoing deflection components are inherent to

the beam’s multiple behavior, and often in the literature are denoted as elbow up and

elbow down solutions. The implicit elliptic integral solutions pose some challenges.

First, they depend on the unknown θ1, which complicates the integration procedure,

even when solved numerically. Second, depending on input loading parameters, the

solutions may be very close to singularities, which drastically complicate the numer-
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ical integration. Recall that the deflection solutions change sign as the input loading

creates inflection points, where the curvature changes sign, such as the one schemat-

ically shown in Figure 3.1. The more the number of inflection points, the more the

number of solution branches. However, in the next section, we present beam’s para-

metric deflection components, which are sign independent.

3.2 Parametric Large Deflection Solutions

To efficiently solve for the beam’s deflection components, we first define ψ(s) ,

θ(s)− ϕ and rewrite eqs. (3.3)-(3.6) as

d2ψ(s)

ds2
= α2 sin(ψ(s)), (3.10)

ψ(0) = −ϕ, dψ(1)

ds
= β, (3.11)

dx(s)

ds
= cos(ψ(s) + ϕ), x(0) = 0, (3.12)

dy(s)

ds
= sin(ψ(s) + ϕ), y(0) = 0. (3.13)

Employing the ATET, we write the solution of the foregoing differential equations

as

ψ(s) = c0 + c1(s− s0) + lim
M1→∞

M1∑
i=2

1

i!

diψ(s0)

dsi
(s− s0)

i, (3.14)

x(s) = xM2(s0) + lim
M2→∞

M2∑
i=1

1

i!

dix(s0)

dsi
(s− s0)

i, (3.15)

y(s) = yM3(s0) + lim
M3→∞

M3∑
i=1

1

i!

diy(s0)

dsi
(s− s0)

i, (3.16)

where s0 ∈ [0, 1], c0 = ψ(s0), c1 =
dψ(s0)
ds

,
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xM2(s0) = lim
M2→∞

M2∑
i=1

(−1)i+1

i!

dix(s0)

dsi
si0,

yM3(s0) = lim
M3→∞

M3∑
i=1

(−1)i+1

i!

diy(s0)

dsi
si0,

and M1-M3 are, respectively, the orders of the ATET solutions for ψ(s), (thus, for

θ(s)), x(s) and y(s). Furthermore, due to ATET, the higher order derivatives diψ(s0)
dsi

for i ≥ 2 and the higher order horizontal and vertical derivatives dix(s0)
dsi

and diy(s0)
dsi

for i ≥ 1 are calculated by successively differentiating eqs. (3.10), (3.12), and (3.13),

respectively. As a result, all of the higher order derivatives, which fully determine

the beam’s deflection components θ(s), x(s), and y(s), are at hand except c0 and c1,

which would be identified by imposing the boundary conditions (3.11).

For example, with taking M1 = M2 = M3 = 5, the fifth order ATET solutions

for θ(s), x(s), and y(s) may be written as

θ(s) = c̃0+c1(s−s0)+
αs
2!
(s−s0)2+

c1αc
3!

(s−s0)3+
αsη1
4!

(s−s0)4+
c1 (αcη2 − 3α4)

5!
(s−s0)5,

(3.17)

x(s) = x5(s0) + cos(c̃0)(s− s0)−
c1 sin(c̃0)

2!
(s− s0)

2 − c21 cos(c̃0) + αs sin(c̃0)

3!
(s− s0)

3

− c1 (3αs cos(c̃0) + η1 sin(c̃0))

4!
(s− s0)

4 − αsη3 sin(c̃0) + η4 cos(c̃0)

5!
(s− s0)

5,

(3.18)
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and

y(s) = y5(s0) + sin(c̃0)(s− s0) +
c1 cos(c̃0)

2!
(s− s0)

2 − c21 sin(c̃0)− αs cos(c̃0)

3!
(s− s0)

3

− c1 (3αs sin(c̃0)− η1 cos(c̃0))

4!
(s− s0)

4 +
αsη3 cos(c̃0)− η4 sin(c̃0)

5!
(s− s0)

5,

(3.19)

where c̃0 = c0 + ϕ, αs = α2 sin(c0), αc = α2 cos(c0), η1 = αc − c21, η2 = 4αc − c21,

η3 = αc − 7c21, η4 = c21η2 + 3α2
s, and finally

x5(s0) = cos(c̃0)s0 +
c1 sin(c̃0)

2!
s20 −

c21 cos(c̃0) + αs sin(c̃0)

3!
s30

+
c1 (3αs cos(c̃0) + η1 sin(c̃0))

4!
s40 −

αsη3 sin(c̃0) + η4 cos(c̃0)

5!
s50,

y5(s0) = sin(c̃0)s0 −
c1 cos(c̃0)

2!
s20 −

c21 sin(c̃0)− αs cos(c̃0)

3!
s30

+
c1 (3αs sin(c̃0)− η1 cos(c̃0))

4!
s40 +

αsη3 cos(c̃0)− η4 sin(c̃0)

5!
s50.

3.2.1 Choice of the Start Point s0

In general, the obtained ATET solutions (3.14)-(3.16) depend explicitly on the value

of s0, which may take finitely many values. Choice of s0 has three major impacts,

such as on the efficiency and simplicity of the solution procedure, on the accuracy

and on the convergence of the solutions.

It was already shown that the obtained ATET solutions contain two unknown

constants c0 and c1. However, if s0 is taken as either extreme points of the beam (i.e.,

0 or 1), the ATET solutions do become simpler as either c0 or c1 becomes a known

parameter. This drastically simplifies the solution procedure.

To clarify the effect of s0 on the solution accuracy, Figure 3.2 illustrates and com-

pares the deflection components of the entire nondimensional beam length for several
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loading parameters obtained from the numerical differential solver of Mathematica

and the obtained fifth order ATET solutions (3.17)-(3.19) with s0 = 0, s0 = 0.5, and

s0 = 1. Note that, for the sake of symmetry, we considered counter clock-wise forces,

thus, restricted the force angle ϕ to stay within the first and second quadrants.
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Figure 3.2: Comparison of the numerical solution and the fifth order ATET solu-
tions (3.17)-(3.19) with (a) s0 = 0, (b) s0 = 0.5, and (c) s0 = 1 for the deflection
components of the entire nondimensional beam length for several loading parameters.

Subfigures 3.2(a) clearly reveal more accurate solutions in the vicinity of the

clamped point, while Subfigures 3.2(c) do the same for the tip point. These are

expected, since the ATET solutions exploit the Taylor series expansion written about

the clamped and the tip points, respectively. Moreover, referring to the same subfig-

ures, the solutions associated with s0 = 0 accommodate relatively an smaller domain
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of input loading parameters compared to that of s0 = 1. To be precise, the solutions

of the former are valid for α = |β| ≤ 0.9, while those of the latter are valid for

α = |β| ≤ 1.2. This is also expected, since the points in the vicinity of the clamped

point undergo considerably smaller deflections than those of the tip point. Hence,

the obtained solutions associated with s0 = 0 predict relatively small deformations,

which indispensably may not be able to capture the larger deformations existing in

the vicinity of the tip point.

On the other hand, while Subfigures 3.2(a) and (c) depict reasonably accurate

solutions, Subfigures 3.2(b) show that ATET solutions written about the middle of

the beam’s axis are even more accurate and a larger parameter domain, α = |β| ≤ 1.5,

is captured. Again, this may be explained by noting that among all of the points on

the beam’s axis the point s0 = 0.5 attains the least distance from both extreme points,

i.e., the clamped and the tip points. This, in turn, requires the least extrapolation,

therefore, the least error.

Finally, solution convergence becomes crucial, once more accurate solutions, thus,

higher order ATET solutions are to be sought. Neither s0 = 0 nor s0 = 1 gives rise

to convergent solutions. However, with s0 = 0.5 the entire points on the beam’s axis

are within |s− s0| < 1 which increases the chance of the convergence. Therefore, we

choose this point, otherwise mentioned, for the numerical studies given later.

3.2.2 Choice of the Approximation Orders M1-M3

For a convergent solution, it is clear that the more the approximation orders M1-M3

in eqs. (3.14)-(3.16), the better the accuracy of the approximate ATET solutions; as

M1-M3 tend to infinity the resulting series solutions converge to the exact solutions.

However, a blind increase of the approximation orders is not practical.

Although there are some loading conditions, to be studied later, which do not
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necessarily require approximation orders increase for larger input loading parameter

domains, it is reasonable, in general, to consider a correspondence between the ap-

proximation orders and the magnitude of the input loading parameters. Referring

to Subfigures 3.2(b), we have already seen that even the fifth order ATET solutions

capture a significant domain of the loading parameters, α2 ≤ 1.52 = 2.25, |β| ≤ 1.5,

and |ϕ| < ∞. In addition, for the very large parameter domains studied later, the

approximation orders that we chose never exceeded 30.

Another important point about the approximation orders M1-M3 is their inde-

pendence. Referring to eqs. (3.14)-(3.16), it may be seen that θ(s), x(s), and y(s)

may be obtained independently of one another by simply choosing the approxima-

tion orders M1-M3 independently. This feature of the ATET solutions enables us to

exclusively adjust the accuracy of any of the desired deflection components. For ex-

ample, considering the fact that the vertical displacements resulted from small acute

loading angles dominate the horizontal displacements, M2 may not be chosen as large

as M3. Utilizing this feature in Section 3.4, we employ relatively lower approximation

orders for the angular deflections of the beam, while higher orders for the horizontal

and vertical displacements.

3.3 Beam’s Characteristic Equation

Several parameters are involved in the beam’s deflection. To be precise, the input

loading parameters α, β, and ϕ result in three deflection components θ(s), x(s), and

y(s) which would possibly determine the beam’s unique deflected configuration. But,

three independent equations are required to identify the three deflection components.

However, it turns out that, sort of similar to the resultant equation of a system of

polynomials in the algebraic elimination theory, there is a unique equation, which

governs all of the input and output parameters. To this end, we multiply x(s) and
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y(s), given by eqs. (3.8) and (3.9), respectively, by sin(ϕ) and cos(ϕ), and subtract

the results, which we integrate and write as

sin(ϕ)x(s)− cos(ϕ)y(s) =
1
β
(cos(θ − ϕ)− cos(ϕ)) if α = 0

±1
α2

(√
C − 2α2 cos(ϕ)−

√
C − 2α2 cos(θ − ϕ)

)
otherwise

,

where C = β2 + 2α2 cos(θ0 − ϕ). The foregoing resultant equation, which we call the

beam’s deflection characteristic equation, intertwines the deflection components and

the loading parameters which may geometrically be thought of as a multi-dimensional

surface in terms of the loading parameters and the resulting deflections. Elaborate

assessment of this surface, such as the identification of its contours, solely due to its

multi-dimensionality seems almost impossible. However, for a pure end-moment, this

surface attains a circular x− y contour, discussed below, which may be exploited as

a theoretical tool to validate the accuracy of the obtained ATET solutions for this

special loading condition.

3.3.1 A Circular Deflection

In the absence of the end-force (i.e., α = 0), eqs. (3.7)-(3.9) are easily integrable as

θExact(s)
⌋
α=0

= βs, (3.20)

xExact(s)
⌋
α=0

=
1

β
sin(βs), (3.21)

yExact(s)
⌋
α=0

=
1

β
(1− cos(βs)). (3.22)

These special exact solutions may be used to validate the ATET solutions. For
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the sake of simplicity, we verify the fifth order ATET solutions as

θ(s)
⌋
α=0

=

0︷ ︸︸ ︷
c̃0 − c1s0 +

β︷︸︸︷
c1 s = βs, (3.23)

x(s)
⌋
α=0

= x5(s0)
⌋
α=0

+
cos(c̃0)

c1

[
c1(s− s0)−

c31
3!
(s− s0)

3 +
c51
5!
(s− s0)

5

]
+

sin(c̃0)

c1

[
−c

2
1

2!
(s− s0)

2 +
c41
4!
(s− s0)

4

]
≈ 1

β
sin(βs) +O(s6),

(3.24)

and

y(s)
⌋
α=0

= y5(s0)
⌋
α=0

+
sin(c̃0)

c1

[
c1(s− s0)−

c31
3!
(s− s0)

3 +
c51
5!
(s− s0)

5

]
+

cos(c̃0)

c1

[
c21
2!
(s− s0)

2 − c41
4!
(s− s0)

4

]
≈ 1

β
(1− cos(βs)) +O(s6).

(3.25)

As evidenced above, for the pure end-moment loading, the fifth order ATET so-

lutions become exact for the angular deflections and the fifth order Taylor series

expansion of the available exact solutions for the horizontal and the vertical displace-

ments. Clearly, exact ATET solutions for the axial displacements would be obtained

if sufficiently higher order approximations were employed.

Figure 3.3 illustrates the beam deflection profile for several values of β. As seen,

beam deflects as a circular segment, whose governing equation may be obtained by

eliminating s from the parametric x(s) and y(s), given by eqs. (3.21) and (3.22), as

x2 + (y − 1

β
)2 =

1

β2
. (3.26)

It should be emphasized that x(s) and y(s) are both periodic with the frequency

ν = β
2π
. Therefore, a nondimensional pure end-moment β makes the beam deflect

like a coil of ν rings. For simplicity we call ν as the beam’s circularity. Figure 3.4

depicts a deflected beam of five rings, which for illustrative purposes are shown with
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Figure 3.3: Exact large deflection profile of a cantilever beam of unit length subject
to nondimensional pure end-moments.

offsets. Note, however, that with this representation, we assumed that the beam’s

cross section does not geometrically interfere with the deflection governed primarily

by eq. (3.1).

3.4 Parametric Study of the Beam’s Deflection

We already discussed the pure end-moment loading condition and in the following we

consider other loading conditions, such as pure end-force, dominant end-force and -

moment, and mixed loading with inflection point for which no exact explicit solutions

exist in the literature. The study is twofold.

On the one hand, we discuss how the input loading parameters affect the beam’s

deflection for each loading case. Whenever significant, we highlight the similarities

and the differences between the loading categories.

On the other hand, compared with the numerical solutions obtained from the

numerical differential solver of Mathematica, we also show the applicability and the
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Figure 3.4: A deflected cantilever beam of unit length and circularity 5 subject to a
pure end-moment.

accuracy of ATET for the categorized loading conditions. Note that, in doing so,

we assume that the beam is of unit length and take the initial point of the ATET

solutions, otherwise stated, as s0 = 0.5, which was shown to be an effective choice. In

addition, we mostly consider very large loading conditions in order to show the power

of ATET and as well as giving to the readers an insight to choosing the sufficient

ATET approximation orders.

Amongst the foregoing two considerations, we discuss the former explicitly, and,

for succinctness, leave the latter to the reader to judge the accuracy of the method

from the comparison graphs.

3.4.1 Pure End-Force

In contrast to the case of a pure end-moment, exact explicit deflection solutions for

the case of pure end-forces are not yet known. In an effort to get a better insight to

the case of a general combined loading, we study this case first with an exhaustive

enumeration of the effects of the loading parameters.

Figure 3.5 shows the beam’s angular deflections for applied pure end-forces. It

may be seen that the angular deflections, unlike for pure end-moments, no longer

monotonically increase by increasing the magnitude of the applied force. To be studied
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Figure 3.5: Comparison of the numerical and the sixth order ATET solutions (M1 = 8
for α = 2) for the angular deflections of the entire nondimensional beam length for
pure end-forces.

later, this may be considered as an indication of the existence of an upper limit,

beyond which the angular deflections no longer increase.

In addition, it appears that the smaller the load angle ϕ, the more the length of

the undistorted segment of the beam. To better visualize this, Figure 3.6 shows the

x − y deflections of the beam for the same loading conditions. As seen, beam’s axis

after a certain point remains straight and does not distort. This may be considered

as a kinematic behavior of the beam, as the straight part of the deflected beam gets

pinned and rotates about a point on the beam’s axis. This kinematic behavior has led

the designers, as in Refs. [11–13], to synthesize simplified pseudo-rigid-body models,

which mimic the beam’s endpoint trajectory for certain small loading domains.

Force Angle Effects

Figure 3.7 depicts the beam’s deflection profiles for pure end-forces with three mag-

nitudes and several angles. In agreement with the human intuition, common to all

subfigures is the fact that increasing the force angle for the same force magnitude
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Figure 3.6: Comparison of the numerical and the sixth order ATET solutions (M1 =
M2 = M3 = 8 for α = 2) for the horizontal and vertical deflections of the entire
nondimensional beam length for pure end-forces.

does increase the deflections, but the amount of the increase depends on the force

magnitude. For example, the maximum angular deflection for α = 3 is approxi-

mately 2.72/0.49 ≈ 5.55 and 2.72/0.055 ≈ 49.45 times those of α = 1 and α = 1/3,

respectively.

As a consequence, these observations may be considered as hints to how to consider

ATET approximation orders, i.e., the more the force angle or the magnitude, the more

the approximation order.

In addition, one subtle point may be seen from the same figure is the case once the

force is small and pure compressive, i.e., ϕ = π. This special force angle was studied

extensively in the existing literature. It is well known that not all pure compressive

forces may make the beam deflect. As a matter of fact, only those with α > π
2
are

competent to make deflections. In agreement with this result, both the numerical

method and the ATET reveal intelligent results as in Subfigures 3.7(a) and (b).
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Figure 3.7: Force angle effects on the beam’s deflections (a) α = 1
3
and M1 = M2 =

M3 = 3, (b) α = 1 and M1 = M2 = M3 = 4, and (c) α = 3, M1 = M2 = M3 = 8
for ϕ < 2π

3
otherwise M1 = 12 and M2 = M3 = 14.

Beam’s End-Angle Trajectory

Figure 3.8 shows the trajectory of the beam’s end-angle with respect to the magnitude

of the applied pure end-forces of various angles. From a comparison point of view, it

is clear that for very large values of α, the obtained ATET solutions tend to be even

more accurate than the numerical solutions obtained from the numerical differential

solver of Mathematica. One may clearly see that the numerical solutions either do not

exist for some large domains of α or oscillate, even for some cases decrease, with the

increase of the magnitude of the applied load which are geometrically not plausible.

As discussed above, the beam’s end-angle trajectory associated with the special
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Figure 3.8: Comparison of the numerical and the tenth order ATET solutions with
s0 = 1 for the trajectory of the beam’s end-angle for pure end-forces.

force angle ϕ = π is clearly distinct from the other trajectories as the beam’s end-angle

remains zero for all force magnitudes with α ∈ [0, π
2
).

In addition, it is clear that with the increase of the magnitude of the applied

force in the domain α ∈ [0, α∞), shown in the same figure, the beam’s end-angle does

increase, but outside the domain converges to the load angle ϕ and never exceeds

it, no matter how large α is. This may be geometrically explained by noting that

for α ≥ α∞, the applied force becomes almost parallel to the beam’s axis, hence,

has no significant component normal to the beam’s axis to further deflect it. This

may be seen in Figure 3.9, which shows the beam’s angular deflections for the entire

nondimensional beam length for very large pure end-forces of three different angles.

For all cases, we see that excessive increase of the force magnitude has no significant

effect on the deflection amount. This, again, may be considered as another hint so as

not to blindly and needlessly increase the ATET approximation orders.
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Figure 3.9: Tenth order ATET solutions with s0 = 1 for the angular deflections of
the entire nondimensional beam length for large pure end-forces of angles π

3
, 2π

3
, and

π.

3.4.2 Dominant End-Moment

In Subsection 3.3.1 we have seen that for an applied pure end-moment the angular

deflection of the beam becomes linearly proportional to the bending moment along the

beam length. We have also seen that the points on the beam axis undergo a circular

displacement. With these in mind, for a combined loading condition, once the applied

end-moment sufficiently dominates the end-force, it is reasonable to expect similar

beam deflections.

Figure 3.10 depicts the beam’s angular deflections for combined loadings with

dominant end-moments. It may be seen that the angular deflections as expected

are almost proportional to the applied nondimensional moments. For example, for

β = ±6, we observe θ(1) ≈ ±6.

In addition, Figure 3.11 portrays the beam’s horizontal and vertical displacements

for the same loading conditions as above. Again, as expected, points on the beam’s

axis undergo a semi-circular or almost an elliptical deflection. This observation may
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Figure 3.10: Comparison of the numerical and the tenth order ATET solutions for
the angular deflections of the entire nondimensional beam length for dominant end-
moments.

corroborate the appellation of the elliptic integral solutions as in eqs. (3.7)-(3.9) for

the exact implicit large deflections of the Euler–Bernoulli beams.

One more point drawn from Figure 3.11 may be the observation of the beam’s

circularity. For example, for β = ±6, one may approximately observe ν ≈ 6
2π

≈ 0.95

as expected from the case of a pure end-moment.

3.4.3 Dominant End-Force

We just saw that the beam’s behavior for dominant end-moments was very much

like the case of pure end-moments. Similarly, it is reasonable to expect the same

behavior for the case of pure and dominant end-forces. Figures 3.12 and 3.13 depict

the beam’s deflection for both pure and dominant end-forces with opposite small

moments. Clearly, the deflections associated with the opposite moments slightly

deviate from and are almost symmetrical with respect to the corresponding pure

end-force deflections.

Both figures also show that with the increase of the loading parameters, especially,
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9
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nondimensional beam length for pure and dominant end-forces.

the load angle, the moment’s effect becomes local to the beam’s tip point, and has

minor influence on the remaining parts of the beam.
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3.4.4 Mixed Loading with Inflection Point

It is well known that the inflection points in differential calculus are attributed to the

points of a curve at which curvature sign changes occur. From a geometrical point

of view, the inflection points connect the convex (κ < 0) and the concave (κ > 0)

parts of a curve where κ denotes the curvature. The occurrence of such a point

has a significant impact on the beam’s behavior as evidenced by eqs. (3.7)-(3.9) in

that beam’s axial deflection solution jumps from one elbow to another. Although a

decision should be made on choosing the right sign from the elliptic integral solutions,

the ATET solutions are intelligent and obviate such a choice.

Inflection points occur in beam’s both angular and axial deflection curves. Fig-

ure 3.14 shows the beam’s angular and axial deflections for several β values and a

counter-clockwise force with α = 4 and ϕ = π
3
. While Subfigure 3.14(a) reveals the

occurrence of the angular inflections for positive moments, Subfigure 3.14(b) shows
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Figure 3.14: Comparison of the numerical and the eighth order ATET solutions for
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3
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of β causing inflection points.

that the axial inflections occur only for negative moments.

From the same figure it may be inferred that the angular inflection points become

regular points on the axial deflection curves. In contrast, the extrema (in the running

case, the maxima) of the angular deflection curves exhibit themselves as inflection

points on the axial deflection curves. This is expected, since due to eq. (3.1) the

angular extrema, in other words the angular points with zero derivatives, correspond

to the axial points with zero curvature values.

In the following, we study, in depth, the angular and the axial inflection points. In

the discussion, without loss of generality, we assume that the applied force is counter-

clockwise. In addition, we consider the clamped and the tip points as the boundary

points, thus, disregard them if being inflection points.

Characteristic Equations of the Angular Inflection Points

Let sθ denote the set of the angular inflection point/points of the beam which is/are

the root/roots of eq. (3.3). Considering this and the definition of the inflection point
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of a curve, i.e., the curvature sign change criterion, we have

sθ = {ς | θ(ς) = nπ + ϕ and sin(θ(ς − ϵ)− ϕ)× sin(θ(ς + ϵ)− ϕ) < 0},

where ϵ is a small and positive real number and the integer n characterizes the beam’s

mode shape number. We summarize the existence of the angular inflection point for

the different loading conditions as follows.
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3
.

• Pure End-Moment : No angular inflection point may be caused by this loading

since eq. (3.3) is identically zero and no curvature sign change occurs.

• Pure End-Force: A pure end-force loading does not cause an angular inflection

point either. According to Subsubsection 3.4.1 the angular deflection never

exceeds the force angle for this loading condition. Thus, with θ(s) ≤ ϕ no

curvature sign change occurs.

• Combined Loading : Similar to the foregoing loading conditions, the curvature

59



sign change criterion comes into play. Hence, to have angular inflection points

two cases are in order.

(a) sin(θ(sθ − ϵ)− ϕ) < 0 and sin(θ(sθ + ϵ)− ϕ) > 0: These may occur in two

conditions.

First, once n is nonnegative and even and θ(s) is ascending, i.e., dθ(s)
ds

≥

0. Obviously, the latter may not happen, unless the applied moment,

surprisingly enough similar to the applied force, is counter-clockwise. See

Subfigure 3.14(a) or the first inflection point (β = 2π) in Figure 3.15.

Second, once n is negative and odd and θ(s) is descending, i.e., dθ(s)
ds

≤

0. However, the latter requires the applied moment to be dominant and

clockwise. See the first inflection point (β = −2π) in Figure 3.15.

(b) sin(θ(sθ − ϵ)− ϕ) > 0 and sin(θ(sθ + ϵ)− ϕ) < 0: With similar reasoning,

two conditions arise.

First, once n is positive and odd and θ(s) is ascending which obviously

requires the applied moment to be counter-clockwise. See the second in-

flection point (β = 2π) in Figure 3.15.

Second, once n is negative and even and θ(s) is descending which necessi-

tates the applied moment to be dominant and clockwise. See the second

inflection point (β = −2π) in Figure 3.15.

Characteristic Equations of the Axial Inflection Points

An inflection point of the beam’s axis is the root of the Euler–Bernoulli equation (3.1)

which requires either the axial bending moment or the angular slope with respect to

the nondimensional beam length to vanish. However, similar to the case of angular

inflection points, not all such roots are inflection points, unless they experience a

60



curvature sign change. Thus, considering this and with either integrating eq. (3.3) or

differentiating eq. (3.7), the characteristic equations governing the inflection points

may be written as

β2 + 2α2(cos(θ0 − ϕ)− cos(θ(sa)− ϕ)) = 0, (3.27)

dθ(sa − ϵ)

ds
× dθ(sa + ϵ)

ds
< 0, (3.28)

where ϵ is as before and sa is an axial inflection point. Note that the foregoing

relations are necessary and sufficient to determining whether the loading parameters

α, β, and ϕ can cause an inflection point on the beam’s axis. The existence of the

axial inflection point for the different loading conditions is summarized as follows.

• Pure End-Moment : No inflection point may be caused by this loading. Referring

to eq. (3.27), β = 0, which contradicts the loading condition assumption.

• Pure End-Force: No inflection point can occur on the beam’s axis for a pure end-

force loading either. This may be justified by noting that eq. (3.27) requires

α to be zero which again contradicts with the loading condition assumption.

Note that vanishing the expression cos(θ0−ϕ)−cos(θ(sa)−ϕ) results in sa = 1,

which is a boundary point and excluded by the assumption.

• Combined Loading : This case illuminates the significance of eq. (3.28). Due

to eq. (3.27), both positive and negative moments ±|β| may cause inflection

points, provided that cos(θ0 − ϕ) − cos(θ(sa) − ϕ) < 0. However, eq. (3.28)

suggests that only a clockwise moment, i.e., β < 0, may cause an inflection

point which is in agreement with intuition. See Subfigure 3.14(b).
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3.5 Summary and Conclusions

This chapter studied the problem of determining the parametric large deflection com-

ponents for the entire length of the Euler–Bernoulli cantilever beams subjected to

combined tip point loading. Beam’s deflection characteristic equation was introduced

which is a single and unique equation governing any combination of loading and

deflection parameters. Angular, horizontal, and vertical deflection solutions to the

Euler–Bernoulli beam’s boundary value problem were obtained in terms of the loading

parameters with using the Automatic Taylor Expansion technique. The parametric

solutions were then validated by comparison with the numerical solutions obtained

from the numerical differential solver of Mathematica. The solutions were shown to

be independently and efficiently adaptable for very large loading conditions and eas-

ily implementable for the analysis and synthesis of beam-based engineering devices.

Then, a comprehensive study of the beam’s angular and axial deflections behavior

for several tip point loading conditions was carried out. The intelligence of the para-

metric solutions in recognizing the right deflection branch for both axial and the

newly recognized angular inflection points was also verified. Adapting the methodol-

ogy presented here for the cases of variable material and cross sectional properties is

considered as a future work.
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Chapter 4

Cartesian and Piecewise
Parametric Large Deflection

Solutions

The parametric large deflection solutions developed in the previous chapter are writ-

ten about a single start point for the whole beam length. It was shown that this

treatment is effective for handling arbitrary cases. However, high approximation or-

ders are needed when the load’s magnitude is large. Unfortunately, this increases

the number of solutions for the unknown constants, which make up the parametric

solutions. This, in turn, complicates the solution procedure, and requires careful

implementation.

This chapter, first, presents cartesian large deflection solutions, which are indepen-

dent of the beam’s arc length. A new closed form solution for the case of a large pure

end-force is also presented. Then, piecewise large deflection solutions are developed

which require low approximation orders for a fast convergence. To demonstrate the

robustness of these solutions, they are coded as a stand-alone user-friendly black-box

solver.
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4.1 Cartesian Large Deflection Solutions

Given in Chapter 3, the parametric large deflection solutions (3.8) and (3.9) are in

terms of the intermediate parameter s, which is not explicitly at hand. The goal of

this section is to eliminate s from the solutions, and obtain a cartesian large deflection

solution, i.e., the vertical large deflection component directly in terms of the horizontal

large deflection component. To this end, we employ the coordinates transformation

 X

Y

 =
1

l

R(ϕ)︷ ︸︸ ︷ cos(ϕ) sin(ϕ)

− sin(ϕ) cos(ϕ)


 x

y

 , (4.1)

where R(ϕ) is the orthogonal rotation matrix, which rotates the components x and y

clockwise by the angle ϕ about the origin. Keeping in mind that a rotation does not

change the curvature, eq. (3.1) simplifies to

d2Y/dX2

[1 + (dY/dX)2]3/2
= α2Y + α1, (4.2)

where α1 = β−α2(cos(ϕ)y1−sin(ϕ)x1)/l, α and β are as before, and the new boundary

conditions become

Y (0) = 0,
dY

dX
(0) + tan(ϕ) = 0. (4.3)

We integrate eq. (4.2) once, and employ the second boundary condition of (4.3)

to write

1√
1 + (dY/dX)2

= | cos(ϕ)| − α1Y − α2

2
Y 2 , G(Y ). (4.4)

Then, integrating the foregoing equation and applying the first boundary condition
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of eq. (4.3), we write

X =

∫ Y (X)

0

G(Y )√
1−G(Y )2

dY. (4.5)

Equation (4.5) is not amenable to an explicit closed form solution in terms of

elementary functions. However, letting G1 = G(Y (1)) and simplifying the results, a

standard form of elliptic integral solution may be obtained as

X = ±
∫ G(Y )

| cos(ϕ)|

1√
1−G2

G√
β2 − 2α2(G−G1)

dG. (4.6)

Had one replaced R(ϕ) with its transpose (RT (ϕ)) in the coordinates transfor-

mation (4.1), a similar result would have been obtained. However, both solutions

are qualitatively similar, and have no major advantage over each other. It is worth

mentioning that Ref. [75] also reported a solution procedure for obtaining a cartesian

large deflection solution. However, their coordinates transformation is not based on

rotation and is somewhat more complex than the rather compact eq. (4.6).

The inextensibility of the beam imposes a side condition, which would further

constrain the trajectory of the beam’s endpoints as

1 = ±
∫ G1

| cos(ϕ)|

1√
1−G2

1√
β2 − 2α2(G−G1)

dG. (4.7)

It is clear that the new cartesian elliptic integral large deflection solution (4.6)

retains the main shortcomings of the elliptic large deflection solutions (3.8) and (3.9).

Even though the new solution involves only x and y, it is implicit and highly nonlinear,

thus, still requires sophisticated numerical evaluation techniques. Likewise, the new

solution has still two branches, and the identification of the right branch for any input

loading parameters requires careful assessment. However, the square root in eq. (4.4)

is bounded below by one, thus, we have 0 < G(Y ) ≤ 1. This paves the way for fairly
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accurate approximations through neglecting higher powers of the quadratic function

G(Y ) in the aforementioned formulae. Considered as future work, such assumptions

facilitate obtaining efficient approximate closed form solutions in terms of elementary

functions. Nonetheless, we aim to obtain solutions, which are accurate for arbitrary

applied loadings. In what follows, we develop piecewise parametric large deflection

solutions, which are rapidly convergent and easily implementable as a stand-alone

black-box solver.

4.2 Piecewise Parametric Large Deflection Solutions

For convenience, eqs. (3.10)-(3.13) are given below:

d2ψ(s)

ds2
= α2 sin(ψ(s)), (4.8)

ψ(0) = −ϕ, dψ(1)

ds
= β, (4.9)

dx(s)

ds
= cos(ψ(s) + ϕ), x(0) = 0, (4.10)

dy(s)

ds
= sin(ψ(s) + ϕ), y(0) = 0, (4.11)

where ψ(s) , θ(s)− ϕ.

From Chapter 3, we know that the foregoing equations have explicit exact solu-

tions for only a pure end-moment loading, and no explicit solution is reported in the

literature for a general pure end-force loading. However, for a sufficiently large applied

end-force, the results of Subsubsection 3.4.1 from Chapter 3 suggest that beam’s end

angle approaches the force angle, i.e., θ1 ≈ ϕ. Utilizing this result, eq. (3.7) can be

simplified and solved analytically. For β = 0 and θ1 = ϕ, we give the exact solution
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of eqs. (3.3) and (3.4) as

θ(s) = ϕ− 4 arctan(tan(
ϕ

4
) exp(−αs)), (4.12)

which is valid for both elbow up and down solution branches. To get the correspond-

ing axial deflection components, we integrated eqs. (3.8) and (3.9), and used the

trigonometric identities


cos(4 arctan(z)) = 1− 8 z2

(1+z2)2
,

sin(4 arctan(z)) = 4z 1−z2
(1+z2)2

,

to write

 x(s)

y(s)

 =

RT(ϕ)︷ ︸︸ ︷ cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)


 s− 4

α

(
1

1+tan2(ϕ/4) exp(−2αs)
− 1

1+tan2(ϕ/4)

)
4
α

(
tan(ϕ/4) exp(−αs)

1+tan2(ϕ/4) exp(−2αs)
− tan(ϕ/4)

1+tan2(ϕ/4)

)
 ,
(4.13)

in which the manifestation of the rotation matrixR(ϕ) is in analogy with the cartesian

solutions given in the previous section. The outrageous discrepancy in the form of the

exact circular large deflection solution, given in Subsection 3.3.1 of Chapter 3, and the

newly developed closed form large deflection solution just underlines the complexity

of the beam behavior and the need for a robust solution procedure.

For i = 1, . . . , n, let [si, si+1] be a subdivision of the computational domain s ∈

[0, 1] such that ∪ni=1[si, si+1] = [0, 1], where s1 = 0 and sn+1 = 1. In addition, let θi(s),

xi(s), and yi(s) denote the deflection components corresponding to s ∈ [si, si+1].

Employing ATET, the parametric large deflection solutions corresponding to each
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subdivision are written as

θi(s) = ϕ+ c0i+ c1i(s− s0i)+α
2 lim
M1i→∞

M1i∑
j=2

1

j!

dj−2

dsj−2
(sin(ψ(s)))

⌋
s=s0i

(s− s0i)
j, (4.14)

xi(s) = x0i + lim
M2i→∞

M2i∑
j=1

1

j!

dj−1

dsj−1
(cos(ψ(s) + ϕ))

⌋
s=s0i

(s− s0i)
j, (4.15)

and

yi(s) = y0i + lim
M3i→∞

M3i∑
j=1

1

j!

dj−1

dsj−1
(sin(ψ(s) + ϕ))

⌋
s=s0i

(s− s0i)
j, (4.16)

where s0i ∈ [si, si+1], c0i = ψi(s0i), c1i =
dψi(s0i)
ds

, x0i = xi(s0i), y0i = yi(s0i), and finally

M1i, M2i, and M3i are the approximation orders. Note that all of the summation

terms are at hand, as the higher order derivatives of ψ(s) can be found in terms

of c0i and c1i upon successively differentiating eq. (4.8). Accordingly, there are 4n

unknowns, i.e., C4n = {c0i, c1i, x0i, y0i}, which are needed to be identified to fully

define the piecewise parametric large deflection solutions. To this end, requiring the

continuity in the zeroth and first order derivatives of the piecewise angular solutions at

the interfaces, and continuity in piecewise axial deflections, together with the original

boundary conditions (4.9)-(4.11) constitute the 4n algebraic-trigonometric constraints

B(C4n) =



θ1(0) = 0

dθn
ds

(1) = β

x1(0) = 0

y1(0) = 0


∪



θj(sj+1) = θj+1(sj+1)

dθj
ds
(sj+1) =

dθj+1

ds
(sj+1)

xj(sj+1) = xj+1(sj+1)

yj(sj+1) = yj+1(sj+1)

, j = 1, . . . , n− 1


,

(4.17)

which may be solved for the entire unknowns.
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For instance, taking n = 2 (i.e., i = 1, 2) and M1i = M2i = M3i = 5, the fifth

order piecewise ATET solutions for θi(s), xi(s), and yi(s) may be written as

θ(s) =



 ϕ+ c01 +
c11
1!
(s− s01) +

αs1

2!
(s− s01)

2 + c11αc1

3!
(s− s01)

3

+αs1η11
4!

(s− s01)
4 +

c11(αc1η21−3α4)
5!

(s− s01)
5

, 0 ≤ s ≤ s2,

 ϕ+ c02 +
c12
1!
(s− s02) +

αs2

2!
(s− s02)

2 + c12αc2

3!
(s− s02)

3

+αs2η12
4!

(s− s02)
4 +

c12(αc2η22−3α4)
5!

(s− s02)
5

, s2 ≤ s ≤ 1,

(4.18)

x(s) =


x01 +

cos(c̃01)
1!

(s− s01)− c11 sin(c̃01)
2!

(s− s01)
2

− c211 cos(c̃01)+αs1 sin(c̃01)

3!
(s− s01)

3 − c11(3αs1 cos(c̃01)+η11 sin(c̃01))
4!

(s− s01)
4

−αs1η31 sin(c̃01)+η41 cos(c̃01)
5!

(s− s01)
5,

0 ≤ s ≤ s2,


x02 +

cos(c̃02)
1!

(s− s02)− c12 sin(c̃02)
2!

(s− s02)
2

− c212 cos(c̃02)+αs2 sin(c̃02)

3!
(s− s02)

3 − c12(3αs2 cos(c̃02)+η12 sin(c̃02))
4!

(s− s02)
4

−αs2η32 sin(c̃02)+η42 cos(c̃02)
5!

(s− s02)
5,

s2 ≤ s ≤ 1,

(4.19)

69



and

y(s) =


y01 +

sin(c̃01)
1!

(s− s01) +
c11 cos(c̃01)

2!
(s− s01)

2

− c211 sin(c̃01)−αs1 cos(c̃01)

3!
(s− s01)

3 − c11(3αs1 sin(c̃01)−η11 cos(c̃01))
4!

(s− s01)
4

+αs1η31 cos(c̃01)−η41 sin(c̃01)
5!

(s− s01)
5,

0 ≤ s ≤ s2,


y02 +

sin(c̃02)
1!

(s− s02) +
c12 cos(c̃02)

2!
(s− s02)

2

− c212 sin(c̃02)−αs2 cos(c̃02)

3!
(s− s02)

3 − c12(3αs2 sin(c̃02)−η12 cos(c̃02))
4!

(s− s02)
4

+αs2η32 cos(c̃02)−η42 sin(c̃02)
5!

(s− s02)
5,

s2 ≤ s ≤ 1,

(4.20)

where c̃0i = c0i+ϕ, αsi = α2 sin(c0i), αci = α2 cos(c0i), η1i = αci− c21i, η2i = 4αci− c21i,

η3i = αci − 7c21i, and finally η4i = c21iη2i + 3α2
si for i = 1, 2. Note that s01, s02,

and s2 are to be chosen as input parameters, thus, leaving only eight unknowns

C8 = {c01, c11, c02, c12, x01, x02, y01, y02}, which would be identified upon imposing the

boundary conditions B(C8), an adaptation of B(C4n) for this special case.

4.2.1 Choice of the Number of Subdivisions n

The more the number of subdivisions, the more accurate the piecewise solutions.

However, more subdivisions introduce significant number of intermediate unknowns,

which would burden the computation. Nevertheless, an increase in the number of

subdivisions reduces the need for large approximation orders, which are generally

required for attaining a significant accuracy. To get a good balance between solution

accuracy and computational cost, we set n = 2, for which the resulting large deflection

solutions are highly accurate and rather compact.
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4.2.2 Choice of the Segments’ Endpoints si and si+1

Recall that the premise of the piecewise solutions is the Taylor series expansion, which

approximates the unknown exact large deflection solutions with polynomials in the

arc length of the beam. It is clear that the smaller the computational domain, i.e.,

the length of the arc length for each piecewise solution, the better the accuracy of the

approximations. However, for a fixed number of subdivisions and fixed approxima-

tions orders, improving the accuracy of each piecewise solution requires shortening

the length of that segment, which would force compromising the accuracy of the re-

maining segment solutions. Therefore, to avoid this, the optimal subdivision is to

subdivide the beam length equally, i.e., [si, si+1] = [(i− 1), i]/n for i = 1, . . . , n.

4.2.3 Choice of the Start Points s0i

The piecewise solutions also depend on start points s0i, which are to be chosen. Like

the parametric solution presented in Chapter 3, start points can simplify the solution

procedure. For example, the unknowns {c01, c1n, x01, y01} would become known pa-

rameters, if s01 and s0n are taken as s1 = 0 and sn+1 = 1, respectively. In contrast,

setting s0i to the center of each segment provides the most accuracy and convergence.

4.2.4 Independence of the Approximation Orders

Following the discussion of Subsection 2.3.6, any of the approximation orders M1i,

M2i, andM3i can be chosen independently. This is significant in two ways. The accu-

racy of any of the angular and axial deflection components can be exclusively adjusted

without disturbing the accuracy of the remaining solution components. Likewise, the

accuracy of each segment solution can be adapted without affecting the accuracy of

the remaining segment solutions. Taken the piecewise solutions given by eq. (4.18)

as an example, the accuracy of the angular solution on the domain of s ∈ [0, s2] can
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be controlled independently of that of s ∈ [s2, 1], and vice versa.

4.2.5 Solution of the Boundary Constraints B(C4n)

The system of boundary constraints B(C4n) (4.17) is a decoupled system of algebraic-

trigonometric equations. To solve it efficiently, the angular constraints can be solved

for c0i and c1i independently of the axial constraints. Then, the resulting solutions

can be inserted into the horizontal and vertical deflection constraints so as to solve

for x0i and y0i, respectively.

One major advantage of the piecewise solution procedure over the single-piece

solution approach of Chapter 3 is that the boundary constraints, i.e., B(C4n), of the

former are relatively far more well-conditioned than those of the latter. For the latter,

the boundary constraints can be converted into a system of polynomial equations,

and solved for the entire solution set, among which the true solutions can be sought.

However, this approach is rather inefficient, and impractical for daily engineering

applications.

In contrast, we employ the Newton–Raphson technique, which initiates at a given

start solution and iteratively updates it to converge to a feasible solution. Even though

multiple solutions may exist, we have found that the Newton–Raphson technique,

starting at a zero solution set, has constantly converged to the true solution for

B(C4n). This feature has led us to coding the algorithm as a black-box simulation

software, which is discussed in the next section.

4.3 BeamSol : A Large Deflection Beam Solver

To demonstrate the effectiveness of our solution procedure, we coded our algorithm

as a black-box solver using Visual C++. Our large deflection beam solver, BeamSol

1.0, provides various user-friendly functionalities, including plotting, sampling, and
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exporting the solutions to a data file.

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6Case 7

Case 8 Case 9

Case 10

Figure 4.1: A snapshot of BeamSol 1.0 corresponding to the ten cases of input data
given in Table 4.1. The annotations in red are added manually for illustration pur-
poses.

For the special case of pure end-moment, BeamSol 1.0 employs the circular exact

solution of Subsection 3.3.1, and for a general loading it employs, currently, the two-

piece fifth order ATET solutions given by eqs. (4.18)-(4.20), but is envisioned to offer

various number of pieces and approximation orders in the very near future. For the

solution of boundary constraints, as discussed earlier, the Newton–Raphson technique

is implemented and a zero solution set is used. To validate the results of BeamSol 1.0,

we ran it for many randomly generated input data, and the results were successfully

compared against those of the previous chapter and the numerical differential solver

of Mathematica. The executable is to be posted online for free download.

Figure 4.1 depicts a snapshot of BeamSol 1.0, which plots the cartesian large

deflection components for ten cases that are listed in Table 4.1.
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Table 4.1: Input data used for Figure 4.1. For all cases: l = 1 (m), I = 10−4 (m4),
and E = 10 (MPa).

Parameter \ Case # 1 2 3 4 5 6 7 8 9 10

f (kN) 0 0 1 1 16 16 16 16 16 16

ϕ (radian) – – 2 -2 -1 -1 -1 1 1 1

M1 (kN.m) 5 -5 4 -4 4 0 -4 4 0 -4

4.4 Summary and Conclusions

This chapter presented cartesian large deflection solutions, which are independent of

the beam’s arc length. The solutions are implicit and in terms of elliptic integrals,

but are envisioned to guide the development of approximate closed form large de-

flection solutions. For the case of a large pure end-force, a new closed form solution

was also presented which incorporated the rotation matrix employed for developing

the aforementioned cartesian large deflection solutions. To add further efficiency and

robustness to the single piece parametric solutions of the previous chapter, piecewise

large deflection solutions were also developed which require low approximation or-

ders for a fast convergence. These solutions were coded as a stand-alone black-box

solver, which offers several functionalities for the solution of large deflection of Euler–

Bernoulli cantilever beams. The executable will be posted for free download for those

who are interested in beam applications.
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Chapter 5

Calculation of the 3D Hysteretic
Magnetization and

Magnetostriction of Iron-Gallium
Alloys

Thus far, simulation tools were discussed and developed for a passive Euler–Bernoulli

material. From this chapter on, the focus is given to smart materials, in particular,

Magnetostrictive materials. Results of this chapter are also documented in Ref. [44].

The Discrete Energy-Averaged model (DEA) calculates the magnetization unit

directions that minimize a Gibbs free energy defined locally about the six easy direc-

tions. However, the resulting minimization problem is not amenable to an explicit

analytical solution. To alleviate this shortcoming, Evans and Dapino [42] linearized

the normalization constraint about each easy direction, which is valid for small ro-

tations of the magnetic moments about the easy directions. This novel treatment

resulted in an explicit approximate solution, whose error is minimal since moments

that have rotated far from the easy axes are more energetic, thus, are less probable.

Nonetheless, the approximate magnetization directions may significantly violate the

unity norm constraint for large inputs. Post-normalization of the directions was pro-

posed by Chakrabarti and Dapino [76], but the resulting directions can still deviate

from the true energy minima for generic 3D inputs. Additionally, this solution proce-
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dure is prone to singularities, which could burden the computation, especially when

the method is integrated into finite-element solvers.

Design and optimization of magnetostrictive systems using finite-element tech-

niques require constitutive models that are robust and valid for arbitrary magnetic

field and stress inputs. The primary objective of this chapter is to develop a robust

solution procedure for the DEA model that avoids singularities. First, the DEA model

is improved by incorporating the more thorough expression for the magnetostriction

in cubic ferromagnets and by formulating the model based on the average of hysteretic

data, which precludes the need for additional anhysteretic data. Then, an analytical

solution of the resulting model is derived that exactly solves the constrained energy

minimization. Depending on the dimension of the application, the solution procedure

offers multiple solutions for each easy direction which allows it to circumvent singu-

larities and to completely reveal the material behavior for arbitrary magnetic field

and stress inputs. By using the analytical solution, the model is significantly reduced

for 2D and 1D applications. A novel parameter optimization routine is developed,

which decouples the model parameters into two sets. One set is quickly calculated

through a preprocessing step, while the other is determined through a sophisticated

constrained minimization. It is shown that the increased robustness of the proposed

model comes at no expense for 1D applications, but requires twice the computation

time for generic 3D applications. The model is validated through comparison with

existing measurements and the former model.

The rest of this chapter is organized as follows. A brief review of the DEA model

and the existing approximate solution is shown in Section 5.1. Subsection 5.2.1

presents a reformulation of the DEA model and the analytical solution procedure.

Section 5.3 gives the reduced formulation of the model for 2D and 1D applications.

Parameter optimization is discussed in Section 5.4, which is followed by model vali-
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dation and the conclusions.

5.1 Review of calculation of the 3D magnetostric-

tion and magnetic flux density for Galfenol

Evans and Dapino [42] proposed a discrete energy-averaged (DEA) model that com-

putes the magnetization directions of mesoscopic magnetic domains by minimizing

the Gibbs free energy that is defined locally about each easy crystallographic direc-

tion. Gibbs free energy was chosen, as it takes magnetic field and stress vectors as

independent variables. The Gibbs free energy in the vicinity of the kth easy direction

is composed of magnetocrystalline (anisotropy), magnetoelastic (magnetomechanical

coupling), and magnetic field (Zeeman) energies. The minimization procedure applied

to Evans and Dapino’s formulation requires as many matrix inversions as the number

of easy directions. To reduce the number of matrix inversions to one, Chakrabarti [43]

slightly modified the anisotropy energy. Accordingly, the Gibbs free energy can be

written in matrix notation as

k

G=
1

2

k
m ·K k

m −
k

b · k
m +

1

2
K+

k

K0, (5.1)

where K and
k

K0 are anisotropy energy constants;
k
m= [

k
m1;

k
m2;

k
m3] is the magnetiza-

tion direction having unit magnitude; k takes values ±1, . . . ,± r
2
; and r is the number

of easy crystallographic directions (the ⟨100⟩ family of six directions for Galfenol).

The magnetic stiffness matrix K and magnetic force vector b along the kth easy

direction are given by

K = KI− 3


λ100T1 λ111T4 λ111T6

λ111T4 λ100T2 λ111T5

λ111T6 λ111T5 λ100T3

 , (5.2)
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and
k

b= K
k
c +µ0MsH, (5.3)

respectively, where I is the 3× 3 identity matrix; λ100 and λ111 are magnetostriction

constants; µ0 andMs are, respectively, the vacuum permeability and saturation mag-

netization; H = [H1;H2;H3] is the magnetic field vector; andT = [T1;T2;T3;T4;T5;T6]

stands for the stress tensor written in contracted vector notation, where T1 = T11,

T2 = T22, T3 = T33, T4 = T12, T5 = T23, and T6 = T13.

The macroscopic 3D magnetostriction λ and magnetization M are defined as

weighted sums of the response due to the r minimum energy directions,

λ , λ =

±r/2∑
k=±1

k

ξan
k

λ, (5.4)

M , M =Ms

±r/2∑
k=±1

k

ξan
k
m, (5.5)

where
k

ξan and
k

λ denote, respectively, the bulk anhysteretic volume fraction and the

magnetostriction tensor written in vector notation for the kth easy direction. Letting

Ω be a smoothing factor, the former is calculated as a Boltzman-type, energy-weighted

average as

k

ξan= exp

−
k

G

Ω

 ±r/2∑
j=±1

exp

 j

G

Ω

 , (5.6)

and the magnetostriction in tensor notation is given as

k

λuu=
3

2
λ100

k
mu

2

k

λuv= 3λ111
k
mu

k
mv, u ̸= v

, u, v ∈ {1, 2, 3}. (5.7)
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5.1.1 Calculation of
k
m (approximate solution)

The application of an external magnetic field or stress changes the energy surface in

the vicinity of each easy crystallographic direction, which may shift the kth minimum

energy direction away from the kth easy direction. Thus, the unit magnitude, mini-

mum energy directions m are not known a priori for each easy direction, and must

be calculated by minimizing the local free energies (5.1) before evaluating the volume

fractions (5.6). Following Evans and Dapino [42], the constrained minimization is for-

mulated as the following inhomogeneous eigenvalue problem through the application

of the Lagrange multipliers method

(K−
k
γ I)

k
m =

k

b, (5.8a)

k
m · k

m = 1, (5.8b)

where
k
γ is the unknown Lagrange multiplier corresponding to the kth minimum energy

direction. In the absence of an explicit, analytical solution to the foregoing system of

equations, Evans and Dapino [42] relaxed the normalization constraint through the

approximation m·m ≈ c·m = 1 for each easy direction. As a result, the following

explicit, approximate solution was reported:

k
m ≈ [K]−1

 k

b +

1− k
c ·[K]−1

k

b
k
c ·[K]−1

k
c

 k
c

 . (5.9)

5.1.2 Magnetomechanical hysteresis

Dissipation of energy creates a history dependence on the material’s response. Mate-

rial’s lag in response for the same inputs but at different states is commonly known

as hysteresis. The anisotropy energy is one source to account for the dissipation of
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energy in the aforementioned Gibbs free energy formulation. Evans and Dapino [42]

presented an incremental form of hysteresis based upon an evolution equation for the

volume fractions,

∆
k

ξ (i) = (1− c)∆
k

ξirr (i) + c∆
k

ξan (i), (5.10)

where i is the increment index, c is a dimensionless constant quantifying the reversible

processes during domain wall motion, and finally the change in the irreversible volume

fractions for 3D stress and field inputs is defined as

∆
k

ξirr (i) =
ζ

kp
(
k

ξan (i)−
k

ξirr (i− 1))

×

[
µ0Ms

3∑
p=1

|∆Hp(i)| + (3/2)λ100

3∑
p=1

|∆Tp(i)|+ 3λ111

6∑
q=4

|∆Tq(i)|

]
,

(5.11)

where ζ is a binary number for avoiding a nonphysical negative susceptibility, and kp

is a pinning site density constant that characterizes the energy loss associated with

domain wall rotation. Note that this hysteresis model is not self-starting, because the

initial irreversible volume fractions are undefined. However, it is common practice to

assume that ξirr(0) = 0.

5.2 Reformulation of the DEA Model with Exact

Solution Procedure

The ultimate goal of this chapter is to model Galfenol’s hysteretic behavior. There-

fore, we reformulate the DEA model based on the average of hysteretic data, as

opposed to anhysteretic data, which would require additional measurements for pa-

rameter optimization and validation. In essence, we employ the averaged hysteretic
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volume fractions, i.e., ξhys, which correspond to the median curves obtained from

averaging the hysteretic measurement data. Thus, every occurrence of ξan in the

previous model is replaced by ξhys in the new model. To be precise, eqs. (5.4)-(5.6),

which define the nonhysteretic model, become

λ , λ =

±r/2∑
k=±1

k

ξhys
k

λ, (5.12)

M , M =Ms

±r/2∑
k=±1

k

ξhys
k
m, (5.13)

k

ξhys= exp

−
k

G

Ω

 ±r/2∑
j=±1

exp

 j

G

Ω

 , (5.14)

where the parameters in the Gibbs free energy are optimized against the averaged

hysteretic data; and finally eqs. (5.10) and (5.11), which constitute the hysteretic

model, become

∆
k

ξ (i) = (1− c)∆
k

ξirr (i) + c∆
k

ξhys (i), (5.15)

∆
k

ξirr (i) =
ζ

kp
(
k

ξhys (i)−
k

ξirr (i− 1))

×

[
µ0Ms

3∑
p=1

|∆Hp(i)| + (3/2)λ100

3∑
p=1

|∆Tp(i)|+ 3λ111

6∑
q=4

|∆Tq(i)|

]
,

(5.16)

We also reformulate the magnetoelastic energy. Evans and Dapino [42] used the

tensor-valued magnetostriction, eq. (5.7), given by Engdahl [77]. Instead, we use the

more thorough formulation of Kittel [78] with a constant term not present in the book
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by Engdahl. Kittel’s expressions are given in component tensor notation as

k

λuu=
3

2
λ100(

k
mu

2

−

, c0︷ ︸︸ ︷
c12

c11 + 2c12
),

k

λuv= 3λ111
k
mu

k
mv, u ̸= v,

(5.17)

where u, v ∈ {1, 2, 3}, and c11 and c12 are two of the three independent elastic moduli

for crystals with cubic symmetry. Relative to Engdahl’s equation used in the prior

work, employment of eq. (5.17) provides a better fit of the model to experimental

data for the sensing case, as detailed in Subsection 5.5.1.

5.2.1 Calculation of
k
m (exact solution)

The approximate solution (5.9) has the advantage of simplicity and explicitness. How-

ever, the approximate magnetization direction obtained from eq. (5.9) violates the

unity norm constraint when the material is saturated by large magnetic fields or

stresses. Referring to eq. (5.5), this results in a nonphysical magnetization (i.e.,

larger than the saturation magnetization Ms). One way to circumvent this issue is to

normalize the approximate solution following its calculation [42, 43]. Although this

might seem effective, the solution does not truly reflect the genuine solution of the

system of eqs. (5.8). Additionally, the approximate method fails to provide a solution

when the matrixK becomes singular. For a planar stress state, i.e., T3 = T5 = T6 = 0,

this singularity occurs on the surface depicted in Figure 5.1, where the determinant

sub-locus of the matrix K is shown. An ill-conditioned matrix K can also cause

numerical difficulties, expanding the failure surface into a volume. Although planar

stress is a special case, it is apparent that the singularity zone enlarges when the

stress state is generic. The failure zone of such a case has too many dimensions to

show graphically, but it is governed by the determinant constraint |K| < ϵ, where ϵ is
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a small number. The need for a more robust model is further motivated considering

that this constitutive model has been integrated into finite-element models for the

simulation of Galfenol-based systems [76, 79]. The utility of such finite-element mod-

els for use by non-experts is hampered if the model does not incorporate a black-box

constitutive model that is valid for all inputs.
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Figure 5.1: (a) The determinant sub-locus of the matrix K corresponding to planar
stress for K = 3× 104, 3λ100 = 520× 10−6, and 3λ111 = −20× 10−6, (b) slice plot for
T1 = 0 or T2 = 0, and (c) slice plot for T4 = 0.

Before developing the exact solution procedure, we simplify the Gibbs free en-

ergy (5.1) using the unity norm constraint on the magnetization directions (5.8b)

as

k

G =
1

2

k
m ·K k

m −
k

b · k
m +

1

2
K+

k

K0 =
1

2

k
m ·K k

m −
k

b · k
m +K+

k

K0, (5.18)
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where the simplified magnetic stiffness matrix is

K = −3


λ100T1 λ111T4 λ111T6

λ111T4 λ100T2 λ111T5

λ111T6 λ111T5 λ100T3

 , (5.19)

as a result of which the energy minimization problem becomes

(K−
k
γ I)

k
m =

k

b, (5.20a)

k
m · k

m = 1. (5.20b)

In addition, we take the dot product of eq. (5.20a) with
k
m, solve for the quadratic

term, and using eq. (5.20b), we write

k
m ·K k

m=
k
γ +

k

b · k
m, (5.21)

which after a uniform shifting of the base energy of those of the entire easy axes

simplifies the Gibbs free energy as

k

G=
1

2

k
m ·K k

m −
k

b · k
m +

k

K0=
1

2
(
k
γ −

k

b · k
m)+

k

K0 . (5.22)

Such simplifications reduce computation time and are crucial when the model is

integrated into finite-element constructs, which evaluate the model many times for

each solution step. To make the model more robust, an exact solution to the system

given by eqs. (5.20a) and (5.20b) is derived as follows. By employing the eigenvalue
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decomposition, eq. (5.20a) can be rewritten as

k

b = (K−
k
γ I)

k
m= (QΛQT−

k
γ I)

k
m

= (QΛQT−
k
γ QQT)

k
m

= Q(Λ−
k
γ I)QT k

m,

(5.23)

whereQ is an orthogonal matrix containing the eigenvectors ofK, and Λ is a diagonal

matrix composed of the corresponding eigenvalues, i.e., λ1-λ3, ofK. Solving eq. (5.23)

for
k
m and substituting it into eq. (5.20b), one gets

k

bTQ(Λ−
k
γ I)−2QT

k

b= 1. (5.24)

The matrix inversion required in the foregoing equation is easily avoided by using the

simplification

(Λ−
k
γ I)−n =


1

(λ1−
k
γ)n

0 0

0 1

(λ2−
k
γ)n

0

0 0 1

(λ3−
k
γ)n

 , n ∈ N. (5.25)

When expanded, eq. (5.24) reduces to the following sixth order polynomial:

k
γ 6 + 2(λ̄2 + λ̄3)

k
γ 5 +

(
λ̄22 + 4λ̄2λ̄3 + λ̄23 − Q̄1 −Q̄2 − Q̄3

) k
γ 4

+2
(
λ̄22λ̄3 + λ̄2λ̄

2
3 − λ̄2Q̄1 − λ̄3Q̄1 − λ̄3Q̄2 − λ̄2Q̄3

) k
γ 3

+
(
λ̄22λ̄

2
3 − λ̄22Q̄1 − 4λ̄2λ̄3Q̄1 − λ̄23Q̄1 − λ̄23Q̄2 − λ̄22Q̄3

) k
γ 2

−2λ̄2λ̄3Q̄1

(
λ̄2 + λ̄3

) k
γ −λ̄22λ̄23Q̄1 = 0 ,

(5.26)

where
k
γ= λ1−

k
γ, λ̄2 = λ2−λ1, λ̄3 = λ3−λ1, and [

√
Q̄1;

√
Q̄2;

√
Q̄3] = QT

k

b. For the

kth easy direction, this polynomial can be easily solved to obtain the entire solution
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set of γ, which is consequently used to calculate a set of magnetization directions

after solving eq. (5.23) for m as

k
m= Q(Λ−

k
γ I)−1QT

k

b . (5.27)

Again, the matrix inversion is easily avoided using eq. (5.25).

Multiplicity of the solution set for
k
m

Due to the dimensionality of the problem and the unity norm constraint (5.20b),

eq. (5.26) is a sixth order polynomial, giving rise to six possible solutions for m for

each k. The complex solutions of eq. (5.26) can be neglected. Since the expression

for G for each k is only valid in the vicinity of the kth easy magnetization direction,

the direction solutions oriented sufficiently far from the corresponding easy axis can

also be ignored. For example, Figure 5.2 shows the volume of valid magnetization

directions about
−2
c= [0;−1; 0]. The remaining solutions of eq. (5.26) correspond to

valid minima of the local energy function G for each k. Figure 5.3 depicts a surface

plot of Gibbs free energy (scaled down by K), showing the real, exact solutions (5.27)

and the approximate solution (5.9) of m for each k. Clearly, the approximate solution

does not truly correspond to the Gibbs free energy minimizer.

The proposed modeling framework has the capability of considering all valid so-

lutions of m for each k; however, the volume fraction of magnetic domains oriented

along each minima depends upon the history of stress and magnetic field applica-

tion as well as thermal activation, which energizes magnetic moments allowing them

to overcome the energy barriers between energy minima. Thus, if more than one

magnetization direction for each easy direction is considered, the energy weighting

expression (5.14) should be modified to incorporate these effects, while ensuring that

multiple minima about a single easy direction are not excessively weighted. Following
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x y

z

Figure 5.2: Volume of valid magnetization directions (shaded region) for
−2
m in the

vicinity of
−2
c= [0;−1; 0] (black arrow), shown in relation to the 5 other easy magne-

tization directions (red arrows) for a material with cubic anisotropy and
k

K> 0.

the approach of Evans and Dapino [42], this work strikes a balance between accuracy

and efficiency by considering only six magnetization directions. For each easy direc-

tion, the solutions for m are selected using the criteria that each minimizes most the

Gibbs free energy within their respective volume of valid magnetization directions.

5.3 Simplification of the Model for Lower Dimen-

sional Applications

Galfenol can be utilized in complex 3D systems, because it can withstand 3D stresses.

However, not all applications require Galfenol’s 3D capability. For such applications,

lower dimensional models are sufficient or are useful for preliminary analysis of the

system. In fact, many experiments are conducted on magnetostrictive rods, which are

exposed to an axial magnetic field and stress, thus, warranting even a 1D formulation

of the proposed model.

While the exact solution procedure presented in Section 5.2 is general and valid

for arbitrary applications, a special magnetic field or stress state may reduce the

number of locally-minimum energy directions. For such cases, eq. (5.26) degenerates
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Figure 5.3: The cartesian surface plot of Gibbs free energy (5.1), scaled down

by K, relative to the second easy direction
−1
c with K = 30 (kJ/m3), K100 = 0

(kJ/m3), 3λ100 = 520 (ppm) and 3λ111 = −20 (ppm) for H = [1; 0; 0] (kA/m) and
T = −[100; 0; 40; 40; 40; 0] (MPa); real solutions of eq. (5.27) shown by blue arrows
(orientation most minimizing energy by a double-headed arrow); approximate solu-
tion (5.9) shown by a red arrow.

into lower order polynomials, which can be solved more efficiently. Two cases are

considered: 2D (plane stress) and 1D. Note that the over index k is dropped within

subsections that specify its value to improve clarity.

5.3.1 2D Applications

Consider a state of plane stress and planar magnetic field (i.e., H3 = T3 = T5 = T6 =

0). For this case, eq. (5.26) still has six solutions for ±3 easy directions. However, a

simplified approach can be used for the remaining easy directions.

k = ±1,±2

For the easy crystallographic directions ±⟨100⟩ and ±⟨200⟩, the magnetic force vec-

tor (5.3) has one zero component, namely, b3 = 0. From eqs. (5.20), this results in a

planar magnetization direction (i.e., m3 = 0) since γ cannot equal 0. The remaining
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direction components are

m2 =
K12(2m

2
1 − 1)− b2m1

K̂12m1 − b1
= ±

√
1−m2

1, (5.28)

where K11 = −3
2
λ100T1, K12 = −3

2
λ111T4, and K̂12 = −3

2
λ100(T1 − T2). Substituting

the foregoing result into eq. (5.20b) gives the fourth order polynomial

(K̂2
12 + 4K2

12)m
4
1 − 2(b1K̂12 + 2b2K12)m

3
1 + (b21 + b22 − K̂2

12 − 4K2
12)m

2
1

+2(b1K̂12 + b2K12)m1 +K2
12 − b21 = 0.

(5.29)

5.3.2 1D Applications

Consider 1D loading along ±⟨100⟩, for which the only nonzero stress and field com-

ponents are T1 and H1.

k = ±1

For the easy crystallographic directions ±⟨100⟩, the magnetic force vector (5.3) has

components b2 = b3 = 0, and the system of eqs. (5.20) has the explicit solutions
1
m=

1
c

and
−1
m=

−1
c , since γ cannot equal 0.

k = ±2,±3

Magnetic domains tend to orient parallel to magnetic fields and tensile stresses, and

perpendicular to compressive stresses. For a 1D application, there is no driving force

to rotate the basal plane magnetization directions (i.e., those of k = ±2,±3) about the

loading axis ±⟨100⟩. The basal plane directions, therefore, respond equivalently to

axial loading; thus, it is sufficient to consider only the case k = 2. Solving eq. (5.20a)

89



for m2 one gets

m2 =
b2m1

b1 −K11m1

= ±
√

1−m2
1. (5.30)

Substitution of the foregoing result into eq. (5.20b) gives

K2
11m

4
1 − 2b1K11m

3
1 +

(
b21 + b22 −K2

11

)
m2

1 + 2b1K11m1 − b21 = 0. (5.31)

Unlike the exact solution procedure for 3D inputs, the reduced 1D and 2D models

do not require a solution for the intermediate variable γ; rather, the exact mini-

mum energy directions are directly found by solving the corresponding fourth order

polynomials. In particular, due to the equivalence of the four basal plane directions

for 1D applications, eq. (5.31) must be solved only once. As detailed later, the 1D

simplification is over twice as efficient as the proposed 3D model.

5.4 Parameter Optimization

The goal of the parameter optimization procedure is to identify the constant model

parameters {Ms, E, λ100, λ111, c0, K,K0,Ω} that provide the best fit of the model to

experimental data. With optimized parameters, the model should adequately calcu-

late the magnetization and magnetostriction response for arbitrary input sets (i.e.,

interpolated within or extrapolated outside the inputs used for experimental valida-

tion).

The optimization procedure presented below is dichotomous. First, averaged ex-

perimental data is found from 1D hysteretic measurements through an effective aver-

aging technique. Second, a sophisticated objective error function relating the family

of simulated responses and the family of averaged data is minimized to determine the

optimal material parameters.
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5.4.1 Extracting the averaged responses from hysteretic mea-

surements

The aim is to average the upper and lower branches of hysteretic data. Chakrabarti [43]

proposed a technique that averages in an incremental sense with a user-defined step

size. However, even for a carefully chosen step size, some portions of the averaged

curves obtained from this approach may go outside the two hysteretic curves, suggest-

ing that the technique lacks robustness. To alleviate this shortcoming, the following

two issues must be addressed. First, for sampled hysteretic actuation and sensing

curves, the values of the independent variable for points on the upper and lower

branches may not match. To alleviate this, each branch is fit with piecewise linear

Hermite functions and re-sampled using the same discretization.

Second, the data in highly-sloped burst regions may need to be treated differently

from that in the flat saturation regions. For the former, a major change is observed in

the vertical direction, thus, the data should be averaged in the horizontal direction.

For the latter, the opposite is true. Accordingly, this switch of the averaging direction

is taken into account in the discretization procedure discussed above.

5.4.2 Objective Error Function

MATLAB’s built-in constrained optimization function, fmincon, is used. This func-

tion needs an initial guess and bounds for each parameter, and a globally-defined,

scalar objective function. For c0 and Ω, respectively, 10−5 and 1200 were used as

start guesses. For the remaining initial guesses, the approximate analytical expres-

sions developed by Chakrabarti [43] were utilized. Furthermore, the bounds for all

parameters were selected to be 80% above and below the corresponding initial guesses,

except the smoothing factor Ω, for which a range from 0.01 to 3 kJ/m3 was selected.

Finally, the objective function is a weighted average error for an entire family of

91



curves that is constructed as follows.

1. For the ith curve of Ni points in a data set, the modeling error is quantified as

errori =
1

Ni

Ni∑
j=1

∣∣∣∣wij Yij −Xij

range(Xi)

∣∣∣∣n , (5.32)

where Yij and Xij are the jth component of the ith calculated response and

averaged data, respectively, which contain Ni points; range(Xi) is the difference

between the upper and lower bound for that curve; wij is a weighting factor for

each point; n is a positive number, which when taken as 1 gives rise to a 1-norm,

and when taken as 2 yields the square of the common Euclidean 2-norm.

2. The data is split into two sub-families: actuation and sensing. The mean error

for each sub-family is obtained by averaging the individual errors within the

sub-family.

3. The total error is the sum of the two sub-family errors.

Note that the error function definition (5.32) retains the main feature of that from

Chakrabarti [43] in that the error is normalized with respect to the range of each

curve, allowing for the safe combination of the magnetization and magnetostriction

errors. In contrast, the new error function definition generalizes the former definition

in two aspects. First, instead of taking n to be 2, n can be any number, or can even

be a parameter to be identified through optimization. Our experience suggests that

n = 1 provides good performance. Second, with the user-defined weighting factors

wij, one can have more control over how much error is attributed to the different

regions of the curves. In essence, the error observed in the burst regions dominates

that of the saturation regions; thus, the latter error, even if large, does not contribute

much to the total error. Therefore, the parameters may be overly optimized for the
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burst regions. For such cases, a relatively large weighting factor is devised so that the

resulting saturation error is comparable to that from the burst regions. We do not

report values for the weighting factors, as their determination is done through trial

and error and is dependent on the given data.

5.4.3 Some Notes on the Optimization

Finding the globally-optimal parameter set can be time consuming, because the pa-

rameter space has eight dimensions. To reduce the computational burden, the fol-

lowing notes may be considered.

• When calculating the averaged data, one may discretize each curve using the

same number of points. This allows for Ni to be removed from the error func-

tion (5.32).

• For ideal actuation measurements, the magnetization and magnetostriction

curves are symmetric with respect to magnetic field. Thus, only half of the

actuation data may need to be considered.

• The parameter set may be split into three sets: {Ms, E, λ100}, and {c0, K,K0,Ω},

and {λ111}. The first set may be directly calculated from sensing and actuation

responses (i.e., a preprocessing step), while the second set is found through opti-

mization. For 1D measurements of a ⟨100⟩-oriented sample, the third set cannot

be calculated directly or through optimization, as the 1D model is independent

of λ111. In the absence of shear stresses, λ111 can be arbitrarily set to zero. In

other cases, this parameter must be taken from the literature or measured from

1D measurements of a ⟨111⟩-oriented sample.
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5.5 Validation of the Model: Results and Discus-

sion

The model consists of two parts: the nonhysteretic and hysteretic parts. The former

models the averaged hysteretic data, and is governed by eqs. (5.12)-(5.14) and (5.20),

while the latter is built on the former, and is defined by eqs. (5.15) and (5.16).

Validation of each part is discussed in the subsections below.

Due to the significant difficulty in obtaining 3D measurements, it is common

practice to conduct 1D experiments, in which a magnetostrictive rod is exposed to

load and magnetic field along its main axis, say ±⟨100⟩ direction. As detailed above,

a key benefit of the DEA model is that all but one parameter can be determined from

1D measurements. For validation, existing data obtained by Evans and Dapino [42] is

used. The data was obtained using a textured, ⟨100⟩-oriented Fe81.5Ga18.5 rod grown

with the Free Stand Zone Melt method (FSZM) at Etrema Products Inc.

5.5.1 Validation of the Nonhysteretic Model

The constant parameters {Ms, E, λ100, λ111, c0, K,K0,Ω} must be identified to fully

define the nonhysteretic model. The aforementioned measurement data is used to

initiate the optimization routine discussed in Section 5.4. The optimized parameters

are tabulated in Table 5.1. Figure 5.4 depicts the measured data, together with the

extracted averaged curves along with the calculated nonhysteretic model. The figure

clearly demonstrates the effectiveness of the averaging technique, and the close agree-

ment between the nonhysteretic model and the averaged hysteretic data. Due to the

decoupled optimization procedure (namely, the calculated effective elastic modulus

and saturation magnetization and magnetostriction), excellent fits are obtained in

the saturation regimes.

Common to all subfigures of Figure 5.4, the model underestimates both magneti-
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Figure 5.4: Comparison of averaged hysteretic measurements and nonhysteretic
model for ⟨100⟩ Fe81.5Ga18.5 grown with FSZM at (a),(b) constant compressive stress
values of 0.32, 8.00, 13.40, 23.10, and 32.30 MPa, and (c),(d) constant field values of
1.85, 3.24, 5.65, and 8.88 kA/m. Strain is the superposition of the mechanical strain
(T/E) and the magnetostriction (λ).
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Table 5.1: Optimized parameters for the nonhysteretic model.

Par. Ms (kA/m) E (GPa) λ100 (ppm) λ111 (ppm)

Value 1,242.20 74.49 172.31 –

Par. c0 K (kJ/m3) K100 (J/m3) Ω (J)

Value 0.38 35.58 412.18 1,330.00

zation and magnetostriction as the material leaves the burst region and approaches

saturation. For instance, in Subfigure 5.4(a) for the 32.3 MPa bias stress, the model

starts to deviate from the averaged data near 7.3 kA/m and exhibits a maximum

relative error of 19% at 8.2 kA/m before tending to zero as it saturates around

11 kA/m. This consistent lack of agreement over all subfigures suggests that some of

the underlying physics are not captured by the local free energy formulation (5.22).

Improvements to this energy will be the subject of future research.

Table 5.2 compares the normalized error of the proposed model and the approxi-

mate model [42, 43] for magnetization and strain for actuation and sensing cases. The

error was calculated according to Subsection 5.4.2 with all the weighting factors set

to one. The number of uniformly-distributed samples was increased until the error

was unchanged. The table demonstrates that the total error of the new model is

extremely low, i.e., only 9.3% of that of the approximate model.

Table 5.2: Comparison of the normalized error of the exact and approximate non-
hysteretic models. Model parameters for the latter are: Ms = 1, 225.00 (kA/m),
E = 75.31 (GPa), λ100 = 166.31 (ppm), K = 34.84 (kJ/m3), K100 = 498.00 (J/m3),
and Ω = 1, 014.70 (J).

Actuation error Sensing error Total
Model M S M S error

Exact 0.04 0.06 0.09 0.09 0.28

Approximate 0.04 0.05 0.08 2.84 3.01
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Figure 5.5: Magnetostriction calculated with (a) eq. (5.7) and (b) eq. (5.17), and
compared with the averaged hysteretic data at constant field values of 1.85, 3.24, 5.65,
and 8.88 kA/m. For each case, material parameters are optimized for the full family
of actuation and sensing measurements using identical objective error functions.

The major error of the approximate model for the sensing case originates from

the magnetostriction equation, given by eq. (5.7), which is replaced by eq. (5.17)

in the proposed model. Figure 5.5 illustrates the effectiveness of incorporating the

magnetostriction constant c0 by comparing averaged hysteretic data to simulations

that use the current and previous magnetostriction expressions: eqs. (5.17) and (5.7),

respectively. Since the stiffness moduli c11 and c12 are positive, c0 is also positive.

Consequently, the magnetostriction obtained from the prior formulation exceeds that

from the current expression, which provides a better fit to the data. Furthermore, even

though the constant c0 appears to take part only in the calculation of the strain–stress

sensing curves, the improved fitting accuracy, as shown in Subfigure 5.5(b), leads to a

reduced total objective error value, thus, improving the overall optimization procedure

as demonstrated in Table 5.2.
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5.5.2 Computational Efficiency

The analysis of an algorithm primarily concerns its computation time [80]. For mod-

eling the macroscopic behavior of cubic magnetostrictive materials, the approximate

formulation of the DEA model developed by Evans and Dapino [42] currently has the

best combination of speed and accuracy. Since the same hysteresis model is used for

the current (exact) and prior (approximate) works, the computational speed of the

nonhysteretic models are compared. For the approximate model, optimized mate-

rial parameters were obtained from Chakrabarti [43], while for the exact model, the

optimized properties given in Table 5.1 were used.

To incorporate any effect of the input parameters on computation time, the input

parameters were varied for each execution using quasi-random sampling; thus, the

expected execution time was determined by simulating each model a large number

of times and dividing by the number of executions [80]. Components of the input

were sampled from the nine-dimensional parameter space (three for H, and six for

T) using a Sobol’ quasi-random (QR) sequence [81], which are commonly used in

sensitivity analysis [82]. QR sequences generate points in the unit hypercube more

uniformly than sequences of random numbers, thereby minimizing the number of

samples required to form a representative sample of the parameter space. The Sobol’

QR sequence is scaled such that −70 ≤ Hj ≤ 70 kA/m and −250 ≤ Ti ≤ 250 MPa,

with the constraint that if a sampled stress state corresponds to a von Mises stress

larger than 400 MPa, it is discarded.

The models were coded as compiled MATLAB functions and executed on two

computers. Since the performance of the 2D version of the exact model is bounded by

that of the 1D and 3D versions, only the averaged results for 1D and 3D formulations

of the models are shown in Figure 5.6. While the exact model is slightly faster than

the approximate model for 1D inputs, it is slower than the approximate model for 3D
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Figure 5.6: Expected execution time (averaged over 2 computers) of the exact and
approximate constitutive models (coded as compiled MATLAB functions).

inputs, requiring about 1.9 times the CPU time. This is to be expected, due to the

multiplicity of the solution set for m, which requires more computation. Nonetheless,

the exact model is more accurate and defined for all inputs, which is crucial for

implementation in black-box finite-element models. Additionally, results of the next

chapter on the material Jacobian and Hessian derived from the exact model reveal

that material derivatives are significantly simplified relative to those derived from

the approximate model. This suggests that the exact model may be faster than the

approximate model for 3D system-level modeling, which requires the Jacobian and/or

Hessian for inversion of the constitutive model and calculation of Galfenol’s stiffness

and sensitivities. This last feature with relevant applications will be discussed in the

following chapters.

5.5.3 Validation of the Hysteretic Model

By employing the optimization routine developed in Section 5.4, the hysteretic model

parameters {c, kp} are determined and listed in Table 5.3. Figure 5.7 compares the

hysteretic model against the measured data. As illustrated, the hysteretic model is

in close agreement with the data.
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Figure 5.7: Comparison of hysteretic measurements and hysteretic model for ⟨100⟩
Fe81.5Ga18.5 grown with FSZM at (a),(b) constant compressive stress values of 0.32,
8.00, 13.40, 23.10, and 32.30 MPa, and (c),(d) constant field values of 1.85, 3.24, 5.65,
and 8.88 kA/m. Strain is the superposition of the mechanical strain (T/E) and the
magnetostriction (λ).
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Table 5.3: Optimized parameters for the hysteretic model.

Parameter c kp (J)

Optimized value 0.2 430.0

The performance of the hysteretic model hinges on two sources. First, the averaged

curves underlie the hysteresis model. Thus, errors in the calculation of the averaged

curves (i.e., in the nonhysteretic model) will propagate to the hysteretic response.

For instance, the saturation regimes of the curves corresponding to a compressive

stress of 8.00 MPa in Figures 5.7(b) and 5.4(b) appear to have the same error. This

illustrates the benefit to improving the nonhysteretic model.

The second source is how to control the width of the hysteresis, which, as per Evans

and Dapino [42], is done through the employment of the parameters c and kp. Ideally,

to get the hysteretic curves from the proposed nonhysteretic model, the hysteretic

model must apply a symmetric shift about the averaged curve obtained from the

nonhysteretic model. However, there is no guarantee that the current hysteretic

model does so. For example, consider the curve corresponding to a bias field of

1.85 kA/m in Figure 5.4(c), for which the nonhysteretic model accurately predicts

the lower saturation magnetization. In this region, the hysteretic model should have

a negligible effect, as demonstrated in Figure 5.7(c). However, the hysteretic model

shifts the response away from the accurately calculated averaged curve. In addition,

the hysteretic model overestimates the hysteresis width for sensing cases (5.7(c) and

(d)), but underestimates it for actuation cases (5.7(a) and (b)). These problems

suggest that the parameters c and kp control more than just the hysteresis width.

The development of a hysteresis model that overcomes these issues is left for future

research.
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5.6 Summary and Conclusions

Several improvements were proposed for the Discrete Energy-Averaged model, which

calculates the 3D hysteretic magnetization and magnetostriction of iron-gallium al-

loys. In particular, the magnetoelastic energy was enhanced through the utilization

of the more thorough expression of the magnetostriction tensor, and the Gibbs free

energy was simplified through the reduction of the magnetic stiffness matrix. An

analytical solution procedure based on an eigenvalue decomposition was then pre-

sented. It was shown that the exact solution procedure offers multiple (up to the

number of easy directions) local minimum energy directions for each individual easy

direction. These additional minima provide two advantages. First, the singularities

that are present in the existing approximate solution are avoided. Second, the ma-

terial’s complex response to arbitrary stress and magnetic field inputs can be better

understood.

The resulting robustness comes at an expense. For general loadings, the model

requires the solution of six 6th order polynomials. As a result, the exact solution

procedure is about two times slower than the approximate procedure for 3D appli-

cations. However, analytical reductions of the model were presented for 2D and 1D

applications. In the simplest case (i.e., 1D applications), only a single 4th order poly-

nomial must be solved, thus, making the exact solution procedure as efficient as the

approximate procedure.

Another novelty is in finding the model parameters. Rather than employing anhys-

teretic curves, our approach utilizes the average of the hysteretic data, which obviates

taking additional measurements. A novel optimization routine was developed that

retains the number of model constants, but decouples the parameters into exclusive

sets. Consequently, the set {Ms, E, λ100} was found efficiently and accurately through

a preprocessing step, which fits the magnetization and magnetostriction saturation
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regimes with lines. Only the remaining parameters were estimated through a global

optimization procedure that used a sophisticated objective error function. The ef-

fectiveness of the model was verified through comparison with existing measurement

data. The hysteretic model has two sources of error: the nonhysteretic model and

the hysteresis formulation itself. Even though the nonhysteretic model closely agreed

with the averaged hysteretic data, the observed error propagated to the hysteretic

simulations. Additionally, the parameters of the hysteretic model, which were previ-

ously thought to control only the hysteresis width, appeared to introduce unexpected

error. For instance, the hysteresis model added error to the nonhysteretic magne-

tization response in the lower saturation region, where the hysteresis effects should

have been negligible. Further research is required to develop a hysteresis model that

avoids these issues.
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Chapter 6

Derivative terms for the direct
model for Galfenol

In magnetostrictive actuators, magnetic field and stress inputs generate magnetic

flux density and strain. In this dissertation, the constitutive models that follow this

scheme are referred to as direct models. However, in certain design and control situ-

ations, inverse models are necessary in which the magnetic field and stress are found

from specified magnetic flux density and strain. This inversion typically involves an

iterative procedure, and requires Jacobian and/or Hessian derivative terms of the

direct model. Note that Jacobian and Hessian are the matrices of, respectively, the

first and second order derivative terms.

This chapter presents analytical derivation of the Jacobian and Hessian derivative

terms (in indicial notation) for the Galfenol direct model presented in the previous

chapter. The results are collectively documented in Refs. [45, 46], and will be utilized

in the following chapters.
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6.1 Derivative terms for the direct model, given in

Chapter 5

The macroscopic 3D magnetic flux density and strain vectors are defined as weighted

sums of the response due to the r minimum energy directions as

B = µ0(H+M) = µ0(H+Ms

±r/2∑
k=±1

k

ξhys
k
m), (6.1)

S = sT+ λ = sT+

±r/2∑
k=±1

k

ξhys
k

λ, (6.2)

where s stands for the 6× 6 mechanical compliance matrix, and the remaining terms

were defined in the previous chapter. The first and second order derivatives of the

foregoing equations with respect to magnetic field and stress are derived in the fol-

lowing.

First, we rewrite the Gibbs free energy given by eq. (5.22) as

k

G=
1

2

k
m ·K k

m −(K
k
c +µ0MsH)· k

m +
k

K0 +
3

2
c0λ100 tr(T), k ∈ ±{1, . . . , r

2
},

(6.3)

which leaves the direct model unchanged, as we are shifting the base energy of all

of the easy axes the same amount. Let the subscripts p, q ∈ {1, . . . , 3} and i, j ∈

{1, . . . , 6}. Differentiating the foregoing equation with respect to field and stress

gives
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im
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= −

k

λi, (6.5)

where we use the identities

∂
k
m

∂Hp

· k
m=0,

∂
k
m

∂Ti
· k
m=0,

which originate from differentiating eq. (5.20b) with respect to field and stress. These
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derivatives have major roles in the analytical reduction of the derivative terms given

as follows.

6.1.1 Jacobian terms

The Jacobian terms can be obtained from differentiating eqs. (6.1) and (6.2) with

respect to Hp and Ti as

∂B

∂Hp

= µ0

p
e +µ0Ms

±r/2∑
k=±1

∂
k

ξhys
∂Hp

k
m +

k

ξhys
∂

k
m

∂Hp

 , (6.6a)

∂B

∂Ti
= µ0Ms

±r/2∑
k=±1

∂
k

ξhys
∂Ti

k
m +

k

ξhys
∂

k
m

∂Ti

 , (6.6b)

and

∂S

∂Hp

=

±r/2∑
k=±1

∂
k

ξhys
∂Hp

k

λ +

±r/2∑
k=±1

k

ξhys
∂

k

λ

∂Hp

, (6.7a)

∂S

∂Ti
= s

i
e +

±r/2∑
k=±1

∂
k

ξhys
∂Ti

k

λ +

±r/2∑
k=±1

k

ξhys
∂

k

λ

∂Ti
, (6.7b)

where
p
e and

i
e are, respectively, 3- and 6-dimensional unit vectors with one as their

pth and ith components.

The derivatives of the averaged hysteretic volume fractions occurring in eqs. (6.6)

and (6.7) are found upon differentiating eq. (5.14) with respect to field and stress,

respectively, and simplifying the results as
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The remaining derivative terms in eq. (6.6) can be obtained by differentiating

the inhomogeneous eigenvalue (5.20) with respect to field and stress, and solving the

resulting equations as

∂
k
m

∂Hp

= [K−
k
γ I]−1(
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k
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k
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e), (6.9a)
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Following a simplification procedure, the foregoing results can be combined as

∂
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where
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Finally, the remaining derivative terms in eq. (6.7) can be obtained by differenti-

ating eq. (5.17) with respect to field and stress as
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6.1.2 Hessian terms

The Hessian terms can be obtained from differentiating eq. (6.6) with respect to Hp

and Ti as
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and differentiating eq. (6.7) with respect to Hp and Ti as
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and
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The second order derivatives of the averaged hysteretic volume fractions in the

foregoing equations may be obtained from differentiating eq. (6.8) with respect to

field and stress as
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n
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(6.19)
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and
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(6.21)

To obtain a most simplified version of the remaining second order derivative terms

in eqs. (6.13)-(6.15), we differentiate the inhomogeneous eigenvalue problem (5.20)

twice with respect to field and stress, and solve the resulting equations for the emerg-

ing intermediate unknowns, and after a detailed simplification procedure, we finally

have
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(6.22)
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Finally, the remaining unknown derivative terms in eqs. (6.16)-(6.18) are obtained

from differentiating eq. (6.12) with respect to field and stress as
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6.2 Summary and Conclusions

Compact analytical Jacobian and Hessian derivative terms are derived in indicial for

the Galfenol direct model presented in the previous chapter. These terms are utilized

in the following chapters for developing globally convergent magnetostrictive inverse

models.
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Chapter 7

Efficient and Robust Nonlinear
Model for Smart Materials with

Application to Composite
Magnetostrictive Plates

In certain design and control situations, inverse models are necessary in which stresses

must be determined from specified strains. This inversion typically involves an iter-

ative procedure, and requires employment of sophisticated criteria to find the right

solution, especially, when multiple solutions exist. Chakrabarti and Dapino [76] pro-

posed an inverse model that describes the full nonlinear coupling in 3D Galfenol trans-

ducers. However, this model is susceptible to convergence issues, which are drastically

alleviated by the further developments of Deng and Dapino [83]. Nonetheless, both

of these models are built on the direct model given in Ref. [43] which is prone to sin-

gularities, and can burden computation, especially, when the model is integrated into

finite-element solvers. This shortcoming was addressed through the exact solution

procedure given in Chapter 5.

Much effort has recently been devoted to developing sophisticated 3D nonlinear

models that improve the accuracy and scope of the transducer devices built with such

materials, as in Refs. [79, 84, 85]. However, for certain geometries and applications,

reduced dimensional constitutive models are sufficient, and would offer computa-
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tional speed up. For instance, Mindlin [86] developed a first-order plate theory for

high frequency piezoelectric crystals. Reddy [87] developed a third order plate theory

for laminated composites with integrated sensors and actuators that works reason-

ably well even for rather thick composites. Kannan and Dasgupta [88] presented

a two-dimensional, quasi-static, finite-element scheme to model the nonlinear mag-

netostrictive material systems. Datta et al. [89, 90] used classical laminated plate

theory with the Armstrong model to characterize laminated sensors and actuators

in the absence of current-induced magnetic fields. As far as capturing the dynamic

behavior of smart materials, Shu et al. [91] recently developed a 1D nonlinear model

that simulates the dynamic response of Galfenol-driven unimorph actuators.

Documented in Ref. [45], we develop, in this chapter, a computational frame-

work that consists of a rapidly convergent inverse model, which can effectively and

efficiently solve for system unknowns in a finite-element scheme to design smart ma-

terial based transducers. The inversion scheme is general, and can be applied to any

nonlinear smart material with a given direct model. To illustrate the model, Galfenol

is taken as an example, and the direct model presented in Chapter 5 together with

the analytical Jacobian terms developed in Chapter 6 are utilized. Subsequently,

this model is integrated with a finite-element software to model a magnetostrictive

material based composite actuator with thin plate geometry. Utilizing a reduced 2D

formulation for this application, we demonstrate the improvement in computational

efficiency and numerical robustness.

The rest of this chapter is organized as follows. In the following section, 3D system

model for embedded smart composites is discussed, and an inverse system model

for smart materials is presented. A reduced 2D system model for embedded smart

composites is given in Section 7.2. To demonstrate the computational framework, a

Galfenol-aluminium plate actuator is considered as a case study in Section 7.3, and
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the simulation results are given accordingly. Finally, discussions and conclusions are

given.

7.1 3D System Model for Embedded Smart Com-

posites

Consider a composite structure consisting of (i) smart material domain, i.e., an active

domain and (ii) non-smart material domain, i.e., a passive domain. The structural

behavior of the composite is governed by 3D Navier’s equation along with constitutive

equations that describe the material behavior specific to each domain. Referring, for

example, to Ref. [79], the 3D weak form of Navier’s equation is

∫
Vtot

[
ρ
∂2u

∂t2
· δu + c

∂u

∂t
· δu + T · δ S

]
dV =

∫
∂Vtot

t·δu d∂V +

∫
Vtot

fB ·δu dV, (7.1)

where t is the time, ρ is the density, c represents the damping coefficient, and T

and fB denote, respectively, the stress tensor and external body force acting on the

domain Vtot; the traction vector t acts on the boundary ∂Vtot; and S and u represent,

respectively, the strain tensor and displacement vector at each point in the domain

Vtot with the fact that

S =
1

2

(
∇u+∇uT

)
. (7.2)

Stresses are evaluated using material specific constitutive equations. The pas-

sive domain (typically non-magnetic metals such as steel, brass, and aluminum) is

governed by Hooke’s law, i.e.,

Tp = CpSp, (7.3)
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where the subscript p signifies the passive domain, and Cp is the 3×3 stiffness matrix.

Experimentally, active materials are controlled by stress and field (e.g., electric,

magnetic, or thermal) as independent variables; and strain and electric/magnetic/thermal

flux density are measured as dependent variables. We write, for example, the consti-

tutive model for strain in the general form

Sa = S(F ,Ta), (7.4)

where Sa and Ta are the strain and stress in active domain; and F represents the

external field vector that can include quantities such as electric field, magnetic field,

or temperature. When the stress and external field quantities are unknown, the

resulting system is fully coupled. For such a case, additional constitutive equations

and balance laws (e.g., Maxwell’s equations for a magnetomechanical system) are

required to complete the mathematical model. However, the focus of this chapter is

on systems, for which the field F is fully defined, and stress is unknown. We refer to

such systems as one-way coupled systems, and discuss fully coupled systems in the

next chapter.

In practice, the constitutive relationship (7.4) is quite nonlinear, and not amenable

to a closed form solution for the stress tensor Ta as a function of strain and field.

Hence, when using eq. (7.1) to solve for the displacements, an inversion procedure

is inevitable. In what follows, we develop a unified inversion procedure for arbitrary

smart materials, and demonstrate its application through magnetostrictive materials.

7.1.1 Inversion Procedure for One-way Coupled Constitutive

Model

For convenience, as before, let stress and strain tensors be written in contracted

vector notation. Let S(F ,T) = [S1;S2;S3;S4;S5;S6] be a given continuous and
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differentiable direct model for the strain vector, which takes field and stress vectors

as input. Finally, let F∗ and S∗ denote any discrete external field and strain vectors

specified from experimental measurements or finite-element simulations. The goal of

the inverse model is to find the unknown stress vector T∗ that, together with F∗,

would give rise to S∗. That is, find T that satisfies

S(F∗,T)− S∗ = 0. (7.5)

Our approach to solving the foregoing equation is based on the Newton method.

We expand the direct strain model S in a first order Taylor’s series as

S(F ,T+∆T) ≈ S(F ,T)+

J︷ ︸︸ ︷
∂S(F ,T)

∂T
∆T, (7.6)

where ∆T is an incremental stress vector, and J is the Jacobian matrix. To find T,

we employ the foregoing equation, and write a recursive formula based on the Newton

method as

T(i+ 1) ≈ T(i) +

[
∂S(F∗,T(i))

∂T

]−1

(S∗ − S(F∗,T(i)), (7.7)

where i is the iteration index. When the Jacobian terms are known, the algorithm

initiates at given start solution stress vector T(0), and gets corrected in successive

iterations, until the algorithm is terminated when the residual error is below a pre-

determined threshold. At this point, the desired T∗ is obtained.

The premise of the model is the material Jacobian of the direct model S(F ,T),

which is material specific. In fact, such terms for Galfenol are already given in

Chapter 6.
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7.2 Reduced 2D System Model for Embedded Smart

Composites

The computational efficiency of the foregoing inverse model is further improved by

reducing the 3D system model, described in Section 7.1, to a 2D model for thin com-

posite plate structures. For the analysis of thin composite plates, the conventional

modeling approach is based on equivalent single layer (ESL) theories, which are de-

rived from 3D continuum theories by making suitable assumptions concerning the

kinematics of deformation or the stress state through the thickness of the laminate.

These theories allow the reduction of a 3D problem to a reasonable 2D problem [92].

The simplest form of laminate plate theory is the classical plate theory, where the

time-dependent 3D cartesian displacements are approximated using asymptotic ex-

pansion along the thickness (z-direction), i.e.,

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t), (7.8a)

v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t), (7.8b)

w(x, y, z, t) = w0(x, y, t), (7.8c)

which reduces the dependence of displacement components u, v, and w to 2D. Here,

u0, v0, and w0 are the leading order displacement terms; and ϕx and ϕy denote rota-

tions about the y and x axes, respectively. Assuming that the deformation has only

bending and in-plane stretching components (i.e., transverse normal and transverse

shear effects are negligible), these rotations are represented as

ϕx = −∂wo
∂x

, ϕy = −∂wo
∂y

. (7.9)

As the thickness increases, higher order approximations need to be considered.
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However, classical plate theories work well for composite plates with small thickness

ratios (r ≤ 0.1) [87]. Considering this assumption, the displacement forms described

by eqs. (7.8)-(7.9) constitute a reduced plane strain problem, in which the strain

components Szz, Sxz, and Syz are neglected. The remaining strain components can

be written as


Sxx

Syy

Sxy

 =


S(0)
xx

S(0)
yy

S(0)
xy

+ z


S(1)
xx

S(1)
yy

S(1)
xy

 , (7.10)

where

S(0)
xx =

∂u0
∂x

, S(0)
yy =

∂v0
∂y

, S(0)
xy =

1

2

(
∂u0
∂y

+
∂v0
∂x

)
,

S(1)
xx =

∂ϕx
∂x

, S(1)
yy =

∂ϕy
∂y

, S(1)
xy =

1

2

(
∂ϕx
∂y

+
∂ϕy
∂x

)
.

(7.11)

The variational form for 2D plate theory is derived by substituting stress, dis-

placement, and strain expressions (7.8)-(7.11) into 3D Navier’s equation (7.1) as

∫
τ

{∫
Ωe

[(
ρ̄o
∂2uo
∂t2

+ c̄o
∂uo
∂t

+ ρ̄1
∂2ϕx
∂t2

+ c̄1
∂ϕx
∂t

)
δuo

+

(
ρ̄o
∂2vo
∂t2

+ c̄o
∂vo
∂t

+ ρ̄1
∂2ϕy
∂t2

+ c̄1
∂ϕy
∂t

)
δvo +

(
ρ̄o
∂2wo
∂t2

+ c̄o
∂wo
∂t

)
δwo

+

(
ρ̄1
∂2uo
∂t2

+ c̄1
∂uo
∂t

+ ρ̄2
∂2ϕx
∂t2

+ c̄2
∂ϕx
∂t

)
δϕx

+

(
ρ̄1
∂2vo
∂t2

+ c̄1
∂vo
∂t

+ ρ̄2
∂2ϕy
∂t2

+ c̄2
∂ϕy
∂t

)
δϕy

+NxxδS
(0)
xx +NxyδS

(0)
xy +NyyδS

(0)
yy +MxxδS

(1)
xx +MxyMyyδS

(1)
xy +MyyδS

(1)
yy

]
dx dy

−
∫
∂Ωe

[
N̂nnδuon + N̂nsδuos − M̂nn

∂δwo
∂n

− M̂ns
∂δwo
∂s

+ Q̂nδwo

]
ds

}
dt = 0,

(7.12)
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where Ωe represents the total plate area; ∂Ωe represents the boundary to Ωe; τ

represents the time over which the dynamic system is studied. Also, the density

terms ρo, ρ1, and ρ2, damping coefficient terms c0, c1, and c2, and stress resultants

Nxx, Nyy, Nxy,Mxx, Myy, and Mxy are defined as

ρ̄k =

∫
ttot

ρ zk dz, c̄k =

∫
ttot

c zk dz, (k = 0, 1, 2), (7.13)
Nxx

Nyy

Nxy

 =

∫
ttot


Txx

Tyy

Txy

 dz, (7.14)


Mxx

Myy

Mxy

 =

∫
ttot


Txx

Tyy

Txy

 z dz, (7.15)

where ttot is the total plate thickness, and the boundary terms N̂nn, N̂ns, M̂nn, and

M̂ns are the normal and tangential components defined as

N̂nn

N̂ns

 =

∫
ttot

σ̂nn
σ̂ns

 dz, (7.16)

M̂nn

M̂ns

 =

∫
ttot

σ̂nn
σ̂ns

 zdz, Q̂n =

∫
ttot

σ̂nzdz, (7.17)

with σ̂nn, σ̂ns, and σ̂nz as the specified stress components on the portion of the bound-

ary ∂Ωe.

Note that the integrals listed in eqs. (7.13)-(7.15) can be directly calculated when

the geometry and material properties are specified. However, the stress resultant
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terms are calculated utilizing the inverse model developed in Subsection 7.1.1.

In what follows, the aforementioned mathematical framework is applied to a

Galfenol-aluminium composite structure, and relevant simulation results are pre-

sented.

7.3 Case study: Galfenol-aluminium structure for

actuator applications

Figure 7.1 depicts a schematic view of a Galfenol-aluminium composite structure. The

material parameters for aluminium are: E = 69 GPa, ν = 0.3, and ρ = 2, 700 kg/m3;

and those for Galfenol are tabulated in Table 7.1.

t g
=0.965 mm

t
tot

=2.490 mm

b
g
=6.350 mm

W=18.700 mm

L=25.400 mm

x
y

z

y
0

Aluminum plate

Galfenol strip

W/2

(1/2)bg

Tip

Figure 7.1: Schematic of a Galfenol-aluminium composite structure. The x-y plane
of the coordinate system is coincident with the bottom plane of the Galfenol strip,
and the x-z plane is a plane of symmetry (y0 = 0).

The actuator geometry presented in this chapter mirrors the sample utilized in the

experimental set-up presented in Ref. [93]. The composite plate actuator, consisting

of embedded magnetostrictive domain, was manufactured using an Ultrasonic Addi-

tive Manufacturing facility. To obtain a bending actuator configuration, the plate

was excited using 1D magnetic fields along the Galfenol length, and cantilevered

boundary conditions were imposed at the clamped edge. The input alternating and
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bias magnetic fields of different amplitudes and frequencies (ranging from 0.1 Hz to

500 Hz) were generated using a conductive coil and the displacement data at the tip

of the Galfenol patch (labeled in Figure 7.1) was collected. The measured data was

subsequently reproduced within a reasonable tolerance, using a dynamic 2D plate

model, which employed the inversion procedure presented in Ref. [76]. Additionally,

this model assumed approximately uniform magnetic fields throughout the Galfenol

volume, which is a reasonable assumption for a plate actuator undergoing small de-

formations.

In what follows, our novel inversion scheme and the 2D plate model, developed in

Sections 7.1 and 7.2, are utilized to study the actuator displacements. Through this

application, we demonstrate the computational efficiency and numerical robustness

of the proposed computational framework through a comparison with the aforemen-

tioned existing approach.

Table 7.1: Parameters for the Galfenol direct model, given in Chapter 5.

Par. Ms (kA/m) E (GPa) λ100 (ppm) λ111 (ppm) c0 ρ (kg/m3)

Value 1,273.24 74.50 173.33 -6.67 0.33 7870.00

Par. K (kJ/m3) K100 (J/m3) Ω (J) G (GPa) ν c (N.s/m)

Value 30.00 -250.00 1,200.00 120.00 0.30 0.10

7.3.1 Solution Methodology

The actuator system, depicted in Figure 7.1, is analyzed using the 2D weak form de-

scribed by eqs. (7.12)-(7.17). The 2D equations are implemented in the finite-element

software COMSOL Multiphysics (version 4.3b), and the constitutive model (Chap-

ter 5) for Galfenol along with the inversion scheme, presented in Subsection 7.1.1, are
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coded as MATLAB m-files and supplied to COMSOL.
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Figure 7.2: (a) A schematic plot of 1D input magnetic field: H(t) = Hb −
Ha sin(2πωt), and (b) schematic of deflected plate configurations (dimensions in
inches) at different fractions of time period (T ) corresponding to the frequency ω.

A 1D harmonic magnetic field of the form H(t) = Hb − Ha sin(2πωt) is given

as input to the system, and the displacements at the tip of the Galfenol patch are

analyzed. To generate complete magnetostriction curves, unbiased magnetic field

input (Hb = 0) of amplitude Ha = 15 kA/m greater than the saturation field Hsat ≈

10 kA/m is applied. To obtain the displacement-field minor loops, a biased magnetic

field with Hb = 3.5 kA/m and Ha = 3.25 kA/m is supplied as input.

Note that no matter what the input field is, the Galfenol patch elongates, and since

the centroid of the patch is placed above the neutral axis of the entire plate, it causes

the plate to deflect always downward. This is schematically shown in Figure 7.2 for

a typical input field. Further results are elaborated in the following section.

7.3.2 Simulation Results

Figure 7.3 depicts the dynamic actuation simulation results, obtained using the pro-

posed model, with unbiased input magnetic field at various frequencies for two peri-

ods. At the lowest frequency (0.1 Hz), as expected, hysteresis is minimal, but gets
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pronounced as the field frequency increases. Hysteresis makes the plate actuator a

nonconservative system. To be precise, the displacement vanishes at zero field for

both periods as in Subfigures 7.3(a)-(d). In contrast, as shown in Subfigures 7.3(e)

and (f), there is a nonzero displacement at zero field at nonzero time.
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Figure 7.3: Dynamic actuation results, obtained using the proposed model, with
1D unbiased input magnetic field (H(t) = −15 sin(2πωt) kA/m) for two periods at
frequencies: (a),(b) 0.1 Hz; (c),(d) 100 Hz; and (e),(f) 350 Hz. The displacement-field
curves are for the last period.

In addition, Subfigures 7.3(b), (d), and (f) show that the plate actuator exhibits

an approximately linear response in the “burst” region which forms the basis for the

early linear formulations for magnetostrictive transducers. Exploiting the linearity

can potentially improve the computational efficiency, but would limit the operational

regime of the plate actuator. This motivated our nonlinear solution methodology.

The actuator response to bias input at different frequencies are demonstrated in

Figure 7.4, in which an appropriate bias field maps the domain of the input field such
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that the actuator is operating in the burst region for its entire operational regime.

As a further advantage, field biasing can produce bi-directional strains about the bias

point, while this is not feasible for the unbiased plate actuator.
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Figure 7.4: Dynamic actuation results with biased input magnetic field H(t) = 3.50−
3.25 sin(2πωt) kA/m at different frequencies: (a) 50 Hz, (b) 200 Hz, (c) 350 Hz, and
(d) 500 Hz.

In what follows, efficiency and effectiveness of the proposed inverse model is com-

pared to those of the existing approach [76].

Simulation Time Comparison

Employing the same reduced 2D plate model, presented in Section 7.2, we used the

existing inverse model to redo the simulation cases, which were discussed above with

the proposed inverse model. For all simulations, a physics controlled mesh is used
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wherein the plate is discretized with triangular mesh elements of size varying from

0.07620 mm to 0.17018 mm, thus, having 5,946 DOFs. The simulations were per-

formed on a quad core 64 bit desktop computer, and the runtimes are tabulated in

Table 7.2. Note that the static runtimes correspond to the single initial time in-

stant, and the dynamic simulation runtimes correspond to the averaged time taken

to complete one periodic cycle for all of the frequencies discussed above.

Table 7.2: Simulation runtimes for the existing and proposed models.

Model Existing Proposed

Static (hh:mm) 00:09 00:02

Dynamic (hh:mm) 30:06 05:09

As per Table 7.2, the proposed inverse model gives dynamic simulation results in

almost six times faster than the existing inverse model does. This noticeable time

advantage makes the proposed inverse model an effective and efficient tool for the

fast design of plate actuators.

Convergence Comparison

The proposed model offers a significant improvement in convergence for dynamic sim-

ulations. COMSOL solves for the system state at each instant starting from the initial

solution, which is often the previous system state. We observed that the proposed

model is able to handle large variation in response between reasonably large time

steps, while the existing model requires a very close estimate of the initial solution.

This wider convergence zone is attributed to the employment of the analytical strain

derivative terms, developed in Chapter 6, by the proposed model.

As a matter of fact, the existing model was not convergent for any of the cases
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Figure 7.5: Plots of (a) unbiased harmonic magnetic field input, and (b) the response
at 100 Hz.

shown already in Figure 7.3. For convenience, field input and strain output plots

using both models are shown in Figure 7.5 for the unbiased harmonic magnetic field

of frequency 100 Hz over a duration of t = 0.02 s. The figure demonstrates that

the existing model converges to a mathematical solution, which is nonphysical. In

contrast, the proposed model converges accurately to the physical solution.

Sensitivity to Input Data

Figure 7.6 illustrates the plate’s response obtained using the proposed model for a

non-smooth input field. The existing model was not convergent, so no result is shown.

As demonstrated in Subfigure 7.6(b), the proposed model is intelligent enough to

distinguish the sharp corner at t = 0.005 s.

7.4 Summary and Conclusions

A computationally efficient and robust nonlinear modeling framework for smart ma-

terial systems was presented. A novel 3D inversion scheme for nonlinear modeling of

smart material based transducers, and a reduced dimensional model (2D) for smart

composite plate structures constitute the framework. The framework was integrated
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Figure 7.6: (a) Plot of non-smooth 1D magnetic field input, and (b) the response at
50 Hz.

with a finite-element software to analyze an aluminum plate embedded with a Galfenol

strip. The resulting nonlinear finite-element framework was utilized to obtain com-

plete and minor magnetostriction curves corresponding to the tip of the Galfenol

patch with applying unbiased and biased magnetic fields, respectively. Compared to

an existing model, the proposed model gave dynamic simulation results in almost six

times faster. Additionally, when an unbiased input field was applied, the proposed

model converged accurately to the physical solution, while the existing model con-

verged to a mathematical solution that was nonphysical. The significant advantages

in computational time and numerical convergence exhibited by the proposed model

are ideal for fast design of plate actuators.
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Chapter 8

Fast and Globally Convergent
Nonlinear System Model for 3D

Magnetostrictive Systems

In the previous chapter, an inverse model for one-way coupled smart material systems

was presented. Documented in Ref. [46], the goal of this chapter is to develop an

inverse model for fully coupled magnetostrictive systems.

The premise of the existing iterative inverse models for fully coupled magnetostric-

tive systems is to constitute recursive correction formulae based on first order ap-

proximations of some specified error functions. However, the aim of this chapter is

to achieve a faster convergence rate by taking second order approximations into ac-

count. To do this, the problem is formulated in an optimization framework through

defining a novel scalar error function, which allows to effectively incorporate Hessian

(matrix of the second order derivatives) of the direct model in the formulation. A

continuation approach is then used to achieve global convergence for arbitrary input

parameters. The inversion requirement is a continuous and second order differentiable

direct model for any chosen magnetostrictive material. The approach is globally con-

vergent, which makes it ideal for use in finite-element frameworks. While the method

is developed for arbitrary magnetostrictive materials, Galfenol and the direct model

together with the analytical derivative terms, given in Chapters 5 and 6, are chosen
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to illustrate the inverse model. Finally, convergence rate of the proposed approach is

compared successfully to that of Deng and Dapino [83] for the chosen material.

The rest of this chapter is organized as follows. A globally convergent system

model for arbitrary magnetostrictive materials is outlined next. The performance of

the proposed inverse model is given in Section 8.2. Finally, conclusions are given.

8.1 Magnetostrictive System Model featuring Con-

tinuation

As before, let H = [H1;H2;H3] and T = [T1;T2;T3;T4;T5;T6] be, respectively, the

magnetic field vector and the symmetric stress tensor written in contracted vector

notation. Let, further, B(H,T) = [B1;B2;B3] and S(H,T) = [S1;S2;S3;S4;S5;S6]

be given continuous and differentiable direct models for, respectively, magnetic flux

density and strain vectors, which take magnetic field and stress vectors as input.

Finally, let B∗ and S∗ denote any discrete magnetic flux density and strain vectors

specified from measurements or finite-element simulations.

The goal is to find the unknown magnetic field and stress vectors H∗ and T∗ that

give rise to B∗ and S∗. That is, the goal is to find H and T that satisfy the equations

 B(H,T)−B∗

S(H,T)− S∗

 = 0. (8.1)

Our strategy to solving the foregoing system of equations rests on “continuation”,

which is an iterative approach that offers global convergence; see Refs. [94, 95] for

applications of continuation to kinematic design and analysis of rigid mechanisms.

131



Let us rewrite the foregoing vector of error functions as a homotopy

 B(H,T)−Bτ

S(H,T)− Sτ

 ,

 B(H,T)− ((1− τ)B(H0,T0) + τB∗)

S(H,T)− ((1− τ)S(H0,T0) + τS∗)

 = 0, (8.2)

where H0 and T0 are known start solutions, and τ ∈ [0, 1] is the continuation pa-

rameter. The idea of the continuation is to break the problem into a series of more

manageable subproblems, and to solve them sequentially. In doing so, the solutions

to the previous subproblem is used as the start solutions to the current subproblem.

In essence, continuation initiates at the start solutions H0 and T0 at τ = 0, and

traces the solution curves of H(τ) and T(τ) as τ is incremented, until τ = 1 at which

point the desired solutions H∗ and T∗ are obtained.

To solve each subproblem effectively, we solve the minimization problem

Minimize f(H,T)
H∈R3, S∈R6

, (8.3)

where f is the scalar objective error function

f(H,T) =

1

2
w2
b [B(H,T)−Bτ ]T [B(H,T)−Bτ ] +

1

2
w2
s [S(H,T)− Sτ ]T [S(H,T)− Sτ ] ,

(8.4)

where wb and ws are weighting factors chosen to effectively combine the error contri-

butions of magnetic flux density and strain, respectively. Expanding f in a second
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order Taylor’s series as

f(H+∆H,T+∆T) ≈ f(H,T) +

[Jf ]T︷ ︸︸ ︷[
∂f(H,T)

∂H
;
∂f(H,T)

∂T

]T
[∆H; ∆T]

+
1

2
[∆H; ∆T]T

[Hf ]︷ ︸︸ ︷
∂2f(H,T)
∂H∂H

∂2f(H,T)
∂H∂T

∂2f(H,T)
∂T∂H

∂2f(H,T)
∂T∂T

 [∆H; ∆T],

(8.5)

and minimizing it for the incremental magnetic field and stress vectors ∆H and ∆T,

may give a recursive correction formula based on the damped Newton method as

[H(i+ 1);T(i+ 1)] = [H(i);T(i)]− αi[H
f (i)]−1[Jf (i)], (8.6)

where i is the iteration index, and Jf and Hf are called the Jacobian (gradient vector

for 1D inputs) and Hessian matrices, respectively. When the derivative terms are

known, the algorithm initiates at given start solutions H(0) and T(0), which get

corrected at successive iterations, until the algorithm is terminated when the residual

error is below a predetermined threshold. At this point, the desired Hτ and Tτ are

obtained for each subproblem.

For convenience, the derivatives in eq. (8.5) or (8.6) are derived in indicial where

it is assumed that the subscripts p, q ∈ {1, . . . , 3} and i, j ∈ {1, . . . , 6}. For brevity,

f(H,T), B(H,T) and S(H,T) are abbreviated, respectively, as f , B, and S. Ac-

cordingly, the first order derivatives are

∂f

∂Hp

= wh

(
w2
b [B−Bτ ]T

∂B

∂Hp

+ w2
s [S− Sτ ]T

∂S

∂Hp

)
, (8.7a)

∂f

∂Ti
= wt

(
w2
b [B−Bτ ]T

∂B

∂Ti
+ w2

s [S− Sτ ]T
∂S

∂Ti

)
, (8.7b)
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and the second order derivatives are

∂2f

∂Hp∂Hq

= w2
h ×(

w2
b [B−Bτ ]T

∂2B

∂Hp∂Hq

+ w2
b

∂BT

∂Hp

∂B

∂Hq

+ w2
s [S− Sτ ]T

∂2S

∂Hp∂Hq

+ w2
s

∂ST

∂Hp

∂S

∂Hq

)
,

(8.8a)

∂2f

∂Ti∂Tj
= w2

t ×(
w2
b [B−Bτ ]T

∂2B

∂Ti∂Tj
+ w2

b

∂BT

∂Ti

∂B

∂Tj
+ w2

s [S− Sτ ]T
∂2S

∂Ti∂Tj
+ w2

s

∂ST

∂Ti

∂S

∂Tj

)
,

(8.8b)

∂2f

∂Hp∂Ti
= whwt ×(

w2
b [B−Bτ ]T

∂2B

∂Hp∂Ti
+ w2

b

∂BT

∂Hp

∂B

∂Ti
+ w2

s [S− Sτ ]T
∂2S

∂Hp∂Ti
+ w2

s

∂ST

∂Hp

∂S

∂Ti

)
,

(8.8c)

where wh and wt are scaling factors for magnetic field and stress vectors. Note

that the derivatives of the direct magnetic flux density and stress models present in

the foregoing equations must be known. These terms are material specific, and, in

the following, we take Galfenol as a case study, for which the direct model and the

derivative terms are taken from Chapters 5 and 6, respectively.

8.2 Inverse model performance

No other inverse model corresponding to the direct model that is given in Chapter 5

has been reported in the literature. However, for a slightly different direct model, i.e.,

that of Ref. [43], Deng and Dapino [83] proposed an inverse model, which is based on

the quasi-Newton method. We compare the performance of the two inverse models

for two sets of data, 1D and random 3D input data. While each inverse model is
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implemented in 3D, the former data benchmarks the sensitivity of the two inverse

models to the low dimensionality of the data, and the latter tests the generality and

stability of the two inverse models for arbitrary input data. These features are pivotal

for devising a black-box solver, which is envisioned to be integrated into finite-element

frameworks. Note that we provide no timing information since the two direct models

are of different formulations. For a fair comparison, we disable continuation in the

proposed model by setting τ to one.

To generate comparative data, a series of magnetic field and stress vectors is

specified, and fed to the direct model, given in Chapter 5, to produce magnetic

induction and strain vectors. The constructed dataset is fed to the two inverse models

to see whether the original magnetic field and stress inputs, up to a tolerance of 10−9,

are returned.

8.2.1 Performance for 1D inputs

Utilizing the direct model parameters, given earlier in Table 5.1, Figure 8.1 illustrates

the direct and inverse model simulations for 1D magnetic field and stress inputs. The

solid curves in Subfigures 8.1(a),(b) and (d),(e) represent the direct model simula-

tions for actuation and sensing cases, respectively. Induction and strain curves are

discretized into equally spaced points, and are fed to the inverse models. Subfig-

ures 8.1 (c) and (f) depict the maximum number of iterations that the two inverse

models take for actuation and sensing cases, respectively. For this 1D case, both the

existing and proposed inverse models are able to solve the inverse magnetomechanical

problem effectively. Even though the 3D implementations of the two inverse models

are employed, the results demonstrate that the two models are not sensitive to 1D

data. Nonetheless, the existing inverse model diverges for four runs. In addition, the

proposed inverse model converges in fewer iterations than the existing approach. This
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Figure 8.1: Direct and inverse model simulations for ⟨100⟩ Fe81.5Ga18.5 grown with
FSZM for 1D (a),(b),(c) actuation; and (d),(e),(f) sensing. Any run taking more than
500 iterations is assumed to be divergent.

faster rate of convergence is expected, as the proposed model employs exact deriva-

tive terms, while the existing approach employs approximate terms, development of

which is a premise of the quasi-Newton method.

It is worth indicating that, for a 1D case and at constant stress values, an ideal

inversion procedure must be independent of the sign of the field inputs. This is

demonstrated in Subfigure 8.1(c), as the iteration counts for both inversion models

are symmetric about the origin.

8.2.2 Performance for random 3D inputs

We used the parameters listed in Table 7.1 to generate 3D magnetic induction and

strain inputs. To be precise, a set of 1,000,000 magnetic field and stress vectors in the

range of, respectively, [−40, 40] kA/m and [−500, 500] MPa is randomly generated,

with the constraint that the sampled stress tensor must have a von Mises stress smaller
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than 500 MPa, which is a rough estimate of the ultimate strength of Galfenol. This

randomly generated dataset is fed to the direct model to construct a generic input

dataset for the two inverse models.

Table 8.1: Performance of the existing and proposed inverse models for a large 3D
generic dataset.

Approach # runs # Failures Avg. iteration count∗

Existing model 146,116 101

Proposed model
1,000,000

0 8
∗ Divergent runs are not considered.

As demonstrated in Table 8.1, the proposed model is globally convergent, while

the existing inverse model failed for almost 14.6% of the 1,000,000 runs. This shows

that increasing the dimension and generality of the input data has absolutely no effect

on the proposed inverse model. Additionally, the proposed model offered, in average,

a 13 times faster convergence rate than the existing model for each run. Hence, the

proposed model can be employed as a powerful black-box solver in finite-element

frameworks.

8.2.3 Choice of the iterative step size α

For both the quasi-Newton method and the damped Newton method, the step size

α, present for example in eq. (8.6), must be calculated at each iteration. There

is a variety of line search algorithms for this purpose, but they fall into two major

categories: exact and approximate. For the simulations, an exact line search based on

Golden Section Search (see, for example, Ref. [96]) is used. However, an approximate

line search is often sufficient, and can save much computational time. This will be

the subject of future work.
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8.2.4 Choice of start solution

Start solutions have a major role in the success of iterative techniques, such as quasi-

or damped Newton methods. Even if chosen within the convergence zone, an ill-

conditioned start solution may lead to a long runtime. Presented in Chapter 6, the

exact derivative terms, even if compact, are unwieldy and computationally expen-

sive to evaluate. Even if they lead to minimal number of iterations, they are most

efficient when used for local rather than global convergence. Therefore, it is more

efficient to carry on a preprocessing step, in which a less robust but faster approach

such as quasi-Newton method is used to generate a reasonable approximate solution.

Then, feeding this approximate solution as a start solution to the main algorithm

would save computational time. Alternatively, one may use continuation, which is

self-constructive, as it automatically generates a reasonably well-conditioned start

solution through solving a series of intermediate subproblems.

For the simulations, zero start solutions are used. However, the inverse model

is devised for use in a finite-element framework. In such a case, the system state is

known at some instant, and this state is a good candidate as a start solution for the

next state. This feature is useful for control applications.

8.3 Summary and Conclusions

In this chapter, a fully coupled magnetomechanical system model for arbitrary mag-

netostrictive materials was presented. The model requirement is a continuous and

second order differentiable direct model for any chosen magnetostrictive material.

The approach is globally convergent, which makes it ideal for use in finite-element

frameworks. The premise of the existing iterative system models is to constitute

recursive correction formulae based on first order approximations of some specified
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error functions. However, to achieve a faster convergence rate, the problem is for-

mulated in an optimization framework through defining a novel scalar error function,

and took second order approximations into account. A continuation approach was,

then, developed to achieve global convergence for arbitrary input parameters.

The inverse model is valid for arbitrary magnetostrictive materials. To illustrate,

Galfenol was chosen as the magnetostrictive material, and the direct model and the

corresponding derivative terms, developed in Chapters 5 and 6 were utilized. The

performance of the proposed approach was compared successfully to an existing sys-

tem model, which is based on quasi-Newton method. While the existing model failed

for 14.6% of the 1,000,000 runs, the proposed model had no failures. In addition, the

proposed model converges, in average, in almost 13 times less number of iterations

than the existing model for each run. To further improve the proposed model, an

efficient line search algorithm and a carefully developed start solution are needed. As

for the latter, start solutions are obviated when using continuation, which generates

them automatically. Alternatively, when using the model in a finite-element frame-

work, the current system state can be used as a reasonable candidate for the start

solution.
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Chapter 9

Conclusions and Future Work

This chapter gives a synopsis of the dissertation. Then, the major research contribu-

tions are enumerated. Finally, a list of future works is given.

9.1 Summary and Conclusions

Robust and efficient mathematical techniques for modeling and simulation of smart

material systems were presented. First, passive materials were discussed which un-

dergo large deformations. Accordingly, Euler–Bernoulli cantilever beams subjected

to combined tip point loading were studied, and both cartesian and parametric large

deflection solutions were presented. The cartesian solutions are independent of the

beam’s arc length, but are implicit and in terms of elliptic integrals. However, they

are envisioned to guide the development of approximate closed form large deflection

solutions. For the case of a large pure end-force, a new closed form explicit solution

was also presented which incorporated the rotation matrix employed for developing

the aforementioned cartesian solutions. On the other hand, the parametric solutions

are in terms of the loading parameters with using the Automatic Taylor Expansion

technique. The solutions were shown to be independently and efficiently adaptable

for very large loading conditions. To gain further efficiency and robustness, piecewise

parametric large deflection solutions were also developed which require low approx-
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imation orders for a fast convergence. The solutions were coded as a stand-alone

black-box solver, which offers several functionalities for the solution of large deflec-

tion of Euler–Bernoulli cantilever beams.

Then, smart materials, particularly, magnetostrictive materials were discussed.

Several improvements for the Discrete Energy-Averaged model on calculating the 3D

hysteretic magnetization and magnetostriction of iron-gallium alloys were proposed.

In particular, the magnetoelastic energy was enhanced through the utilization of the

more thorough expression of the magnetostriction tensor, and the Gibbs free energy

was improved through the reduction of the magnetic stiffness matrix. Also, an analyt-

ical solution procedure was presented which offers multiple (up to the number of easy

directions) local minimum energy directions for each individual easy direction. These

additional minima help avoid the singularities that are present in the existing ap-

proximate solution, and also help better understand the material’s complex response

to arbitrary stress and magnetic field inputs. Nonetheless, the resulting robustness

comes at an expense. For general loadings, the model requires the solution of six

6th order polynomials. As a result, the exact solution procedure is about two times

slower than the approximate procedure for 3D applications. However, analytical re-

ductions of the model were presented for 2D and 1D applications. In the simplest

case (i.e., 1D applications), only a single 4th order polynomial must be solved, thus,

making the exact solution procedure as efficient as the approximate procedure. Our

exact solution procedure led us to deriving compact analytical Jacobian and Hessian

derivative terms for this model.

A novel optimization routine was also proposed for finding the model parameters.

Rather than employing anhysteretic curves, our approach utilizes the average of the

hysteretic data, which obviates taking additional measurements. Our optimization

routine retains the number of model constants, but divides the parameters into ex-
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clusive sets, which are optimized in a decoupled procedure. The effectiveness of the

overall model was verified through comparison with existing measurement data. The

hysteretic model has two sources of error: the nonhysteretic model and the hysteresis

formulation itself. Even though the nonhysteretic model closely agreed with the av-

eraged hysteretic data, the observed error propagated to the hysteretic simulations.

Additionally, the parameters of the hysteretic model, which were previously thought

to control only the hysteresis width, appeared to introduce unexpected error. For in-

stance, the hysteresis model added error to the nonhysteretic magnetization response

in the lower saturation region, where the hysteresis effects should have been negligible.

Then, a computationally efficient and robust nonlinear modeling framework was

presented for smart material systems. The framework consists of a novel 3D inversion

scheme for nonlinear modeling of smart material based transducers, and a reduced

2D dimensional model for smart composite plate structures. The framework was in-

tegrated into a finite-element software to analyze an aluminum plate embedded with

a Galfenol strip, for which major and minor magnetostriction curves, corresponding

to the tip of the Galfenol patch, were obtained with applying unbiased and biased

magnetic fields. Compared to an existing model, the proposed model gave dynamic

simulation results in almost six times faster. Additionally, when an unbiased input

field was applied, the proposed model converged accurately to the physical solution,

while the existing model converged to a mathematical solution that was nonphys-

ical. The significant advantages in computational time and numerical convergence

exhibited by the proposed model are ideal for fast design of plate actuators.

Finally, a fully coupled magnetomechanical system model based on continuation

for arbitrary magnetostrictive materials was proposed. The problem was formulated

in an optimization framework through defining a novel scalar error function, and

second order approximations were taken into account. This has led to a faster con-
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vergence rate compared to an existing system model, which is based on quasi-Newton

method. Our approach is globally convergent, while the existing model failed for

14.6% of the 1,000,000 runs. Additionally, the proposed model offered, in average, a

13 times faster convergence rate than the existing model for each run.

9.2 Research Contributions

Compact and rapidly convergent piecewise parametric large deflection solutions of

Euler–Bernoulli cantilever beams have been developed. The proposed methodology

can quantify the inherently nonlinear and complex load, deformation, and energy rela-

tionships revealed by compliant mechanisms efficiently and effectively, thus, can pave

the way for the emergence of novel compliant mechanisms syntheses. Approximate

linear theories are still the premise of certain devices in precision engineering. How-

ever, the overall dimensions of such devices must be adjusted with the magnitudes of

the applied loads. The utilization of the proposed solution methodology can help in

the design of new devices with fixed size and no dependence on the load magnitudes.

Computationally efficient and robust nonlinear modeling frameworks have been

presented for smart material systems. The speed and global convergence of the pro-

posed models are ideal for use in finite-element frameworks, and can lead to new

powerful black-box smart material solvers. With the utilization of such solvers, the

analysis and synthesis of, for example, smart material based transducers can be ef-

fectively expedited. When many design candidates are at hand, designers can do an

exhaustive analysis, and find the optimal solution quickly.

9.3 Future Work

Constant material and cross sectional properties were considered for the Euler–Bernoulli

beam application. Aiming to adapt the proposed solution methodology for cases, for
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which such properties are variable, would be a future work. Furthermore, geometries

with non-cantilevered beam boundary conditions, such as those occurring in shafts,

would be an additional research consideration.

Research is needed to further enhance the discrete energy-averaged model. The

magnetocrystalline and magnetoelastic energies utilized in the derivation of the Gibbs

free energy can be further improved. The magnetocrystalline energy is currently

based on a phenomenological derivation, which is, in fact, linear in the magnetization

direction components. A higher order formulation would lead to further accuracy. On

the other hand, the current formulation of the magnetoelastic energy is based on an

existing magnetostriction formula, which was derived for pure magnetic field inputs.

A new derivation that takes into account contributions from both magnetic field and

stress inputs would require further research.

In addition, the current hysteresis model builds on the nonhysteretic formulation

of the discrete energy-averaged model. Thus, any inaccuracy manifested by the latter

would be propagated to the hysteresis model. Further research is required to develop

a stand-alone hysteresis model.

Finally, further research is needed to develop an efficient approximate line search

algorithm for the inverse model for fully coupled magnetostrictive systems. In addi-

tion, when the system’s prior loading history is not known, devising an effective and

efficient start solution for the model can save much computational time. This is also

the subject of future work.
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