
Computationally efficient locally linearized
constitutive model for magnetostrictive materials

Cite as: J. Appl. Phys. 125, 215108 (2019); doi: 10.1063/1.5086953

View Online Export Citation CrossMark
Submitted: 26 December 2018 · Accepted: 16 May 2019 ·
Published Online: 5 June 2019

Sajan K. Wahi,1 Manik Kumar,1 Sushma Santapuri,1,a) and Marcelo J. Dapino2

AFFILIATIONS

1Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016, India
2Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA

a)Author to whom correspondence should be addressed: ssantapuri@am.iitd.ac.in

ABSTRACT

This paper presents a computationally efficient constitutive model for magnetostrictive materials. High computational efficiency is achieved
through the use of local linearization (about easy axes) and discrete energy-averaging techniques. The model is applied to iron-gallium
alloys (Galfenol) and tested for different magnetic field orientations relative to the easy axes. It is observed that the model accurately predicts
both sensing and actuation characteristics while reducing the computation time by a large factor (.1000 times) when compared to the non-
linear energy minimization models. Furthermore, the average error observed in λ–H and B–H curves is less than 3.5% with the error
increasing at magnetic field orientations farther from easy axes, particularly at large magnetic field values. Finally, the model is integrated
with a finite element framework to predict the response of a Galfenol rod transducer system, and parametric studies are performed for
different current and prestress conditions to optimize the device performance.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086953

I. INTRODUCTION

Magnetostrictive materials can deform in response to
an externally applied magnetic field (Joule effect) or can be
magnetized by applying stress (Villari effect). Terfenol-D
(Tb0:3Dy0:7Fe1:9) is the most commonly used magnetostrictive
material that exhibits giant magnetostriction (�1600 ppm).1

Galfenol (Fe81:6Ga18:4), on the other hand, exhibits moderate
magnetostriction (�450 ppm) but is ductile compared to
Terfenol-D and has higher load-carrying capacity.2 Some applica-
tions of these materials include energy harvesting,3 torque
sensing,4 active vibration control,5–7 and structural health moni-
toring.8 In order to optimally utilize these materials toward
device design, there is a need to develop computationally efficient
mathematical models and simulation tools that are capable of pre-
dicting their coupled nonlinear response.

Some of the seminal works in ferromagnetic material
modeling include the models developed by Armstrong,9 Jiles and
Atherton,10 and Preisach.11 Preisach11 developed a hysteresis model
for magnetic materials using the mathematical construct of a
hysteron which was extended to magnetostrictive materials by
Adly and Mayergoyz.12 Armstrong9 calculated bulk magnetization
and magnetostriction using an energy-based probability density

function and integrating overall possible magnetic moment orien-
tations. To improve computational efficiency, the magnetic
moment orientations were subsequently restricted to the easy axes,
and the probability density function was used in discrete form.13

Jiles and Atherton developed a hysteresis model incorporating
impedances in domain wall motion due to phenomena like domain
wall pinning.10 Atulasimha et al.14 developed a constitutive model
for Galfenol by summing the contributions over 98 crystallographic
directions to predict the material response for magnetic field orien-
tations farther from the easy axes. Zheng and Sun15 developed a
phenomenological constitutive model to incorporate prestress and
temperature effects in giant magnetostrictive materials. However,
most of these models are computationally expensive due to the
nonlinearity in the problem and summation of magnetomechanical
response over a large number of orientations.

Evans and Dapino16 proposed a discrete energy-averaged
(DEA) model for Galfenol by summing over the six easy axes orien-
tations and using a localized form of anisotropy energy defined
around each easy axis. This model significantly improved the com-
putational efficiency and showed a close match with experiments for
magnetic field orientations close to easy axes. Tari et al.17 extended
the model to avoid singularities arising in matrix inversion by using
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eigenvalue decomposition. Computational efficiency of the DEA
model was further improved by Tari et al.18 and Deng et al.19 While
the existing DEA models are computationally efficient, they have not
been validated for directions farther from easy axes.

Models were also utilized in design and analysis of
magnetostrictive material based transducer devices. Datta et al.20

developed a model to predict the quasistatic response of a
magnetomechanical cantilever beam for sensing applications.
Wun-Fogle et al.21 developed a planar magnetomechanical rotation
model to predict sensing performance of an amorphous magneto-
strictive material adhered to an aluminum cantilever beam and
subjected to various loading conditions. More recently, Shu et al.22

utilized the DEA model to simulate the 1D dynamic response
of Galfenol-driven unimorph actuators. The DEA model was also
utilized by Santapuri et al.23 to model the dynamic response of
composite laminate plate actuators with embedded magnetostrictive
materials.

In this work, a computationally efficient yet accurate constitu-
tive model is developed to calculate the magnetostrictive material
response for different external magnetic field orientations relative
to the easy axes. The model is developed by locally linearizing the
total free-energy about each easy axis and subsequently using dis-
crete energy-averaging techniques to obtain the net magnetization
and magnetostriction. The model is formulated to avoid any singu-
larities arising at zero magnetic field and stress values without
added mathematical complexity. Finally, the model is applied to a
Galfenol rod transducer system, and parametric studies are per-
formed to demonstrate its utility toward device design. The modeling
framework presented in this work is general and can also be applied
to other ferroic materials exhibiting domain microstructure.

This paper is structured as follows: The 3D magnetoelastic
governing equations along with different energies in a magnetostric-
tive material are described in Sec. II. As a first step, a constraint-free
anhysteretic model is developed in Sec. III, which is equivalent to the
existing energy minimization constitutive models.7 Computational
efficiency of the model is significantly improved in Sec. IV by
making microstructurally motivated simplifications and locally line-
arizing the material model presented in Sec. III about each easy axis.
The model is applied to single crystal Galfenol in Sec. V to obtain
the sensing and actuation characteristics. The results are compared
with the existing literature to assess the accuracy and computational
efficiency of the model. To further demonstrate the utility of this
model toward transducer design, it is integrated with a finite element
framework to analyze an axisymmetric rod transducer. Finally, the
results are presented with a discussion on the overall efficiency and
accuracy of the model.

II. 3D MAGNETOMECHANICAL MODEL

Consider a magnetostrictive medium occupying a volume V
enclosed by the boundary @V and surrounded by free-space V*.
The magnetomechanical system is governed by

(i) Navier’s equation, i.e., linear momentum conservation,

div Tþ fB ¼ ρ
@2u
@t2

in V, (1)

where T and fB denote the stress tensor and the external
body force, respectively; u is the displacement field. The asso-
ciated boundary condition is

ta ¼ Tn on @Vt ,

where the applied traction ta is specified on @Vt , a subset of
the domain boundary @V; n denotes the outer normal to the
domain boundary.

The infinitesimal strain S is related to the displacement u as

S ¼ 1
2

grad uþ grad uT
� �

: (2)

(ii) Magnetostatic equations, i.e., Gauss’s law for magnetism and
Ampere’s law in the absence of electric field

curl H ¼ 0, div B ¼ 0 in V < V*, (3)

where H is the magnetic field and B is the magnetic flux
density. The fields are governed by the following jump condi-
tions at the material boundary:

n� H½ � ¼ 0, n � B½ � ¼ 0 on @V, (4)

where [:] represents jump in the quantity across the boun-
dary @V.

(iii) Coupled constitutive equations for stress and magnetic flux
density in the general form

T ¼ C(S� λ(T, H)),

B ¼ μo(HþM(T, H)) in V, (5)

where C is the fourth-order stiffness tensor; λ(T, H) and
M(T, H) represent the magnetostriction tensor and magnetiza-
tion vector functions to be supplied from the material model.

A. Energies of a magnetostrictive material

Energy per unit volume of a magnetizable and deformable
medium is given by7

U(m1, m2, m3) ¼ Uanisotropy þ Uzeeman þ Umagnetoelastic, (6)

where Uanisotropy is the magnetic anisotropy energy, defined for a
cubic crystal as

Uanisotropy ¼ K1(m
2
1m

2
2 þm2

2m
2
3 þm2

3m
2
1)þ K2 m

2
1m

2
2m

2
3, (7)

where K1 and K2 are the cubic anisotropy constants and m1, m2,
and m3 denote the direction cosines of magnetic moment orienta-
tion m along the [100], [010], and [001] crystal directions, respec-
tively, such that

m �m ¼ m2
1 þm2

2 þm2
3 ¼ 1: (8)

Energy due to the applied magnetic field, i.e., the Zeeman
energy, is defined as

Uzeeman ¼ �μ0MsHa �m
¼ �μ0Ms(H1m1 þH2m2 þH3m3),

(9)

where H1, H2, and H3 are the scalar components of the applied
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magnetic field Ha along the [100], [010], and [001] crystallo-
graphic directions, respectively. Ms is the saturation magnetization
(a material constant), and μo is the permeability of free-space (uni-
versal constant).

Finally, the energy due to magnetoelastic interactions within a
magnetic material medium is defined as

Umagnetoelastic ¼ �γσT � λm
¼ � 3

2
γσλ100 m1

2T1 þm2
2T2 þm3

2T3
� �

� 3γσλ111 m1m2T4 þm2m3T5 þm3m1T6ð Þ, (10)

where λ100 and λ111 are the magnetostriction constants in the
h100i and h111i directions, respectively; γσ is a scaling parameter
(see, Atulasimha et al.7); T is the applied stress tensor whose com-
ponents are defined in the Voigt notation as T1 ¼ T11, T2 ¼ T22,
T3 ¼ T33, T4 ¼ T12, T5 ¼ T23, and T6 ¼ T13.

III. CONSTITUTIVE MODEL DEVELOPMENT VIA
FREE-ENERGY MINIMIZATION

The anhysteretic response of magnetostrictive materials is
obtained by minimizing the resulting free-energy (6) constrained
by (8). This can be carried out by minimizing the Lagrange function

L(m1, m2, m3, μ) ¼ U(m1, m2, m3)

þ μ m2
1 þm2

2 þm2
3 � 1

� �
(11)

in terms of variables m1, m2, and m3 and the Lagrange multiplier μ.
However, this technique is computationally intensive as the minimi-
zation results in a nonlinear system of equations.

Alternatively, a constraint-free approach may be adopted by
parameterizing m1, m2, and m3 in terms of polar angles θ and f as

m1 ¼ sin θ cosf, m2 ¼ sin θ sinf, m3 ¼ cos θ (12)

such that constraint (8) is satisfied for any combination of f and θ
values. Equilibrium orientation of magnetic moments can be
obtained by minimizing the free-energy (6) with respect to f and θ,
i.e., we solve for θo and fo satisfying

@U
@θ

����
(θ¼θo ,f¼fo)

¼ 0,
@U
@f

����
(θ¼θo ,f¼fo)

¼ 0 (13)

such that

@2U

@θ2

����
(θ¼θo ,f¼fo)

. 0,
@2U

@θ2

����
(θ¼θo ,f¼fo)

. 0,

@2U

@θ2
@2U

@f2 �
@2U
@θ@f

� �2
" #

(θ¼θo ,f¼fo)

. 0:

(14)

To avoid redundancy, only solutions in the range 0 � fo , 2π and
0 � θo , π are considered. In the absence of any external magnetic
field or prestress, these energy-minimizing orientations correspond
to crystal easy axes.

This model is equivalent to the existing models by Armstrong13

and Atulasimha et al.,14 and the results obtained match closely with
experimental data. Although better than the minimization of the

Lagrange function (11), this methodology is also computationally
expensive due to the nonlinearity of the system of Eq. (13). This
model is thus used as a benchmark to compare the results obtained
from the locally linearized model, to be presented in Sec. IV, to
verify its accuracy and computational efficiency.

In what follows, microstructurally motivated simplifications
will be made to this model to further improve computational
efficiency while maintaining accuracy.

IV. COMPUTATIONALLY EFFICIENT LOCALLY
LINEARIZED CONSTITUTIVE MODEL DEVELOPMENT

Noting that magnetic moment orientation remains uniform
within each domain, we develop localized expressions for energy in
each domain and subsequently average over the total volume to
obtain net magnetization and magnetostriction. This approach,
also referred to as “discrete energy-averaging,” has been used by
Armstrong13 and Evans and Dapino.16 To obtain the energy-
minimizing magnetic moment orientations, the following simplify-
ing assumptions are made:

(i) Contributions of magnetic exchange energy and magneto-
static energy are neglected. This assumption is valid for bulk
material systems.

(ii) Magnetic moment orientations remain close to crystal easy
axes. This assumption allows us to develop approximate
expressions for energy in the neighborhood of easy axes.

Given a magnetic material with n mutually independent easy axes
directions, let c

α
denote the unit vector along the αth easy axis

(α ¼ 1, 2, . . . , n). Owing to assumption (ii) above, a localized form
of the free-energy function (6) in the αth domain (corresponding to
the αth easy axis) is defined as

U
α
(m1

α
, m2

α
, m3

α
)�U j

c
α þ @U

@mi

����
c
α
(mi
α � ci

α
)

þ 1
2

@2U
@mi@mj

����
c
α
(mi
α � ci

α
)(mj

α � cj
α
) (i, j¼ 1, 2, 3), (15)

where in the standard index notation for summation over the vari-
ables i and j is used. U j

c
α denotes the free-energy function (6) evalu-

ated at m ¼ c
α
. This localized expression is valid in a neighborhood

of c
α
, wherein the equilibrium configuration of the αth domain can

be calculated by minimizing this localized expression subjected to
constraint (8).

However, nonlinearity of constraint (8) results in a nonlinear 6th
order algebraic equation in terms of the Lagrange multiplier μ. Thus,
we continue to utilize our assumption (ii) to linearize the constraint
f (m1, m2, m3) ¼ m2

1 þm2
2 þm2

3 � 1 in the vicinity of c
α
to obtain

~f (m1
α
, m2

α
, m3

α
) � f j

c
α þ @f

@mi

����
c
α
(mi
α � ci

α
)

¼ 2(c1
α
m1
α þ c2

α
m2
α þ c3

α
m3
α � 1): (16)

The constraint is thus reduced to

c1
α
m1
α þ c2

α
m2
α þ c3

α
m3
α � 1

upon linearization. The reduced Lagrangian function is thus
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defined as

L
α
(m1

α
, m2

α
, m3

α
) ¼ U

α
(m1

α
, m2

α
, m3

α
)

þ μ(c1
α
m1
α þ c2

α
m2
α þ c3

α
m3
α � 1), (17)

in which the minimization is performed by solving the following
system of equations:

@L
α

@mi
α ¼ @U

α

@mi
α þ μci

α ¼ 0 (18)

along with the linearized constraint rewritten as

c1
α
(m1

α � c1
α
)þ c2

α
(m2

α � c2
α
)þ c3

α
(m3

α � c3
α
) ¼ 0

) c
α � (mα � c

α
) ¼ 0, (19)

wherein the property c1
α 2 þ c2

α 2 þ c3
α 2 ¼ 1 is utilized. Substituting

the localized free-energy expression (15) into (18), we obtain

@L
α

@mi
α ¼ Ai

α þ κij
α
(mj
α � cj

α
)þ μci

α ¼ 0, (20)

where

A
α ¼ @U

@m

����
c
α

¼
2Kc1

α
(1� ( c1

α
)2)� μ0MsH1 � 3λ100c1

α
T1 � 3λ111(c2

α
T4 þ c3

α
T6)

2Kc2
α
(1� (c2

α
)2)� μ0MsH2 � 3λ100c2

α
T2 � 3λ111(c1

α
T4 þ c3

α
T5)

2Kc3
α
(1� (c3

α
)2)� μ0MsH3 � 3λ100c3

α
T3 � 3λ111(c2

α
T5 þ c1

α
T6)

2
664

3
775

and

κ
α ¼ @2U

@m@m

����
c
α
¼

2K(1� ( c1
α
)2)� 3λ100T1 4Kc1

α
c2
α � 3λ111T4 4Kc1

α
c3
α � 3λ111T6

4Kc1
α
c2
α � 3λ111T4 2K(1� ( c2

α
)2)� 3λ100T2 4Kc2

α
c3
α � 3λ111T5

4Kc1
α
c3
α � 3λ111T6 4Kc2

α
c3
α � 3λ111 T5 2K(1� ( c3

α
)2)� 3λ100T3

2
64

3
75:

The localized magnetic moment orientations m
α

can be solved
using the system of Eqs. (19) and (20) as

m
α ¼ � κ

α �1(μ c
αþA

α
)þ c

α
, (21)

where

μ ¼ � κ
α �1 A

α � cα

κ
α �1 c

α � cα
:

Solution (21) is valid for invertible κ
α
such that κ

α �1 c
α � cα = 0. This

requirement may be violated for certain choices of c
α
and stress

values. In the case of Galfenol, for instance, κ
α
becomes noninverti-

ble when T ¼ 0 since easy axes c
α
are along h100i. This is dealt with

by replacing κ
α
in Eq. (18) with

κ
α 0 ¼ κ

α þ2K c
α� c

α
, (22)

which is invertible in the case of Galfenol. It is noted that

κ
α 0(m

α � c
α
) ¼ κ

α
(m

α � c
α
)þ 2K (m

α � c
α
) � cα

� �
c
α

¼ κ
α
(m

α � c
α
) (23)

due to constraint (19).
As the domain orientations m

α
move farther from easy axes c

α
,

the reduced model may not be able to describe the material behav-
ior accurately due to the linearization of the constraint. In such
cases, the magnetic moment m

α
is renormalized as

~m
α
¼ m

α

jj mα jj
(24)

to ensure that the magnitude of magnetic orientation does not
become greater than unity.24

A. Calculation of bulk magnetostriction,
magnetization, and magnetic flux density

Bulk magnetization M can be calculated by summing mag-
netic moment orientations over all domains

M ¼ Msm ¼ Ms

Xn
α¼1

ξan
α

~m
α
, (25)

where Ms represents saturation magnetization, n is the number of easy

axes, and ~m
α
is the magnetic moment orientation of the αth domain

obtained using (24). Also, ξan
α

is the anhysteretic volume fraction of
the αth domain defined as the ratio of domain volume to sample
volume and can be described using Boltzmann distribution23 as

ξan
α

¼ exp(�U
α
)=ΩXn

α¼1

exp(�U
α
)=Ω

, (26)

where U
α
is obtained by substituting the normalized solution (21)

into (6).
The magnetic flux density B can now be calculated using

B ¼ μo(HþM) ¼ μo HþMs

Xn
α¼1

ξan
α

~m
α

 !
: (27)

Also, energy per unit volume of the magnetostrictive material can
be calculated by summing magnetic anisotropy, magnetomechanical
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energy, and Zeeman energy across all domains, i.e.,

Utot ¼
Xn
α¼1

ξan
α
U
α
: (28)

Similarly, the bulk magnetostriction λm can be calculated using

λm ¼
Xn
α¼1

ξan
α
λm
α
, (29)

where λm
α

is the magnetostriction (strain due to magnetization)

of the αth domain and is dependent on ~m
α
. Particularly, for

a cubic system,25,26

λm
α

¼

3
2 λ100( ~m1

α
2 � 1

3 )

3
2 λ100( ~m2

α
2 � 1

3 )

3
2 λ100( ~m3

α
2 � 1

3 )

3λ111 ~m1

α
~m2

α

3λ111 ~m2

α
~m3

α

3λ111 ~m3

α
~m1

α

2
6666666666664

3
7777777777775
: (30)

If the material is sufficiently prestressed such that all magnetic
moments are perpendicular to the direction of magnetization at the
beginning of the magnetization process, it is common practice to
omit the negative one-third term appearing in the normal strain
components λ1, λ2, and λ3.

27

In the presence of external stresses (within the elastic regime),
the total strain can be calculated as

S ¼ λm þ sT, (31)

where s represents the elastic compliance matrix for the magneto-
strictive material.

B. Incorporation of hysteresis

The constitutive model discussed thus far does not incorpo-
rate hysteretic effects arising due to material defects like pinning
sites. To incorporate hysteresis, an incremental model adopted by
Armstrong13 and Jiles et al.10 is utilized in this paper. The evolu-
tion equation for a particular domain can be expressed as (overset
α ignored for notational convenience)

dξhyst

dH
¼ ξan � ξhyst

kp
, (32)

where kp is a material constant quantifying the number of
pinning sites per unit volume, H is the magnitude of the applied
magnetic field, ξan is the anhysteretic volume fraction calculated
using (26), and ξhyst is the hysteretic volume fraction.

A stepwise finite-difference scheme is adopted to calculate the
hysteretic volume fraction. Starting from a known initial volume
fraction at a specified H, we apply incremental field ΔH and

calculate ξhyst , in a stepwise manner as shown below,

ξhystkþ1 ¼ ξhystk þ ξank � ξhystk

kp
ΔH, (33)

where the subscript k denotes the kth iteration. The bulk magne-
toelastic properties are now calculated using ξhyst instead of ξan

in (25)–(29).

V. RESULTS AND DISCUSSION

The locally linearized constitutive model outlined in Sec. IV is
applied to Galfenol. The results are compared against the nonlinear
model discussed in Sec. III (which is equivalent to the model presented
by Atulasimha et al.28). The material parameters used here are taken
from the literature28 and are listed in Table I. Easy axes of Galfenol are
along the crystallographic directions h100i, i.e., the number of easy
axes is given by n ¼ 6. The constitutive model response is categorized
into (i) actuation characteristics, i.e., λ–H and B–H curves for different
prestress values and (ii) sensing characteristics, i.e., S–T and B–T
curves for different magnetic field values. The model is subsequently
applied to a Galfenol rod actuator system, and the magnetomechan-
ical response of the actuator is analyzed.

A. Galfenol actuation and sensing characteristics

1. Actuation characteristics

The λ–H and B–H characteristics of single crystal Galfenol
are presented in Figs. 1 and 2 for different applied magnetic field
orientations relative to the easy axes. Results generated using our
locally linearized constitutive model are compared to the existing
nonlinear model,28 which is experimentally validated. The present
model shows a close match with existing results while improving
the computational efficiency. A slower saturation is observed as the
angle between magnetic field direction and easy axes increases.
Furthermore, it is observed that the accuracy of the present model
reduces for magnetic field directions farther from the easy axis,
especially for larger applied fields (H . Hsat). This is to be expected
as our model assumes magnetic moments within each domain to
remain close to the easy axes, and this assumption does not hold
well as the angle between them increases.

The magnetization process in any magnetic material can be
attributed to the following two phenomena: (i) domain growth

TABLE I. Material parameters selected for Galfenol.28

Parameters (unit) Name Value

(3=2)λ100(–) Magnetostrictive constant 255� 10�6

(3=2)λ111(–) Magnetostrictive constant �7� 10�6

μ0 (Hm�1) Vacuum permeability 4π � 10�7

Ms (Am�1) Saturation magnetization 1:83=μ0
K1,K2 (J m�3) Anisotropy coefficient 3:6� 104, 0
E (GPa) Young’s modulus 59
ρ (kg m�3) Density 7870
Ω (J m�3) Smoothing constant 625
γσ(–) Fit constant 0.8
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FIG. 1. Comparison of nonlinear (dotted line) and locally linearized model (solid line) actuator characteristics, B–H and λ–H curves, obtained for magnetic field orientation
along the crystallographic directions: (a) [100], (b) [110], (c) [210].
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FIG. 2. Comparison of nonlinear (dotted line) and locally linearized model (solid line) actuator characteristics, B–H and λ–H curves, obtained for magnetic field orientation
along the crystallographic directions: (a) [211], (b) [310], (c) [311].
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(for small/medium external magnetic fields), wherein the domains
aligned favorably to the field direction grow at the expense of
domains that are aligned farther from the field; (ii) domain
rotation (for large external magnetic fields), wherein the favorable
domains that have survived start rotating toward the field direction
and are fully aligned when the applied magnetic field is sufficiently
large.10 However, in our model, magnetic moments are assumed to
remain close to easy axes, i.e., the effect of domain rotation is not
incorporated, resulting in reduced accuracy for larger field values
[see Figs. 1(c) and 2(a), for instance].

2. Sensing characteristics

The sensing characteristics, i.e., the S–T and B–T characteris-
tics of Galfenol single crystal with prestress along different direc-
tions are presented in Figs. 3 and 4. The nominal Young’s modulus
value of 59 GPa along the [100] direction is used.7 Due to the mag-
netostriction of Galfenol, the slope of strain vs stress curve, which
quantifies the material compliance, varies with both applied mag-
netic field and prestress values, as shown in Fig. 4.

It can be observed from Fig. 4 that the stress–strain behavior
within elastic limit is linear at very low magnetic fields but becomes
nonlinear for moderate to large values. However, for H . Hsat , the
S–T curve becomes linear again. In other words, for large magnetic
field inputs, even large compressive stresses do not produce a
change in the orientation of the magnetic moments, i.e., the strain
produced here is purely elastic.

Slope of the B–T curve is known as sensitivity. It can be
observed from Fig. 3 that sensitivity is much larger along [100]
compared to the other two cases.

3. Error analysis and computational efficiency

To assess the accuracy of our framework, the locally linearized
constitutive model is compared with the constraint-free nonlinear

FIG. 3. B–T characteristics of Galfenol using the locally linearized model for
different prestress orientations: (a) [100], (b) [210], (c) [311].

FIG. 4. Galfenol S–T curves obtained using the locally linearized model for
different applied magnetic field values along [100].
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model (presented in Sec. III). Normalized root mean square percent-
age error of both B–H and λ–H curves are calculated using

Error% ¼ 1
range(λ)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

(λinonlinear � λilocal)
2

N

vuuut
� 100, (34)

where λinonlinear and λilocal represent the magnetostriction values cal-
culated using the nonlinear model and the locally linearized model,
respectively, and N denotes the total number of data points.

The error percentage for the B–H curves is observed to be
within 2%, and the error in λ–H curves is within 3.5% for all mag-
netic field orientations as shown in Fig. 5. The error in λ–H curve
is seen to be higher for directions farther from easy axis. The error
is predominately higher for moderate/large magnetic field values
(H . Hsat). At H ¼ 400 Oe, maximum percentage relative error
calculated is along [211] for both B–H and λ–H curves with a mag-
nitude of 2.4% and 9.7%, respectively.

However, the model presents a major computational advan-
tage compared to the fully nonlinear minimization problem. The
computation time elapsed for plotting B–H and λ–H curves for a
specified prestress (along [100]) using the locally linearized model
is 0.239 077 s, whereas the nonlinear constraint-free model takes
around 37 min (on a Windows 7 desktop, Intel Xeon 3.4 GHz
CPU, and 32 GB RAM).

Thus, our locally linearized model has a reduced computation
time by more than 1000 times while maintaining accuracy for most
magnetic field orientations. The present model is formulated to
avoid any singularities arising at zero magnetic field and stress values
without added mathematical complexity. Furthermore, the model
utilizes the material parameters already reported in the literature and
does not require any parameter optimization. Owing to its overall
efficiency, it is very convenient to integrate this model with a finite
element framework to perform transducer design and analysis.

4. Hysteresis effects

The hysteresis model needs one additional parameter, kp,
which is proportional to the density of pinning sites. This value has
been reported for Galfenol as kp ¼ 150.14 Hysteresis plots are gen-
erated along [100] by combining the locally linearized model (21)
with incremental domain evolution equation (33) to incorporate
losses due to pinning sites. The hysteretic B–H and λ–H curves

FIG. 5. Normalized root mean square percentage error of λ–H and B–H curves
between nonlinear and locally linearized model for different directions.

FIG. 6. Comparison of hysteresis behavior using locally linearized and nonlinear models for both B–H and λ–H curves at 15 MPa compressive stress along the [100] direction.
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thus obtained are shown in Fig. 6 and compared with the results
obtained from the nonlinear model.

In what follows, utility of the locally linearized model is dem-
onstrated by applying it toward the analysis of a Galfenol rod trans-
ducer system.

B. Analysis of a Galfenol rod transducer

In this section, the locally linearized constitutive model is
utilized to analyze the response of a Galfenol rod under different
input magnetic field and prestress conditions. Response of the
transducer is analyzed for both sensing and actuation modes.

The transducer setup described in Fig. 7 consists of a cylindrical
Galfenol rod fixed at the bottom, a steel casing to provide a flux
return path, and the surrounding air domain (modeled as free-space)
sufficiently large to ensure zero magnetic potential at its outermost
boundary.

The Galfenol rod needs to be magnetically excited for both actu-
ation and sensing applications. This can be achieved using a current
carrying coil axisymmetrically wound around the magnetostrictive
rod. Alternatively, the external field Ha (or background field) may be
directly specified at the outer free-space boundary as shown in Fig. 7.
The presence of a magnetic medium (such as Galfenol) results
in perturbation of the applied field, which can be calculated by
solving the magnetomechanical governing equations (1)–(5).
Axisymmetry in the problem is utilized (AA0 is the axis of symmetry)
to further improve computational efficiency.

In actuator mode, the deflection of the magnetostrictive rod is
calculated as the magnetic field induced in the rod is varied (by
varying the coil current) for a fixed prestress value. In the sensor
mode, magnetic induction in the rod is studied by varying the
input axial force at a fixed external magnetic field.

1. Solution methodology

The magnetomechanical transducer system is analyzed using
governing equations (1)–(5). Finite element analysis is used to
solve the resulting system of equations along with the locally

FIG. 7. Schematic cross-sectional view of the Galfenol rod transducer system.

FIG. 8. Actuator response: B–J0 and λ–J0 along the axial direction for various prestress values.
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linearized constitutive model. The weak form of the governing
equations are discretized in COMSOL Multiphysics (version
5.3a), and the bulk magnetization M(T, H) and magnetostriction
λ(T, H), obtained from (25) and (29), are supplied to COMSOL
as external MATLAB functions.

2. Simulation results

1. Actuator analysis. A Galfenol rod of length 50mm and diam-
eter 6mm is actuated using the field produced by a current carrying
coil. Parametric simulations are performed to obtain magnetostric-
tion vs coil current density (λ–J0) and magnetic flux density vs coil
current density (B–J0) plots at various prestress values as illustrated
in Fig. 8. The maximum saturation magnetostriction is observed to
be 170.2 ppm for zero prestress and 255 ppm for all other prestress
values. Saturation is observed at large current density values, i.e.,
J0 	 1500 kA/m2. The 2D axisymmetric element mesh used here
consists of 265 domain elements and 93 boundary elements.

2. Sensor analysis. In sensor mode, the magnetic flux density
induced in the magnetostrictive rod is studied by varying applied
axial load Fz . No variation in magnetic induction is observed for
zero applied magnetic field. Thus, an external field is specified in the
form Ha ¼ Hak on the outer boundary as shown in Fig. 7, where k
is the unit vector along the rod’s axis. Parametric simulations are
performed on a rod of length 100mm and diameter 10mm to
obtain B–Fz characteristics at various external field values as illus-
trated in Fig. 9(b). Also, the variation of magnetic flux density along
the axis of symmetry AA0 is studied in Fig. 9(a). It is observed that
the magnetic flux density is uniform in the free-space but reaches
a maximum at the center of the rod. Furthermore, it is observed
that the magnetic flux density decreases with increasing com-
pressive load. Saturation is observed for large external fields, i.e.,
Ha 	 877.5 Oe, beyond which force sensing will not be feasible.

The 2D axisymmetric element mesh used in these simulations
consists of 108 domain elements and 40 boundary elements.

The computation time of the COMSOL model with inte-
grated locally linearized model for one simulation is in the range
of 1–5 min. The fully nonlinear model takes at least a few hours
for each simulation and has greater convergence issues (all simu-
lations were performed on a Windows 7 desktop with Intel Xeon
3.4 GHz CPU and 32 GB RAM).

VI. CONCLUSIONS

A computationally efficient locally linearized model has been
developed to predict the coupled magnetomechanical behavior of
magnetostrictive materials. This model accurately predicts the
sensing and actuation characteristic while improving computa-
tional efficiency by more than a factor of 1000. While the model
describes the λ–H and B–H curves accurately (average error
,3.5%) for magnetic field orientations close to the easy axes
h100i, the error margin increases as we move farther away from
the easy axis, particularly for H . Hsat . Another advantage of this
model is that no further parameter optimization is needed for this
model as it utilizes the standard magnetostrictive material con-
stants reported in the literature. Furthermore, the model is formu-
lated to avoid singularities at zero field values without added
mathematical complexity.

To demonstrate the utility of this model in transducer design,
our locally linearized model was integrated with the finite
element framework to analyze an axisymmetric rod system. As
expected, the finite element implementation using the locally lin-
earized model demonstrated a major computational advantage
compared to the well established nonlinear models while main-
taining accuracy. Due to its relatively simple execution and sig-
nificant computational advantage, this framework can be effectively
used as a design tool.

FIG. 9. Sensor response: (a) Magnetic flux density B along the axis AA0 for different axial loads at Ha ¼ 376.1 Oe, (b) B� Fz characteristics at different external
magnetic field values.
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