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A B S T R A C T

Thermally-cured fiber-reinforced polymeric laminates can exhibit bistable cylindrical shapes when their plies are
configured orthogonally. Such “cross-ply” laminates have been studied extensively through modeling and ex-
periments. However, bistable laminates with non-cylindrical shapes, especially through non-orthogonal ply
orientations, have received little attention due to inherent design limitations. This paper presents an approach
for developing non-cylindrical curved shapes based on bistability in mechanically-prestressed laminates; pres-
tress is applied by laminating prestrained fiber-reinforced elastomeric laminae on either face of an initially
stress-free isotropic layer. An analytical laminated-plate model is developed based on strain energy minimization
and stable shapes are calculated for various orientations of the prestrained laminae. The modeled shapes are in
agreement with the measured shapes of physical rectangular laminates within 11%. The minimum polynomial
order for the calculation of non-cylindrical shapes is fourth; a simplified constitutive model for prestrained-
elastomers is developed to reduce computation time. The domain of bistability is investigated taking into ac-
count the combined effect of prestrain orientation and the ratio of prestrains, laminate size, and aspect ratio.
Modeling of snap-through actuation requirements shows that actuation effort is maximum when one of the
prestressed laminae is on a diagonal and the angle between prestrains is 45°.

1. Introduction

Bistable laminates are attractive for morphing structures and energy
harvesting applications as they can exhibit two deformed stable shapes
and require actuation only to switch between the shapes [1]. Bistability
is typically achieved by incorporating elastic [2] or plastic [3] residual
stress in the structure. The most widely studied form of bistability is
based on thermally-induced residual stress in fiber-reinforced poly-
meric (FRP) laminates [4]. Other methods for incorporating elastic
residual stress include fiber-prestressing [5], viscoelastic prestress [6],
and mechanical prestress [7].

Hyer [4] was the first to study the room-temperature shapes of thin
asymmetric FRP laminates. Subsequently, discrepancies in models
based on classical laminate theory were addressed with a new model
that included geometric nonlinearity (per von Karman’s hypothesis)
[8]. The analytical model was further developed with assumptions on
displacement polynomials [9], methods to calculate shear strains [10],
and inclusion of actuation forces [11]. The stable shapes of FRP lami-
nates are a function of the laminates’ size, shape, and material prop-
erties. The existence of two stable shapes is a function of the length-to-
thickness ratio of the laminates [12–14].

On the topic of bistable FRP laminates, significant attention has

been devoted to 0 /902 2 or “cross-ply” laminates due to symmetry in the
cylindrical stable shapes and sharp shape-transition when actuated.
Other types of ply orientations studied include an arbitrary angle θ such
as +θ θ θ/(90 ) , 0 /90 /2 2 2 2 2, and θ0 /2 2; the subscript in θn denotes the
number of plies. Hyer [4] and Jun and Hong [15] showed that θ0 /90 /2 2 2

laminates are not bistable. Most θ0 /2 2 laminates exhibit only one cur-
vature. On the other hand, +θ θ/(90 )2 2 laminates exhibit bistable cy-
lindrical curvatures that are twisted relative to the global coordinate
system [16], but are limited by the small range of possible shapes; the
shapes are all cylindrical and differ only in orientation. Betts et al. [17]
experimentally characterized the shapes of a family of +θ θ/(90 )2 2 la-
minates.

Overall, there are few studies on bistability arising from fully ar-
bitrary ply orientations, i.e., θ0 /2 2. FRP laminates offer a limited range
of bistable curvatures due to inherent limitations; only thin laminates
exhibit bistability, plies should be symmetric with respect to the geo-
metric mid-plane, and thermally-induced residual stress is a global
parameter rather than local. These limitations can be addressed by
switching from thermally-induced residual stress to mechanical pres-
tress. Chillara and Dapino [7] developed bistable laminates that com-
prise two mechanically-prestressed elastomeric matrix composites
(EMC [18,19]) on either face of an isotropic core layer. These
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composites have two sources of locally-applied residual stress and
therefore have a broader design space for bistable curvatures.

The EMCs in a mechanically-prestressed laminate are reinforced
with fibers along their width, enabling near-zero in-plane Poisson’s
ratio when prestressed. When the EMCs are orthogonal to each other,
the laminate exhibits orthogonal cylindrical shapes that are weakly
coupled; the magnitude of each curvature can be varied by changing
the prestrain in the EMC on the concave face. The permissible range of
EMC prestrains is defined by a critical prestrain ratio. Beyond the cri-
tical ratio, the composite has a single curved shape. Phenomena related
to shape bifurcation, such as the domain of bistability and snap-through
actuation forces, have been studied in laminates with orthogonal EMCs
using high-order displacement polynomials [20]. These phenomena
however, are also influenced by the orientation of the EMCs relative to
each other and to the structure’s geometry.

This paper presents mechanically-prestressed bistable laminates
with non-orthogonal EMCs. An example of such a laminate is shown in
Fig. 1(b) alongside one with orthogonal prestressed EMCs (Fig. 1(a)).
Prior work by Chillara and Dapino [7] on laminates with orthogonal
EMCs has shown that the weakly-coupled cylindrical shapes can be
calculated using the assumption of constant curvature. This assumption

is insufficient for modeling laminates with non-orthogonal EMCs be-
cause their shapes are expected to be non-cylindrical and contain twist
that is not constant across the laminate. The spatial variation in cur-
vatures in non-orthogonal EMC configurations is a result of a coupling
between shapes such that each shape is influenced by both sources of
EMC prestress. Therefore, existing analytical models are insufficient
and an advanced model based on higher order polynomials is required
to analyze bistable laminates with arbitrary orientations of mechanical
prestress. The model developed in this work is a generalization of the
model presented in [7] and the two models are equivalent when the
EMCs are orthogonal.

The remaining sections in this paper are organized as follows: an
analytical laminated-plate model for laminates with non-orthogonal
prestress is developed in Section 2; in Section 3, a fabrication process
that improves upon existing methods for mechanically-prestressed
bistable laminates is presented and the model is validated against the
shapes of the composites prepared; laminates shapes are calculated in
various EMC orientations and the effect of orientation on the coupling
of shapes is discussed in Section 4. A sensitivity study is conducted in
Section 5 to investigate the combined effect of EMC orientation and a
variety of parameters including EMC-prestrain ratio, laminate size,

Fig. 1. Mechanically-prestressed bistable laminate with (a) orthogonal EMCs and (b) non-orthogonal EMCs.

Fig. 2. Schematic representation of a mechanically-prestressed bistable laminate in (a) top view and (b) sectional view.
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aspect ratio, and actuation pressure, on bistability.

2. Analytical model

The purpose of the analytical model is to calculate the stable shapes
of a bistable laminate that has prestressed EMCs at non-orthogonal
angles (Fig. 2). A rectangular planform is considered in the analysis.
The EMCs on the top and bottom faces are referred to as EMC-A and
EMC-B, respectively. Throughout this paper, the orientation of EMC-B is
considered to be fixed and prestrain is applied to it along the Y axis. On
the other hand, EMC-A is positioned and prestressed at an angle relative
to the prestrain direction in EMC-B. The angle between prestrain di-
rections in the EMCs is denoted by θ. The complete range of unique
shapes can be obtained by sweeping θ from °0 to °90 . The vertices of the
rotated EMC-A, calculated using rotation matrices, are listed in Table 1.

The composite is modeled as a laminated plate based on classical
laminate theory in conjunction with von Karman’s hypothesis [21].
Plane-stress and plane-strain conditions are assumed. In-plane strains
and the out-of-plane deflection are approximated using unknown
polynomial functions. To account for non-constant curvature and twist
due to non-orthogonal prestrain orientations, the in-plane strains and
out-of-plane deflection of the laminate are described using fourth order
polynomials. Higher order polynomials have been used for modeling
stable shapes under the influence of elastic boundary conditions
[22,23], asymmetric planform shapes [24,25], and calculation of snap-
through loads [26,27,20]. Strain energy of the laminate is calculated in
terms of the unknown polynomial functions. Stable shapes are obtained
by minimizing the strain energy with respect to the unknown coeffi-
cients. The resulting nonlinear equations are solved using the Newton-
Raphson method. In this work, the in-plane strains and the out-of-plane
deflection are assumed to be fourth order polynomials in order to cal-
culate shapes with non-uniform curvatures resulting from non-ortho-
gonal prestrains. When the EMCs are orthogonal, second order poly-
nomials are accurate for shape calculation.

2.1. Strain model

Strain of an arbitrary point (x y z, , ) on a composite plate is written
in terms of its displacements (u v w, , ) as:
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Displacements of the composite can be expressed in terms of the
displacement of its mid-plane (u v w, ,0 0 0) as:
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Strains of the composite can be expressed in terms of its mid-plane
displacements by substituting (4)–(6) into (1)–(3):
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yielding the relations:

∊ = ∊ + = + ∊ = ∊ +zκ γ γ zκ zκ, , ,x x x xy xy xy y y y
0 0 0 0 0 0

(10)

where ∊x
0 and ∊y

0 are the in-plane axial strains, γxy
0 is the in-plane shear

strain, and κ κ,x y
0 0, and κxy

0 are the curvatures and twist, respectively, of
the geometric mid-plane.

The out-of-plane deflection w0 (Z direction) is approximated as a
fourth order polynomial whose coefficients only have even powers,
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The choice of terms is valid because each shape of the composite is
expected to be a combination of cylindrical curvature components.
Hyer [8] showed that in-plane strains ∊ ∊,x y

0 0 can be approximated using
polynomials with even degree terms. Based on this assumption, fourth
order polynomials are chosen for ∊x and ∊y as:
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Displacements of the mid-plane ( =z 0) are obtained by integrating
(1) and (3) as:

= + +
−

+ − +
−

+ + − + − −

+ − − + − −

+ − +

u x y c x f y
c k

x c k k x y
c k

xy

f y c k k x c k k k k x y

c k k k k x y c k k k k x y

c k k xy f y

( , )
2

3
2
2

2
2

8
5

4 6
4

3 4
3

2 2
2

( ) ,

0 00 1
20 20

2
3 11 11 20 2 02 11

2
2

2
3 40 20 40 5 31 11 40 20 31 4

22 11 31 20 22 3 2 13 11 22 13 20 2 3

04 11 13
4

3
5 (14)

= + + + +

+ + +

+ +

+ − +

− − −

− − −

− − − −

v x y d y f x y xy x y

f x y y x

y x y x

d k k yx f x

( , )

( ) .

d k d k k d k

d k k d k k k k

d k k k k d k k k k

0 00 1
( 2 )

3
3 ( 2 )

2
2 (2 )

2
2

4
3 8

5
5 ( 4 6 )

4
4

( 3 4 )
3

3 2 ( 2 2 )
2

2 3

40 11 31
4

5
5

02 02
2

11 11 02 20 11
2

04 02 04 13 11 04 02 13

22 11 13 02 22 31 11 22 31 02

(15)

Shear strain γxy is calculated by substituting (11), (14), and (15) in
(8).

Given that the EMCs are anisotropic, strains in the material should
be expressed in terms of the laminate’s strain. EMC-B is aligned such
that its material-coordinate axes coincide with the laminate’s co-
ordinate axes. For EMC-A however, strains are expressed in material
coordinates as:
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Table 1
Coordinates of an EMC-A oriented at angle θ with respect to the Y axis.

Point 0 to π/4 π/4 to π/2

(m n,1 1) ( −L θ L θ Ltan sec ,y a y) ( +L L θ L θ, cot cscx x a )
(m n,2 2) ( +L θ L θ Ltan sec ,y a y) ( −L L θ L θ, cot cscx x a )
(m n,3 3) (− + −L θ L θ Ltan sec ,y a y) (− − −L L θ L θ, cot cscx x a )
(m n,4 4) (− − −L θ L θ Ltan sec ,y a y) (− − +L L θ L θ, cot cscx x a )
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2.2. Linear-equivalent constitutive relations for prestressed EMCs

In previous works on mechanically-prestressed bistable composites
[7], the EMCs’ constitutive material response in the prestrained direc-
tion was described using the following experimentally-obtained ex-
pression:

= − ∊ + ∊ − ∊ + ∊σ 0.698 2.29 2.306 1.598 [MPa],p
nl

p p p p
( ) 4 3 2

(17)

where σp
nl( ) is the prestress due to an applied prestrain ∊p in the EMC;

shown with a blue dashed line in Fig. 3(a). The EMC’s strain energy for
a given ∊p was computed as the area under the stress-strain curve and
written in terms of composite strains as:
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where ∊ is a component of the composite’s in-plane strain. While a bi-
quadratic constitutive expression is accurate for describing the com-
posites’ mechanics, there is a tradeoff in computational cost when it is
paired with high-order displacement polynomials and rotation matrices
in the strain model. In this paper, we present a linear-equivalent EMC
model based on a point-wise elastic modulus. At each prestrain, the
area under the nonlinear stress-strain curve is equated to a constitutive
expression based on Hooke’s law. The point-wise modulus Ep, shown in
Fig. 3(a), is then calculated as:
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Based on Ep, strain energyUp in the prestressed direction in an EMC
layer within the composite is calculated as:
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The assumption in the linear-equivalent model is that the point-wise
modulus is a function only of the applied prestrain and is invariant to
strains in the composite. In practice, in-plane strains in bistable com-
posites are only as high as 5–6%. At 60% EMC prestrain, the error in in-
plane strain in the linear-equivalent model is calculated to be 2.35%
(Fig. 3(b)). This minimal error is an acceptable tradeoff and therefore
the linear model is used to achieve faster computation.

2.3. Strain energy computation

The strain energy (Uc) of the core is expressed in terms of its material
properties and dimensions as:
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where Qij ( =i 1, 2, 6) are the plane-stress reduced stiffnesses of the
composite [28]. Strain energy (Ub) of EMC-B is written as:
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Note that the coefficientsQ Q Q, ,12 16 26 are zero as the EMC’s in-plane
Poisson’s ratio is assumed to be zero. The strain energy integrand for
EMC-A is written in terms of its material coordinates (see (16)) as:
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The integral and its limits for EMC-A for various ranges of prestrain

Fig. 3. (a) Stress-strain curve of an EMC that is reinforced with fibers in the 1-direction and stretched in the 2-direction; (b) error in the calculation of strain energy
density using the linear-equivalent EMC constitutive expression relative to the nonlinear expression.

Table 2
Limits of integration for the computation of strain energy of EMC-A.
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orientation θ are listed in Table 2.

2.4. Work done by actuation pressure

To quantify the snap-through actuation loads as a function of pre-
strain orientation, a uniformly distributed transverse pressure (P) is
applied in the ±Z direction. The corresponding work done on the
composite is written as:

∫ ∫=
− −

W P w y x. d d .
Lx

L

Ly

L
0

x y

(24)

2.5. Computation of composite shape

The composite’s stable shapes are calculated by minimizing the net
energy using the Rayleigh-Ritz method:

∑ ∂ + + −
∂

=U U U W
C

( ) 0,
i

a b c

i (25)

where Ci is the set of coefficients c d, , and k from (12), (13), and (6),
respectively. The expressions for strain energy and actuation work are
derived using the MAPLE symbolic solver. Partial derivatives with re-
spect to the 31 coefficients are obtained and the resulting nonlinear
equations are solved using the Newton-Raphson method (in MATLAB).

3. Composite fabrication and model validation

Composites with four prestrain orientations, i.e., = ° ° °θ 30 , 45 , 60 ,
and °90 are fabricated to demonstrate bistability and validate the ana-
lytical model. The fabrication process for the EMCs and the bistable
composites were presented by Chillara and Dapino [7]. In previous
works, prestressed layers were laminated in a two stage process. In this
work a method for single-stage fabrication is presented (Fig. 4). EMCs
of dimensions × ×15.2 15.2 2 mm are stretched to a prestrain of 0.4
(40%) and held onto a base plate using clamps. A spring steel plate of
dimensions × ×76.2 76.2 0.076 mm is inserted between the EMCs and
laminated by applying a flexible silcone adhesive (DAP Automarine
silicone sealant). Weights are placed on the composite to keep the
bonded regions under pressure during the 24-h curing process. The
stable shapes of the manufactured specimens are shown in Fig. 5.

The composites’ material properties, measured using tensile tests,
are listed in Table 3. Using the same material properties, dimensions,
and prestress as in the manufactured composites, the stable shapes are
calculated using the analytical model as a function of prestrain

orientation. The measured and calculated out-of-plane deflections at all
vertices are compared as shown in Fig. 6. Note that vertices on a di-
agonal have equal deflections. In the manufactured samples, deflection
is calculated as the average of vertex deflections on each diagonal. The
measured deflections are in agreement with the calculated shapes,
thereby rendering the model valid. The maximum error between the
calculated and measured shapes is 10.8%, 7.7%, 11%, and 3% for

= ° ° °θ 30 , 45 , 60 , and °90 , respectively. The dependence of stable
shapes on prestrain orientation is discussed in Section 4.

4. Calculation of stable shapes

The composite is shown to have two stable shapes for various values
of θ as shown in Fig. 7. To study the effect of material and geometric
parameters, the shapes are represented using deflection at the vertices.
Fig. 8 shows the two stable shapes plotted for ∊ ≜ ∊ = 0.6a b . At =θ 0,
the EMCs are parallel to each other. Application of a prestrain yields no
flexure in the composite as the bending forces cancel out. However,
there exists a compressive stress in the core layer that could be har-
nessed to tailor buckling/crumpling of the core. At non-zero prestrain
angles, the composite exhibits two stable shapes in response to equal
prestrains applied to the EMCs.

The dominant deformation mode is twist rather than pure-bending
since deflection in the second stable shape is observed at the adjacent
vertex. Further, twist is not constant across the composite given that w0
at a given θ is not equal in magnitude in both shapes (Fig. 8). Therefore,
the assumption of constant curvature and twist is insufficient to cal-
culate the shapes resulting from non-orthogonal prestress configura-
tions. As a consequence, fourth order polynomials for in-plane strains
and deflection are the minimum polynomials that accurately describe
the stable shapes.

As θ tends to 90°, deflection at all vertices converges to the same
magnitude, indicating that the shapes are cylindrical. To demonstrate
weak coupling of the shapes at = °θ 90 , prestrain in EMC-A is reduced
to 0.54. Results show that at angles other than 90°, deflections in both
shapes are affected by the change in prestrain. At 90°, only the upward
curvature is affected by the change in ∊a.

5. Sensitivity study

5.1. Effect of EMC prestrain

In mechanically-prestressed composites with two sources of residual
stress, there exists a critical (minimum) ratio of EMC prestrains for the
composite to be bistable [20]. In other words, when prestrain in one
EMC is sufficiently low relative to prestrain in the other EMC, the
compsite has only one stable shape. In the case of orthogonal EMCs,
only one cylindrical shape exists and its magnitude is primarily influ-
enced by the higher EMC prestrain. For configurations with non-or-
thogonal prestressed EMCs, the critical prestrain is expected to depend
on the prestrain orientation based on the fact that the shapes are not
weakly coupled.

Fig. 9 shows deflection w0 at (L L,x y) in both shapes as a function of
θ for prestrain ∊a ranging from 0.04 to 0.6. Prestrain ∊b is maintained
constant at 0.6. The solid and dotted lines represent the bistable and
monostable regimes, respectively. For ° → °θ: 45 90 , the minimum ∊a for
bistability is calculated to be 0.14. As θ is reduced below °45 , the cri-
tical ∊a increases with a decrease in θ. Fig. 10 shows a second scenario
where prestrains ∊ = 0.6a and ⩽ ∊ ⩽0.04 0.6b . Below a critical ∊bof 0.38,
the composite exhibits a monostable positive curvature whereas above
0.38, it is bistable up to = °θ 45 . Beyond = °θ 45 , the critical prestrain
increases with an increase in θ. Based on the two scenarios, we see that
critical prestrain for bistability is higher in the EMC that is parallel to a
laminate’s edge; such an EMC has minimum length and therefore
minimal strain energy when prestressed. In both cases, bandwidth of
usable prestrain is maximum and minimum when the EMCs areFig. 4. Fabrication setup for a mechanically-prestressed bistable composite.
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orthogonal and parallel, respectively.

5.2. Effect of laminate size

The deflections of square composites calculated for various sizes are
shown in Fig. 11. Sizes are expressed in terms of reference areal di-
mensions of ×76.2 76.2 mm and a magnification factor M; thickness of
the core is constant at 0.076mm. EMC width and prestrain are

Fig. 5. Stable shapes of the composites prepared.
Areal dimensions are ×76.2 76.2 mm.

Table 3
Measured material properties of the laminae of modeled and tested prestressed
laminates. Note: E1 and G12 are modified values per the assumptions discussed
in [7].

Lamina E1 (MPa) E2 (MPa) G12 (MPa) ν12 ν21

EMC 0.4 Point-wise 1.2 0 0
Core (steel) 200,000 200,000 78,125 0.28 0.28

Fig. 6. Out-of-plane deflection at the vertices of the laminate obtained through
modeling and experiments.

Fig. 7. Calculated stable shapes for various EMC orientations in a bistable laminate.

Fig. 8. Out-of-plane displacement of vertex at (L L,x y). The black-magenta set
represent the case of ∊ ≜ ∊ = 0.6a b . The gray-purple set represent the case of
∊ = ∊ =0.54, 0.6a b .
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maintained constant at 15.2 mm and 0.6, respectively. Deflection of the
vertex is found to increase with increase in M. This magnification in the
deformed shapes is independent of θ. Notably, bistability is maintained
at smaller sizes; =M 0.5 corresponds to ×38.1 38.1 mm. This result
however, is due to the appropriate choice of core modulus, thickness,
and EMC prestrains. Chillara and Dapino [7] showed that with softer
core materials, there exists a critical size below which the composite
has a single saddle shape. This analysis shows that bistability created
using mechanical prestressed laminae is highly scalable.

5.3. Effect of aspect ratio

Aspect ratio is defined as the ratio of the lengths of the longer edge
to the shorter edge in a rectangular composite. By definition, AR is
greater than 1 and is used as a multiple on either Lx or Ly similar to the
multiple M in Section 5.2. In the first study, rectangular composites
with the longer edges along the X axis are studied. Deflections are

calculated at the vertex ∗AR L L( , )x y for AR ranging from 1 to 2 and
≜ =L L 76.2x y mm (Fig. 12). For square laminates ( =AR 1), the

maximum positive deflection occurs at = °θ 45 . This deflection peak
shifts away from 45° to a higher value as the aspect ratio increases,
indicating that deflection is maximum when the prestressed EMC-A is
oriented along the diagonal of a rectangular composite. With increase
in AR, shape 1 (positive w0) is amplified and shape 2 is reduced for all
values of θ. At a critical AR of 1.6, shape 1 does not exist below a critical
θ and the composite is monostable in shape 2.

In another study, the longer edge of the rectangular composites is
along the Y axis. For the same range of AR and areal dimensions as in
the first study, deflections are calculated at ∗L AR L( , )x y (Fig. 13). With
increase in AR, shape 2 is magnified whereas shape 1 is diminished. The
peak value of deflection in shape 1 remains nearly constant with in-
crease in AR and it corresponds to the orientation where prestress in
EMC-A is along the diagonal. Beyond a critical AR of 1.5, the composite
is monostable in orientations where both EMCs terminate on the same
edge ( = ±y Ly). Based on the two studies, allowable aspect ratio for
bistability is a function of prestrain orientation. In both cases, the
composite is monostable in shape 2 outside the domain of bistability.

Fig. 9. Out-of-plane displacement of vertex at (L L,x y) for ∊ = 0.6b and ∊a ran-
ging from 0.04 to 0.6.

Fig. 10. Out-of-plane displacement of vertex at (L L,x y) for ∊ = 0.6a and ∊b

ranging from 0.04 to 0.6.

Fig. 11. Out-of-plane displacement of vertex at (L L,x y) for various laminate
sizes. Width of the EMCs is maintained constant at 15.24mm. ∊ ≜ ∊ = 0.6a b .

Fig. 12. Out-of-plane displacement of vertex at ( ∗AR L L,x y). Width of the
EMCs is maintained constant at 15.24mm. ∊ ≜ ∊ = 0.6a b .
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5.4. Actuation requirements

The effect of prestrain orientation on the forces required for snap-
through between stable shapes is studied in this section. A uniformly
distributed pressure load P acting in the ± Z direction is chosen for this
analysis; point loads at the vertices are not ideal for comparison be-
cause the vertices do not deform to the same extent in both shapes over
the complete range of θ. Stable shapes are calculated over a range of
pressure values and the pressure required for snap-through is identified
as the point of discontinuity in the force-deflection curve. Snap-through
pressures for various values of θ are plotted in Fig. 14. The analysis is
done on square composites of areal dimensions ×76.2 76.2 mm.

Actuation pressure is found to be higher in shape 1 than in shape 2
for all values of θ except °0 and °90 . In shape 1 actuation pressure in-
creases with increase in θ and reaches a maximum at °45 . In contrast,
actuation pressure in shape 2 has a local minima at °45 . In bistable
composites, the potential energy minima corresponding to stable shapes
are separated by a local maxima that should be overcome to achieve
snap-through. The increasing trend in actuation pressure can be ex-
plained by the increasing separation between the potential energy

minima between stable shapes; at = °θ 0 the structure has neither
bistability nor curvature, whereas at = °θ 90 it is bistable with cylind-
rical curved shapes. Peak values are observed at the °45 point because
the deflections are maximum in this orientation; EMC-A has maximum
length in the °45 orientation and therefore the input strain energy is
maximum for a given EMC prestrain.

6. Concluding remarks

Bistable laminates with non-cylindrical curved shapes arising from
elastic residual stress have been investigated for the first time through
this work. Mechanically-prestressed elastomeric laminae configured at
non-orthogonal angles yield a range of bistable shapes that include non-
constant curvature and twist in the laminate. Non-cylindrical stable
shapes are influenced by prestrain in both the EMCs whereas cylindrical
shapes resulting from orthogonal EMCs are weakly coupled; the mag-
nitude of each cylindrical curvature can be tailored by adjusting pre-
strain in the EMC on the concave face. An analytical laminated-plate
model is developed to calculate the stable shapes of laminates with
arbitrary prestrain orientations. For greater computational efficiency, a
simplified linear-equivalent constitutive model is developed for pre-
stressed EMCs. Through experimental validation, it is established that
quartic polynomials for in-plane strains and out-of-plane deflections are
the minimal and sufficient polynomials for the calculation of stable
shapes. When the EMCs prestrains are equal, the laminate is bistable
over the entire range of prestrain orientations (except at 0°). However,
the range of orientations (θ) reduces with a reduction in prestrain ratio.
In rectangular bistable laminates, there is a limit on the aspect ratio for
a given prestrain (input strain energy) in the EMCs. A study of actuation
requirements shows that actuation pressure is minimal in the case of
parallel prestressed EMCs and increases with an increase in the angular
separation between the EMCs. Actuation pressure is maximum when
the EMC on the concave face is at 45° or oriented along the diagonal of
the laminate. This study on bistability due to arbritrary prestrain or-
ientations provides the modeling tools and insights that enable the
design of morphing structures with complex bistable shapes.
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