
Proceedings of the ASME 2017 Conference on Smart Materials,
Adaptive Structures and Intelligent Systems

SMASIS2017
September 18-20, 2017, Snowbird, UT, USA

SMASIS2017-3906

PARAMETER OPTIMIZATION ALGORITHM OF A DISCRETE
ENERGY-AVERAGED MODEL FOR GALFENOL ALLOYS

Ismail Nas, Zhangxian Deng, Suryarghya Chakrabarti1, Marcelo J. Dapino
Department of Mechanical and Aerospace Engineering, The Ohio State University

Columbus, Ohio 43210

ABSTRACT
An optimization algorithm is proposed to determine the

parameters of a discrete energy-averaged (DEA) model for
Galfenol alloys. A new numerical approximation approach for
partial derivative expressions is developed, which improves com-
putational speed of the DEA model by 61% relative to existing
partial derivative expressions. Initial estimation of model pa-
rameters and a two-step optimization procedure, including an-
hysteresis and hysteresis steps, are performed to improve ac-
curacy and efficiency of the algorithm. Initial estimation of
certain material properties such as saturation magnetization,
saturation magnetostriction, Young’s modulus, and anisotropy
energies can improve the convergence and enhance efficiency
by 41% compared to the case where these parameters are not
estimated. The two-step optimization improves efficiency by 28%
while preserving accuracy compared to one-step optimization.
Proposed algorithm is employed to find the material properties
of Galfenol samples with different compositions and heat treat-
ments. The trends obtained from these optimizations can guide
future Galfenol modeling studies.

INTRODUCTION
Magnetostrictive materials deform when exposed to mag-

netic fields and undergo change in magnetization when stressed.
Magnetostrictive iron-gallium alloys, also known as Galfenol,
possess a unique combination of mechanical robustness and
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moderate magnetostriction. Galfenol can withstand bending,
tensile, and torsional loads and can be machined, welded, or ex-
truded into complex geometries. Thus it opens up avenues for
three-dimensional (3D) functional, structural, and versatile mag-
netostrictive devices including energy harvesters [1, 2, 3, 4], sen-
sors [5, 6, 7, 8, 9], actuators [10, 11, 12, 13, 14], and mechanical
dampers [15, 16, 17].

Implementing constitutive models of magnetostrictive ma-
terials in device-level modeling can be challenging. Finite el-
ement modeling has been implemented to that effect, both in
2D [18, 19, 20] and in 3D [21, 22, 23] frameworks. Lumped
parameter approximations have also been implemented, includ-
ing single degree of freedom [2, 24], and multiple degrees of
freedom [25, 26, 27]. The constitutive models should have two
essential characteristics: efficiency that allows for high com-
putational speed and accuracy that describes the fully-coupled
and nonlinear magnetostrictive behavior. Earlier works mod-
eled magnetostrictive behavior using measurement-fitted poly-
nomial [28, 29, 30] that can be easily differentiated and imple-
mented. However, this procedure requires a different set of
coefficients once the preload or bias magnetic field conditions
change. The measurement-fitted polynomial only works for
1D cases, since the computational effort increases exponentially
with respect to the dimension of spline functions.

Fully-coupled 3D modeling frameworks for magnetostric-
tive materials have been developed in previous studies following
an energy-based approach, which was first introduced by Arm-
strong [31]. In this approach, the bulk behavior is defined as a
weighted sum of the local response of each magnetic domain,
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where the local response depends on the orientation of magnetic
domains and the weights, also known as the volume fractions,
are determined by an energy-based Boltzmann distribution. Atu-
lasimha et al. [32] improved the model by tracking the evolution
of volume fractions belonging to 98 magnetic moments, result-
ing in an improved accuracy of describing the behavior in 〈110〉-
oriented single-crystal Galfenol. Taking advantage of cubic sym-
metric Galfenol, Evans and Dapino [33] developed a 3D nonlin-
ear discrete energy-averaged (DEA) model and significantly im-
proved model efficiency by reducing the possible magnetic mo-
ment orientations to six. The DEA model has been shown to
be 100 times faster than previous energy weighting models with
same level of accuracy.

The response of Galfenol varies significantly depending on
its composition [34] and material processing techniques [35].
For example, increasing gallium content from 18.4% to 20.9%
reduces the saturation magnetostriction but increases the stress
range over which the material shows a stress-dependent suscep-
tibility change [36]. Through stress-annealing [37], a tetragonal
anisotropy can be introduced in Galfenol where the two 〈100〉
easy directions parallel to the annaealing direction have a higher
anisotropy energy than the remaining four orientations in the
basal plane. This enables the alloy to exhibit maximum magne-
tostriction without pre-compression. In order to account for the
material property variations in Galfenol transducer modeling, a
universal algorithm which optimizes the constitutive model pa-
rameters is necessary for improving the applicability of the DEA
model.

This paper aims at developing a systematic procedure to es-
timate the parameters of the DEA model for Galfenol and re-
lating trends in model parameters to material compositions and
heat treatments. Key elements of previously-defined DEA model
are presented in the following section. A two-step optimization
algorithm, including anhysteresis and hysteresis steps, and tech-
niques to estimate material parameters are described in the pro-
cedure section. In the results section, the performance of the
optimization algorithm is analyzed for an unannealed textured
polycrystalline Fe81.6Ga18.4 sample, and the algorithm is applied
to several Galfenol samples with various gallium contents and
heat treatments.

DISCRETE ENERGY-AVERAGED CONSTITUTIVE
MODEL

Models based on energy-weighted averaging employ statis-
tical mechanics to calculate the bulk magnetization and strain of
the material. Armstrong [31] calculated the macroscopic mate-
rial response as an expected value of a large number of possi-
ble energy states, or domain orientations, with an energy-based
probability density function. Due to the large computational ef-
fort involved in evaluating the expected values by solving 2D
integrals numerically, a discrete version of the model was devel-
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FIGURE 1. THE NOTATION USED IN THIS WORK TO NUMER-
ATE THE EASY AXES.

oped [38]. The choice of possible domain orientations was re-
stricted to the easy magnetization axes and the associated volume
fractions were calculated using a discretized version of the prob-
ability density function. The increase in computational speed,
however, came at the cost of reduced accuracy.

To achieve accuracy without sacrificing efficiency, Evans
and Dapino [33] developed a constitutive model for Galfenol by
choosing orientations which minimize an energy function locally
defined in the vicinity of each easy axis. The anisotropy energy
Gk

A at a direction mk is formulated as

Gk
A =

1
2

Kk|mk− ck|2, (1)

where the constant Kk quantifies the anisotropy energy around
the kth easy axis ck. The notation used to numerate these axes is
presented in Fig. 1.

The anisotropy energy along each easy axis is zero, which
applies to materials with cubic anisotropy such as unannealed
Galfenol. However, it has been shown that stress annealing
induces tetragonal anisotropy in Galfenol [35] where the four
〈100〉 directions perpendicular to the annealing direction have
a lower energy than the other two. To make the model capable of
describing the effects of stress annealing, the anisotropy energy
is modified as

Gk
A =

1
2

K|mk− ck|2 +Kk
0 , (2)
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where K quantifies the anisotropy energy around all easy axes
and Kk

0 specifies the base anisotropy energy along the kth easy
axis. Separating anisotropy energy parameters K and Kk

0 makes
it possible to derive the new generalized expressions for the par-
tial derivatives ∂mk/∂Hi and ∂mk/∂Ti j, which are discussed in
the procedure section. Further, the m-dependent portion of the
anisotropy energy remains unchanged, which means the mini-
mization results remain unaffected. The total free energy around
ck is formulated as the sum of the local anisotropy energy Gk

A,
magnetomechanical coupling energy Gk

C and the Zeeman energy
Gk

Z as

Gk =
1
2

K|mk− ck|2 +Kk
0︸ ︷︷ ︸

Gk
A

−Sk
m ·T︸ ︷︷ ︸
Gk

C

−µ0Msmk ·H︸ ︷︷ ︸
Gk

Z

, (3)

where the magnetostriction tensor Sk
m for a cubic material is de-

fined as

Sk
m =



(3/2)λ100(mk
1)

2

(3/2)λ100(mk
2)

2

(3/2)λ100(mk
3)

2

3λ111mk
1mk

2
3λ111mk

2mk
3

3λ111mk
1mk

3


, (4)

and input stress and magnetic field vectors T and H are given as

T =
[

T11 T22 T33 T12 T23 T13
]T

, (5)

H =

H1
H2
H3

 . (6)

The energy function can be represented in the matrix form
as

Gk =
1
2

mk ·Kmk−mk ·Bk +
1
2

K +Kk
0 , (7)

where the magnetic stiffness matrix K and force vector Bk are

K =

K−3λ100T11 −3λ111T12 −3λ111T13
−3λ111T12 K−3λ100T22 −3λ111T23
−3λ111T13 −3λ111T23 K−3λ100T33

 , (8)

Bk =
[

ck
1K +µ0MsH1 ck

2K +µ0MsH2 ck
3K +µ0MsH2

]T
.(9)

Minimization of the energy function (7) based on the lin-
earized unity norm constraint on the orientation vectors (mk ·
mk = 1≈ ck ·mk = 1) yields an analytical expression for the ori-
entation of the kth local minimum [33]

mk = (K)−1

[
Bk +

1− ck · (K)−1 Bk

ck · (K)−1 ck
ck

]
. (10)

The anhysteresis volume fractions are calculated through
Boltzmann-type averaging [33] as

ξ
k
an =

exp
(
−Gk/Ω

)
∑
±3
s=±1 exp(−Gs/Ω)

, (11)

where Ω is an averaging factor. Then bulk magnetization, strain
and magnetic induction can be obtained by summing the contri-
bution of each domain weighted by the associated volume frac-
tion [33] as

M = Ms

±3

∑
k=±1

ξ
kmk, (12)

S = sT+
±3

∑
k=±1

ξ
kSk

m, (13)

B = µ0 (H+M) (14)

where the compliance tensor is

s =


c11 c12 c13 0 0 0
c12 c11 c23 0 0 0
c13 c23 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66



−1

. (15)

Volume fraction of the kth orientation at ith time step is de-
fined in incremental form [33] as

ξ
k(i+1) = ξ

k(i)+dξ
k(i), (16)

where the volume fraction increment dξ k consists of hysteresis
component dξ k

irr which is due to irreversible domain wall motion
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and anhysteresis component dξ k
an which is due to domain wall

bowing [39]

dξ
k(i) = (1− c)dξ

k
irr(i)+ cdξ

k
an(i), (17)

where c is the weight of reversible rotation. Irreversible volume
fraction increment is given [33] by

dξ
k
irr(i) =

ζ

kp

(
ξ

k
an(i)−ξ

k(i)
)
[µ0Ms (|dH1(i)|+ |dH2(i)|

+|dH3(i)|)+
3
2

λ100 (|dT11(i)|+ |dT22(i)|+ |dT33(i)|)

+3λ111 (|dT12(i)|+ |dT13(i)|+ |dT23(i)|)],
(18)

where kp quantifies pinning site density of the material, dHi and
dTi j are the increment in field and stress components, respec-
tively. The value of ζ is one unless the resulting increment gives
a negative susceptibility, in which case it is switched to zero.
Specially, the anhysteresis response can be calculated by setting
c = 1. Since the anhysteresis volume fraction in kth direction is
a function of inputs Hi and Ti j, chain rule gives

dξ
k
an =

∂ξ k
an

∂Hi
dHi +

∂ξ k
an

∂Ti j
dTi j, (19)

where the derivatives of ξ k
an with respect to Hi and Ti j are

∂ξ k
an

∂Hi
=

ξ k
an

Ω

[
±3

∑
n=±1

ξ
n
an

(
∂Gn

∂Hi

)
−
(

∂Gk

∂Hi

)]
, (20)

∂ξ k
an

∂Ti j
=

ξ k
an

Ω

[
±3

∑
n=±1

ξ
n
an

(
∂Gn

∂Ti j

)
−
(

∂Gk

∂Ti j

)]
. (21)

The derivatives of Gk with respect to Hi and Ti j are

∂Gk

∂Hi
= mk ·K

(
∂mk

∂Hi

)
− ∂mk

∂Hi
·Bk−mk ·

(
∂Bk

∂Hi

)
, (22)

∂Gk

∂Ti j
= mk ·K

(
∂mk

∂Ti j

)
+

1
2

mk ·
(

∂K
∂Ti j

)
mk− ∂mk

∂Ti j
·Bk.(23)

In this paper, to reduce computational time, new generalized
expressions for the partial derivatives ∂mk/∂Hi and ∂mk/∂Ti j
are presented,

∂mk

∂Hi
= µ0MsXk

i , (24)

∂mk

∂Ti j
=

{
3λ100(Xk

i φi)mk if i = j
3λ111(Xk

i φ j +Xk
jφi)mk if i 6= j,

(25)

where

φi =
[

δ (i,1) δ (i,2) δ (i,3)
]
, (26)

Xk
i =


[

0 0 0
]T

if i = |k|
φ T

i Rn(i,k)+3λ111φ T
n(i,k)Tp(k)q(k)

Rp(k)Rq(k)−
(
3λ111Tp(k)q(k)

)2 if i 6= |k| ,
(27)

Ri = K−3Tiλ100, (28)

δ is the Kronecker delta function, and indices p, q, and n repre-
sent perpendicularity such that

D = {1,2,3} , (29)
{p(k),q(k)}= D/{k} , (30)
n(i,k) = D/{i,k} . (31)

PARAMETER OPTIMIZATION PROCEDURE
The model parameters are the seven anisotropy constants K,

K1
0 , K−1

0 , K2
0 , K−2

0 , K3
0 , and K−3

0 , magnetostriction constants λ100
and λ111, smoothing factor Ω, saturation induction µ0Ms, pin-
ning site density parameter kp, the weight of reversible rotation
c, and moduli coefficients c11, c12, c13, c23, c44, c55, and c66.
Stress annealing induces anisotropy energy only in the two di-
rections parallel to the axis of the rod, which are chosen to be
k = 1 and k = −1. The remaining four directions perpendicular
to the annealing orientation are symmetrical about the axis of the
rod, and thus are equivalent in energy. For this reason, the base
anisotropy constants are split into two groups: K0‖ and K0⊥ . The
parameter K0‖ is the anisotropy energy for the two orientations
parallel to the axis of the rod, while K0⊥ is the anisotropy con-
stant for the four orientations perpendicular to the axis of the rod,
k = 2, k =−2, k = 3, and k =−3. Since we are interested only in
the relative anisotropy energies, K0⊥ is chosen to be zero and K0‖
will be called K0 for simplicity. Thus, the total number of un-
known parameters is reduced to fifteen. As shown in Tab. 1, fif-
teen model parameters are divided into three groups: anhystere-
sis parameters, hysteresis parameters, and higher-dimensional
parameters that have no effect on the 1D stress and field appli-
cations. The anhysteresis parameters describe the overall shape
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TABLE 1. GROUPS OF PARAMETERS INVOLVED IN THE DEA
MODEL.

Anhysteresis µ0Ms, λ100, c11,

parameters K, K0, Ω

Hysteresis
kp, c

parameters

Higher-dimensional λ111, c12, c13, c23,

parameters c44, c55, c66

of the curves, while the hysteresis parameters only control the
hysteresis size.

The aim of parameter optimization is to minimize an error
function which describes the discrepancy between the experi-
mental data and the DEA modeling results. The error function
for the ith curve in a data set is given as

errori =
1

range(Xi)

√
∑

Ni
j=1(Yi j−Xi j)2

Ni
, (32)

where Yi j and Xi j are the jth component of the ith model and data
vectors, respectively, each containing Ni points, and range(Xi) is
the range of the ith data vector.

The parameter optimization process introduced by this work
consists of four steps. First, anhysteresis curves are obtained
from hysteresis measurements through an averaging procedure.
Second, initial values of anhysteresis parameters are estimated
from anhysteresis curves. Third, a least squares optimization
routine is used to minimize the error function defined in (32) and
obtain the anhysteresis parameters, since the overall shape of the
curves depends mostly on the anhysteresis parameters. Finally,
a second optimization is run on the hysteresis data to determine
hysteresis parameters. A representative flowchart is presented in
Fig. 2.

Extracting the anhysteresis curves from measure-
ments

The anhysteresis curves are obtained by computing an av-
erage value from the upper and lower branches of the hystere-
sis loops. As pointed out by Benbouzid et al. [28], this proce-
dure yields an approximate anhysteresis value and may not coin-
cide with experimental anhysteresis curves obtained by superim-
posing a decaying AC component of the input variable, field or
stress, about a mean value. The anhysteresis curves are obtained
by sweeping the varying input over the entire applied range at
discrete steps and finding an average value within each step. For

example, the anhysteresis strain at a field H0 under varying mag-
netic field, and anhysteresis magnetic induction at a stress T0 un-
der varying stress are computed as

Ban(T0) = AV G(B(T ) : T0−δT < T < T0 +δT ), (33)

San(H0) = AV G(S(H) : H0−δH < H < H0 +δH), (34)

where δH and δT are field and stress increments. In general, a
large value introduces error due to averaging over a wider range
of input while a very small δH or δT might result in non-existence
of a data point in that range. In this study,

δH = 20 A/m, and δT = 30 kPa. (35)

Since the anhysteresis model is in incremental form, anhys-
teresis averaging is a good method to lower the sampling fre-
quency from the rate which it was collected. This is useful be-
cause fewer number of data points means the model would be
executed fewer times, consuming less computation time.

Estimating anhysteresis parameters
The efficiency of the optimization algorithm can be greatly

enhanced by estimating parameters from anhysteresis curves and
fixing parameters that are not expected to change. Values of
µ0Ms, λ100, c11, K, and K0 are estimated and parameters µ0Ms,
λ100, and c11 are fixed after estimation. The parameters µ0Ms,
λ100, and c11 can be directly obtained from the saturated induc-
tion, the saturated magnetostriction, and the slope of stress-strain
curves at saturation regions, respectively, as shown in Fig. 3.

The anisotropy constant K is estimated from the slope µ(T )
of the extracted anhysteresis induction versus field curve for a
given stress T at zero field. The slope is computed numerically
at a low magnetic field and substituted into the stress-dependent
susceptibility expression derived by Evans and Dapino [40], giv-
ing

K = 3λ100T +
(µ0Ms)

2

µ(T )−µ0
. (36)

The anisotropy constant K0 can be estimated from the lo-
cation of the burst region, which depends on the Gibbs energy
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MATING MODEL PARAMETERS.

along the directions perpendicular and parallel to the direction of
application of field. These energies are given [40] by

E⊥ =
(µ0MsH)2

6λ100T −2K
, (37)

E‖ =−
3
2

λ100T −µ0MsH +K0. (38)

The burst phenomenon occurs when the energies of two ori-
entations become roughly equal and domains start flipping from
one orientation to the other. In this study, the burst field Hburst is
obtained by selecting the magnetic field in which the gradient of
the induction versus field curve is maximum. Equating (37) and
(38) gives

K0 =
3
2

λ100T +
(µ0MsHburst)

2

6λ100T −2K
+µ0MsHburst . (39)

To improve optimization efficiency, this study fixes parame-
ters µ0Ms, λ100, and c11 which can be accurately estimated from
obvious features of the plots. However, the estimation of pa-
rameters K and K0 is less accurate, since estimating the slope of
induction versus field curve and the location of burst region in-
troduce uncertainty. Hence, K and K0 need to be optimized. The
validation of this practice is studied in the results section.

Optimization for anhysteresis parameters
The least squares optimization is conducted using the MAT-

LAB function fmincon. This function needs initial guesses,
bounds for each parameter, and a scalar error definition which
it minimizes. The parameters K and K0 are given ±60% bounds
relative to their estimated values. The parameter Ω is given an
initial guess of 1100 J/m3 and a bound of ±80% relative to the
initial guess. The error definition is constructed as follows

E =
1
y

y

∑
i=1

errori (40)
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TABLE 2. OPTIMIZED DEA MODEL PARAMETERS, CORRESPONDING MODELING ERROR, AND AVERAGE CPU TIME ELAPSED
DURING OPTIMIZATION FOR AN UNANNEALED TEXTURED POLYCRYSTALLINE Fe81.6Ga18.4 SAMPLE GROWN WITH FSZM.

Parameters Average

µ0Ms 3/2λ100 c11 K K0 Ω kp c Error CPU

(T) (×10−6) (GPa) (kJ/m3) (kJ/m3) (kJ/m3) ( kJ/m3) (-) (%) time (s)

1.575 233.503 70.740 18.074 0.222 0.933 0.311 0.855 1.45 71.96

where y is the total number of curves. A random parameter
search, as described by Deng et al. [41], is utilized where N ini-
tial guesses are randomly chosen within the bounds, and the op-
timized set that returns the least modeling error is assumed to be
the global minimum.

Optimization for hysteresis parameters
Optimized anhysteresis parameters are used as initial

guesses in the hysteresis optimization step with a narrower bound
of ±20%. The hysteresis parameters kp and c are given ini-
tial values of 230 J/m3 and 0.5, and given bounds of ±80%
and ±100%, respectively. The random parameter search and er-
ror definition (40) are employed in the hysteresis optimization
routine.

RESULTS
This section is divided into two parts in order to thoroughly

evaluate the performance of the proposed optimization algo-
rithm. First, the performance of all optimization techniques pre-
sented in the procedure section are tested using measurements
on an unannealed textured polycrystalline Fe81.6Ga18.4 sample.
Second, the optimization algorithm is validated using measure-
ments from multiple Galfenol specimens with various composi-
tions and heat treatments. All the computations are done with an
Intel Xeon 3.50 GHz CPU and 32.0 GB RAM desktop computer.

Evaluation of the parameter optimization algorithm
Following the procedure in Fig. 2, the resulting DEA

model parameters of an unannealed textured polycrystalline
Fe81.6Ga18.4 sample are presented in Tab. 2, and the associated
modeling results are plotted on top of measurements in Fig. 4.

The convergence of the algorithm is tested by running the al-
gorithm with 50 random initial guesses and calculating the range
of corresponding optimized parameters. Figure 6 shows that the
deviation of optimized material properties obtained from differ-
ent initial guesses is negligible and thus the algorithm is assumed
to converge to a global minimum.

The effectiveness of the generalized partial derivative ex-
pressions and the optimization steps are studied in detail.

Generalized expressions for partial derivatives
The efficiency of the DEA model, which is quantified by the
computational time, is compared for traditional partial deriva-
tive expressions [23] and the generalized expressions proposed
in the DEA model section as shown in Fig. 5. This study shows
that the generalized expressions improve the efficiency by 61%
on average.

Estimating anhysteresis parameters The benefit of
estimating parameters from the anhysteresis data is studied first.
To run the algorithm without the estimation step, initial guesses
are cited from [42], in which case broader bounds are needed to
ensure a global minimum for the optimization algorithm. The
results of this study, which are presented in Tab. 3, show that not
estimating µ0Ms, λ100, c11, K, and K0 decreases accuracy and
efficiency by 3.5% and 22%, respectively. This poorer perfor-
mance is due to the fact that the algorithm needs to search for a
global minimum over a wider range of parameters.

Second, the benefit of fixing parameters µ0Ms, λ100, and c11
is evaluated by comparing the efficiency and accuracy when the
complete set of parameters are optimized. As presented in Tab. 4,
the accuracy reduces by 0.06% when µ0Ms, λ100, and c11 are
fixed, while the efficiency is improved by 41%.

Hence, fixing these parameters contributes to efficiency sig-
nificantly without sacrificing accuracy.

Two-step optimization algorithm An alternative al-
gorithm is constructed where optimization routine is performed
directly on hysteresis data in order to test the two-step optimiza-
tion. The results of one-step optimization, which are presented in
Tab. 5, show that the two-step optimization algorithm improves
the efficiency and accuracy by 28% and 0.26%, respectively.

Application to different specimens
The proposed parameter optimization algorithm is applied

to specimens with different compositions and heat treatments.
Due to the lack of hysteresis data in the literature, only anhys-
teresis parameters are presented in Tab. 6. DEA model parame-
ters µ0Ms, λ100, K, and K0 are plotted against gallium content in
Fig. 7.
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TABLE 3. OPTIMIZED DEA MODEL PARAMETERS, CORRESPONDING MODELING ERROR AND AVERAGE CPU TIME ELAPSED
WHEN INITIAL GUESS ESTIMATIONS ARE NOT USED.

Parameters Average

µ0Ms 3/2λ100 c11 K K0 Ω kp c Error CPU

(T) (×10−6) (GPa) (kJ/m3) (kJ/m3) (kJ/m3) (kJ/m3) (-) (%) time (s)

1.550 255.000 70.000 18.094 0.222 0.933 0.311 0.855 4.96 87.71

TABLE 4. OPTIMIZED DEA MODEL PARAMETERS, CORRESPONDING MODELING ERROR, AND AVERAGE CPU TIME ELAPSED
WHEN FULL SET OF PARAMETERS ARE OPTIMIZED.

Parameters Average

µ0Ms 3/2λ100 c11 K K0 Ω kp c Error CPU

(T) (×10−6) (GPa) (kJ/m3) (kJ/m3) (kJ/m3) (kJ/m3) (-) (%) time (s)

1.577 228.232 70.676 16.505 0.278 0.959 0.221 0.800 1.39 122.65

TABLE 5. OPTIMIZED DEA MODEL PARAMETERS, CORRESPONDING MODELING ERROR, AND AVERAGE CPU TIME ELAPSED
WHEN ONLY ONE OPTIMIZATION PROCEDURE IS APPLIED DIRECTLY ON HYSTERESIS DATA.

Parameters Average

µ0Ms 3/2λ100 c11 K K0 Ω kp c Error CPU

(T) (×10−6) (GPa) (kJ/m3) (kJ/m3) (kJ/m3) (kJ/m3) (-) (%) time (s)

1.575 233.503 70.740 18.726 0.278 0.940 0.311 0.858 1.71 100.15

Some observations can be made from Fig. 7:

1. Saturation induction µ0Ms decreases with increasing Ga
content as presented in [46]. This is possibly attributed to
diamagnetic gallium atoms that weaken ferromagnetic prop-
erties of iron.

2. For single crystal specimens, saturation magnetostriction
λ100 peaks around 19% Ga and 27% Ga; this phenomenon is
attributed to the magnetoelastic energy that increases rapidly
for small concentrations up to 19% Ga and a near-linear soft-
ening of the shear elastic constant extending to 27% Ga [47].

3. Quenched single crystal material has a significantly higher
base anisotropy energy K than the furnace cooled specimen
of the same Ga content. This is possibly because quenching
is an orientation-independent process and induces higher in-
ternal energy in all directions.

4. Annealed polycrystalline material has a significantly higher
anisotropy energy K0 in the two orientations parallel to the
axis of the rod, which are the stress annealing directions,
since annealing induces a uniaxial anisotropy in [100] and[
1̄00
]

orientations.
5. Single crystal and polycrystalline specimens with the same

Ga content have similar base anisotropy energy K.

In order to verify the trends in parameters and relate them
to the performance of the proposed optimization algorithm, the
effect of each parameter on the modeling error is investigated. To
that end, a sensitivity function is defined as

δi =
∂E
∂ pi

(41)

where E is the scalar error defined in (40), and pi is the ith model
parameter. These partial derivatives are calculated numerically,
and the sensitivity of the modeling error for µ0Ms, λ100, and c11
is found to be much higher than K, K0, Ω, kp, and c. This result
coincides with a previous study [41] where the uncertainty in K,
K0, Ω, kp, and c has proven to be more significant than µ0Ms,
λ100, and c11 at a given measurement error. Due to the high un-
certainty in optimized K and K0, no clear trends can be seen in
Fig. 7. However, any arbitrary values selected from the range
provided in Fig. 7 can be used as initial guesses to obtain high
accuracy in model results.
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TABLE 6. OPTIMIZED ANHYSTERESIS PARAMETERS OF DEA MODEL AND CORRESPONDING MODELING ERROR FOR SEVERAL
SPECIMENS.(C: CRYSTAL STRUCTURE, S: SINGLE CRYSTAL, P: POLYCRYSTALLINE; HT: HEAT TREATMENT, F: FURNACE COOLED,
U: UNANNEALED, A: ANNEALED, Q: QUENCHED; * ONLY B VERSUS H CURVES ARE USED FOR OPTIMIZATION, ** MODULUS DATA
IS NOT AVAILABLE FOR MOST CASES)

Ga µ0Ms 3/2λ100 c11** K K0 Ω Error

(at%) C HT (T) (×10−6) (GPa) (kJ/m3) (kJ/m3) (kJ/m3) (%) Ref.

15 S F 1.875 244.520 - 38.247 -18.928 7.187 1.56* [45]

16 S F 1.834 237.939 - 3.956 -1.942 1.015 3.75 [46]

17 S F 1.773 267.118 - 3.667×10−8 -14.165 5.097 2.02* [47]

18.4 P U 1.575 233.503 70.740 18.074 0.222 0.933 1.45 [41]

18.4 P A 1.565 250.270 - 56.277 11.918 2.174 1.42 [48]

18.5 P U 1.573 270.418 56.153 37.597 0.459 0.933 4.47 [33]

19 S F 1.625 301.078 - 50.049 -2.274 1.556 1.59 [32]

19 S Q 1.530 274.413 - 489.067 -18.593 5.271 1.58* [49]

20.9 S F 1.226 215.677 - 8.390 2.302 0.937 1.96 [33]

20.9 P U 1.465 184.683 - 8.929 0.843 0.891 5.29 [36]

24.7 S F 1.339 278.022 - 0.744 0.949 2.104 2.94 [32]

29 S F 1.098 257.893 - 4.193 0.199 1.950 3.55 [32]
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FIGURE 6. DEVIATION OF OPTIMIZED PARAMETERS FOR 50
SETS OF RANDOM INITIAL GUESSES.

CONCLUSION
Generalized partial derivative expressions, that are able to

improve the efficiency by 61% on average relative to existing
partial derivative expressions, are first developed for the DEA
model. A universal and efficient optimization algorithm to find
the DEA model parameters for Galfenol is introduced which con-
sists of four steps, extracting the anhysteresis curves from mea-
surements, estimating anhysteresis parameters, optimization for
anhysteresis parameters, and optimization for hysteresis param-
eters. The performance of each step is evaluated in terms of ef-
ficiency and accuracy. Estimating and fixing parameters µ0Ms,
λ100, and c11 improves the efficiency by 41%, while preserving
accuracy, relative to the case where these parameters are not es-
timated. This study shows another efficiency improvement of
28% by dividing the optimization into two-steps, anhysteresis
and hysteresis. These results provide guidelines for future opti-
mization studies. For instance, depending on the requirements
of accuracy and efficiency, a system designer has the freedom to
turn on or off certain steps of the algorithm. The optimization
algorithm is then applied to multiple Galfenol samples with dif-
ferent Ga contents and heat treatments. Trends in DEA model
parameters are presented which allow researchers to preliminar-
ily select model parameters for other Galfenol samples whose
characterization data is not available. For parameters K and K0,
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FIGURE 7. DEA PARAMETERS VERSUS GALLIUM CONTENT FOR DIFFERENT MATERIAL COMPOSITIONS AND HEAT TREAT-
MENTS.

however, the trend is not clear due to the large uncertainty. Still,
selecting K, K0, kp, and c within the range provided by this pa-
per can provide high accuracy. This work can be complemented
by a future work that uses fully 3D measurements to evaluate
higher-dimensional parameters.
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