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Abstract

Origami folding principles are attractive for morphing structures due to their potential for realizing
drastic changes in shape. Laminated composites enable adaptive lightweight solutions for the
implementation of rigid origami structures. This paper presents a strategy for the creation of smooth
folds in finite-thickness laminated composites; the approach is applicable to smart folding structures
with reconfigurable creases. An analytical laminated-plate model, based on strain energy minimiza-
tion, is presented to calculate fold angle as a function of laminate parameters. Folds, realized as
localized curvature at a crease, are modeled using piecewise displacement polynomials. Folded
composites, created using prestressed elastomers with zero in-plane Poisson’s ratio, are fabricated for
demonstration and model validation. The calculated out-of-plane deflection of the curved creases is in
agreement with measurements. A parametric study is conducted to characterize the sensitivity of fold
angle and sharpness to variations in laminate modulus and thickness, crease width, and prestrain
orientation. Narrow creases require higher prestress for a given fold angle than wider creases. Fold
sharpness can be maximized by minimizing crease width and thickness. Anisotropy in the prestressed
elastomer is a tradeoff between achieving zero in-plane Poisson’s ratio for unidirectional prestress and
maximizing the range of crease orientations for foldability.

1. Introduction

Origami folding techniques are attractive for morphing structures due to their potential for drastic changes in
surface area. Foldable structures find applications in the aerospace [1, 2] and automotive [3] industries, robotics
[4], and bio-inspired systems [5]. Origami design, involving the calculation of crease pattern and folding
sequence, is well understood in surfaces with zero thickness [6, 7]. However, implementation of these folding
principles in morphing panels with finite thickness adds functional challenges related to foldability, structural
integrity, and self-folding ability [8].

In laminated composites with finite thickness, folding is typically realized as localized flexure about a crease
line. The crease has finite width and its stiffness is typically much lower than that of its rigid adjacent faces;
flexural stiffness of the crease is a function of its modulus and thickness. Other approaches for creating creases
include the use of surrogate mechanisms such as lamina-emergent compliant joints [9]. Traditional fiber-
reinforced polymeric composites are not suitable for origami folding because the fibers in a stiff matrix break
upon bending [10]. Composites with a soft matrix, however, can be folded since the fibers undergo micro-
buckling [11]. There is a growing interest in the area of adaptive laminated composites that are folded by creating
a strain mismatch between the active and passive layers [12].

Smart materials with controllable stress-states are candidates for laminae that can provide actuation and
rigidization. Shape memory alloys (SMA) and polymers (SMP) have been successfully employed as active
laminae for folding sheets with pre-defined creases. Self-folding SMA sheets are achieved by locally activating an
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Figure 1. (a) Folds in an origami structure using prestressed laminae. Actuation of origami folds using active laminae that can (b)
shrink to unfold the composite or (c) soften to fold the composite.
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SMA film or mesh; the film contracts on heating and causes flexure [ 13]. While SMA-based designs enable
two-way folding and reprogrammable shapes, the stiffness of the hinge is limited by the low bending stiffness of
the SMA film. Felton et al [ 14] combined layers of SMP with pre-creased paper to form a bimorph actuator. The
SMP, when activated locally using resistive circuits, shrinks to create a fold. The folded shapes can be rigidized by
cooling the SMP below its glass transition temperature. Ahmed et al [ 15] demonstrated folding in electroactive
polymers. The polymers contract under an applied electric field creating flexure because they are bonded to an
inextensible substrate. Von Lockette et al [ 16] demonstrated notched composites that are folded by applying a
magnetic field. Liand Wang [17] developed 3D origami structures in which layers of fluid were used for
deployment or stiffening of the structure. Zirbel et al [ 18] presented several mechanical means to deploy an
origami solar array that include torsional springs, cables, and bistable strips in the structure.

One-way actuation is sufficient for shape morphing when there is an intrinsic restoring mechanism in the
composite. In fiber-reinforced polymeric composites, incorporation of intrinsic restoring stresses has been an
effective approach for developing bistability [19]. Chillara et al [20] developed stress-biased curved composites
that have an irreversible non-zero stress-state; select layers are laminated in a pre-stretched condition to create a
stress bias that manifests as curvature in the composite. Stress-biased composites are attractive for folding
because the built-in spring enables the structure to remain folded in the unactuated state [21]. Prior literature
has covered self-folding and intrinsic stress, but there is a need to investigate structures that incorporate both.

This paper presents a strategy for combining smart actuation and intrinsic stress to create reconfigurable
folds in laminated composites. The benefits of this strategy are as follows: deformation can be programmed
using the intrinsic spring force; the unactuated composite has a folded shape that can be flattened using a single
actuator; and prestress can be restricted to specific laminae to enable the addition of layers that provide
controllable stiffness or actuation. The resulting smart composite can serve multiple functions such as structural
integrity, built-in actuation, and shape reconfiguration.

To illustrate the folding strategy, a creased constraining layer is laminated to a prestressed layer (figure 1(a)).
A constraining layer is flexible but has high in-plane modulus relative to the prestressed layer. The modulus or
thickness of the constraining layer in the creased region is much lower than that of the faces. A prestressed layer is
stretchable and is laminated in the stretched state to a constraining layer with one or more creases. The direction
of prestress can be at a non-zero angle relative to the crease line. In origami terminology, prestressed composites
exhibit mountain folds at equilibrium. In a structure with both mountain and valley folds, a minimum of two
prestressed layers, one on either face of a creased constraining layer, is required to fold all creases.

A folded prestressed composite can be flattened through the contraction of a smart lamina at a crease
(figure 1(b)). Upon deactivation, the composite returns to its folded shape. Another actuation approach involves
the localized softening of a stiff fold-free smart material-based constraining layer to form a flexible crease
(figure 1(c)). The composite folds about the softened region (crease) due to the intrinsic mechanical prestress.
These folding strategies enable actuator reduction because multiple creases can be simultaneously unfolded
using an external force field applied to the structure. This paper addresses research questions related to prestress-
based folding through: determination of the effect of magnitude and orientation of prestress on fold angle;
determination of the effect of crease width, modulus, and thickness on fold angle and sharpness; and
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Figure 2. Elastomeric matrix composite (EMC) strip partially reinforced with fibers along its width to demonstrate near-zero in-plane
Poisson’s ratio.

establishment of a mathematical relationship between prestress and fold geometry in origami folds with curved
faces.

Mechanical prestress in folded composites provides several additional design possibilities. For example,
curved faces can be created in a folded structure by extending the prestressed laminae onto the faces. This feature
is particularly useful in the folding of curved shells [22, 23]. Prestress also enables bistability [24] in the fold faces
and in the folded structure. Origami tessellations such as Miura-Ori could serve as a constraining layer, resulting
in metamaterial characteristics. A prestressed layer can not only enable folds, but also serve as a stretchable skin
on a morphing structure. Therefore, a mechanically-prestressed composite structure is capable of multiple
morphing modes like stretching, flexure, and folding, while serving multiple functions such as structural
integrity, bistability, and shape reconfiguration.

A method for the fabrication of a passive folded composite is presented in section 2. An analytical model
based on laminated-plate theory is developed to characterize the fold angle at a crease with relatively rigid faces
(section 3). Composite displacements are defined using piecewise functions to accurately describe the large
localized out-of-plane deflection associated with a folded crease. Model-based simulations of the folded shapes
with flat and curved faces are presented in section 4. Parametric studies are conducted to characterize the
sensitivity of fold angle to the material properties and dimensions of the crease, and the magnitude and
orientation of the applied prestrain. Conclusions are discussed in section 5.

2. Composite fabrication

A method for the fabrication of mechanically-prestressed folded composites is presented in this section. Creases
of various widths are fabricated to demonstrate the influence of crease width on fold angle and to validate the
analytical model.

2.1. Elastomeric matrix composites

In this work, folded composites are created by laminating prestressed fiber-reinforced elastomers and a creased
constraining layer. Figure 2 shows an elastomer comprising silicone rubber reinforced with unidirectional
carbon fibers; reinforced elastomers are also known as elastomeric matrix composites (EMC). The EMC shown
in figure 2 is prestressed in the X direction. A portion of this EMC is reinforced with fibers in the Y direction.
Addition of fibers in this 90° orientation restricts the change in width to yield near-zero in-plane Poisson’s ratio
in contrast to a reduction in width in the isotropic portion due to a high Poisson’s ratio of 0.4-0.5. Murray et al
[25] and Bubert et al [26] have demonstrated 90° EMCs for one-dimensional morphing of an aircraft wing. For
prestressed composites, the EMCs are fabricated by sandwiching unidirectional carbon fibers between a pair of
pre-cured silicone rubber sheets. The design details and the constitutive response of the 90° EMC considered in
this work are the same as presented by Chillara et al [20].

2.2.Folds

Figures 3(a) and 3(b) show a composite that is folded at its crease by laminating a mechanically-prestressed layer.
The constraining layer is a silicone rubber skin (durometer grade 45 A) reinforced with a single layer of woven
carbon fabric. Rigid faces are created by laminating 0.127 mm thick spring steel shims to the constraining layer
(figure 3(b)). The faces have a square geometry with a side length of 76.2 mm. The width of the crease is 19 mm.
A90° EMC of width 38.1 mm is stretched by 25% and is laminated over the length of the constraining layer. Soft
materials reinforced with woven fibers not only serve as a constraining layer due to their high in-plane stiffness,
but also mitigate the shear stress between a highly-stretched elastomer and a relatively inextensible material such
as steel. The prestressed composite exhibits a fold through large curvature at the crease. The faces are also curved
due to prestress, but the face curvature is much smaller than the crease curvature because the additional
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Figure 3. Stress-biased (prestressed) folded composite: (a) top and (b) front views; (c) unfolded shape; and (d) folded shape.
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Figure 4. (a) A 90° EMC and creases cut out 0of 0.0762 mm thick steel shim; (b) steel shims laminated to a prestressed 90° EMC;
(¢) curing of the laminate under applied pressure; (d) composite shape after removal of prestress; (e) curved creases obtained from
trimming the composite in (d).

constraining steel layer provides higher bending stiffness on the faces. Figures 3(c) and 3(d) show the unfolded
and folded shapes, respectively. In the unactuated state, or in the absence of external forces, the composite has a
folded stable shape. The interior angle between the faces is measured to be 120°.

To examine the effect of crease width, pure creases with widths ranging from 6.35 mm to 31.75 mm are
laminated to a prestressed EMC as shown in figure 4(a). Steel shims represent the constraining layer and they are
laminated to the same EMC to minimize variation in input prestress between samples (figure 4(b)). The
laminated composite, shown in figure 4(c), is cured under pressure for 24 h. The shape of the composite after
removal of prestress is shown in figure 4(d). By inspection, the out-of-plane deformation increases with an
increase in crease width. Curvature was measured to be the same in all samples. This is consistent with Chillara
and Dapino’s [24] modeling results that indicate that, for a given EMC prestrain, curvature is independent of the
characteristic length of a rectangular composite. Figure 4(d) provides an example for stretchable composites
with localized curvature and folds. To eliminate end-effects in measurement, the creases are trimmed from the
EMC and their curvature is measured (figure 4(e)).

3. Analytical model

The elastic behavior of origami structures has been modeled by treating the folds as 1-D revolute joints with a
finite stiffness [27]. A common approach to modeling the curved shapes of composites is to formulate strains
using laminated-plate theories and calculate the deformations using strain energy minimization [28—30]. Using
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Figure 5. Schematic of a prestressed creased composite for modeling.

this approach, Peraza-Hernandez et al [31] studied the structural mechanics of creases with non-zero width.
Their modeling effort included a simplified strain energy-based numerical model that assumes zero in-plane
strain and constant curvature. In practice, there is finite in-plane strain and curvature is not constant since the
faces adjacent to a crease act as elastic boundary conditions. The boundary effects due to the relatively stiff faces
are significant when prestress is not orthogonal to the crease line. Mattioni et al [32] presented a piecewise-
displacement model to calculate the curved shapes of bistable composites with elastic boundary conditions. The
existing structural mechanics models are suitable for calculating the shape of a pure crease but not of a crease
with adjacent flat or curved faces.

In this work, a folded composite is modeled in its most basic form as a structure that comprises two faces
joined by a crease (figure 5). A fold is characterized by large curvature at the crease relative to the face. Strains are
modeled per classical laminate theory in conjunction with von Karman’s hypothesis [30]. Strain energy is
minimized to calculate the folded shape. Curvature at the crease is modeled using displacement functions that
can be described using polynomials [24, 28]. Globally-defined polynomial functions yield poor accuracy and
numerical ill-conditioning for the modeling of highly localized curvature as is the case with folded structures.

Therefore, a piecewise definition of polynomials is used across the crease and the adjacent faces to describe a
folded shape.

3.1. Composite strains

The composite is modeled as three sections that correspond to one crease and two adjacent faces (figures 5 and
7). The constraining layer is assumed to be a material whose modulus can be controlled in the creased region.
Composite strains are expressed in terms of the displacement (u, v, w) of an arbitrary point (x, y, z) on the

composite as:
ou 1(owy
x = T + - > 1
: Ox 2 ( Ox ) M

_Ou Oy Owow

e , 2
Y= 8y T ox | ox 0y @
o 1{owY
==+ -|=]. 3
72 ( 3y) ©
Displacements (1, v, w) are written in terms of mid-plane displacements (1, vy, W) as:

owg(x,
u(x, y, z) = uo(x, y) — ZM, 4)

ox

owg(x,
V0, 7 2) = vl y) — 22BN, )

dy
w(x, ¥, z) = wo(x, ¥). (6)

The geometric mid-plane is located based on the maximum thickness H (figure 7). Strain of an arbitrary plane z
is obtained by substituting (4)—(6) into (1)—(3):
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Prestrain in an EMC is applied in the direction orthogonal to fiber-orientation in order to maintain zero in-
plane Poisson’s ratio. Fold angle is expected to be maximum and minimum when the direction of prestrain is
perpendicular and parallel to the crease, respectively. Modeling the relationship between fold angle and prestrain
orientation provides insight into the design of multiple non-parallel folds using a single prestressed EMC.
Assuming a plane stress condition, strain in the material coordinates of an EMC (I1-2 axes in figure 5 ) is written
in terms of composite strain as:

€ cos?f sin? 6 sinf cos 6 €x
€p = sin? @ cos2 6 —sind cos 6 & ¢y (10)
€ —2sinfcosf 2sinfcosf cos?h — sin26 |

where 6 is the angle between the X axis and the direction of the applied prestrain (1 axis).

3.2. Strain Energy Function
The total strain energy () can be expressed in terms of the strain energy of the crease (®), faces (®y), and the

prestressed EMC (®,) as:
d = + O + D (11)
The strain energy of a crease is:
o, = f f f ( Q2+ QW ece, + Q(C)c’z + ;Qég)viy)dz dy dx, (12)
h

where Q;; (i,j = 1,2, 6) are the plane stress-reduced stiffness parameters [30]. The strain energy integrand of a
face is written as:

H/2
ddr = f ( (f) 24 Ql(zf)fxfy lQ(f) 2 Qég)viy) (13)
hy 2 2
The strain energy of the faces is written in terms of d® as:

ool I e [ o

The thickness of the crease and faceis (h, — h;)and (H/2 — k), respectlvely. The condition h, > h; always
holds. The strain energy of a 90° EMC that has a prestrain of egq across the crease is:

@, = f f f (—(690 —a)y + —2(690 —a)t
H/2 4
1 1
+ %(690 — 61)3 + ?4(690 — 61)2 + EQz(go)tf% + EQG(EO)’Yg)dZ d)/ dx (15)

Note that the areal dimensions of an EMC can be modified to model cases where the EMC extends onto the
faces. The coefficients p; through p, in (15) correspond to a nonlinear constitutive equation that describes the
material response of a 90° EMC in the prestressed direction; the EMC comprises silicone rubber reinforced with
17% by volume of unidirectional carbon fibers. The stress-strain curve is obtained from a uniaxial tensile test
[20]. The values of the coefficients are listed in table 1.

The in-plane Poisson’s ratio of the prestressed 90° EMC is assumed to be zero. Assuming that the modulus of
carbon fiber and silicone rubber (assumed linear up to 20% strain) is 240 GPa and 1.2 MPa, respectively,
transverse modulus E; is calculated per the rule of mixtures [30] to be 40.8 GPa. For the chosen EMC thickness of
2mm, this calculated value of E, corresponds to a high bending stiffness and is hence a poor approximation for a
flexible EMC; evidence for the EMC’s flexibility in the fiber-direction is found in figure 3(d) where the woven-
fiber-reinforced EMC is seen to be flexible at the crease.

Tensile tests conducted in the fiber-direction for the measurement of E, resulted in slippage at the gripping
points between the fibers and the matrix at small strains. Accurate measurement of E, was obtained through a
fiber-pull-out test conducted in a tensile testing machine. Unidirectional carbon fibers (3.1 kg m ™2, Fiberglast
Developments Corp.), oriented in the direction of vertical motion of the test frame, are pulled out of silicone
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Figure 6. Stress-strain curve recorded from a fiber pull-out test conducted on an EMC comprising silicone rubber reinforced with
undirectional carbon fibers.

Table 1. Polynomial coefficients of a nonlinear stress function of an
EMC with zero in-plane Poisson’s ratio, obtained from a uniaxial
tensile test [20].

b1 b2 ps Da

—0.698 x 10° 229 x 10° —2.306 x 10° 1.598 x 10°

rubber (Rhodorsil V340-CA45). The dimensions of the rectangular test sample are 50.8 x 19 x 2 mm. From the
measured stress strain response, shown in figure 6, the effective transverse modulus for small in-plane strain
(under 4%) is calculated to be 250 MPa. The shear modulus of a 90° EMC is assumed to be 1.2 MPa, which is

0.8 x E, per Murray et al [25]; the average value of E, is 1.5 MPa for a strain of up to 20%. The transverse and

shear moduli are used to calculate Q3% and Q", respectively.

3.3. Computation of fold angle
Mid-plane displacements of the composite are described by polynomial functions as:

O 4 o
ug =y > bijxly', (16)
i=0i=0
OY q . . .
Vo= Y. cijoixlyi T, (17)
i=0i=0
Ox q . . .
wo =Y > dij_ixly, (18)
i=0i=0

where O;is the order of the piecewise polynomials chosen to describe the shape of the crease and faces based on
the expected deformed shape. Shape functions described by b; ;_;, c;;_;, and d; ;_; of the crease and faces are
calculated through strain energy minimization. The x limits of the functions defining the crease are { — L, L.}.
Similarly, the limits for the left and right faces are { —L. — 2L¢, —L.} U {L., L. + 2Ls}. The geometric
constraints that couple the crease and the faces correspond to the edge interface at (— L., y) and (L., y). The
constraints are defined as follows:

= 1l O = gD © = D, ow? _ ow (19)
Ox Ox
where the superscripts cand fdenote the crease and faces, respectively. Specific symmetry conditions can be used
to simplify the displacement polynomials. Example cases are discussed in section 4. The total potential energy is
minimized using the constrained optimization function fiincon in MATLAB to yield a set of nonlinear
equations with the polynomial coefficients b; ;_;, c;;j—j, and d;;_; as the independent variables. Fold angle at the
crease is defined as the internal angle subtended by the faces at the vertex of the fold (figure 7). The inclination of

7
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Figure 7. Schematic of a composite illustrating fold angle at the vertex of a crease.

Table 2. Geometric and material properties of the laminae for modeling.

90° EMC (face
Parameter Steel (face) Steel (crease) and crease)
Length (mm) 50.8[2L,] 50.8 2L,] 50.8 2L,]
Width (mm) 63.5[2L4 19.05[2L ] 19.05[2L ]
Thickness 0.2 0.0762 2
(mm)
E, (MPa) 2 x 10° 2 x 10° Nonlinear
E, (MPa) 2 x 10° 2 x 10° 250
G, (MPa) 0.78 x 10° 0.78 x 10° 1.2
1Z0 0.28 0.28 0
1251 0.28 0.28 0

each face, curved or flat, is obtained by calculating the slope of the face from the points (L,0) and (L. + 2Ly, 0).
The fold angle (1) is defined as:

n =290 — @ tan—! wol.0) — W0|(LC+2Lf,0)

m (Le + uol,0) — (Le + 2L + uolw +21,,0)

(20)

4. Results and discussion

Simulations are conducted on a composite comprising a single crease and its adjoining faces with dimensions
and material properties as listed in table 2. The composite’s configuration is as shown in figure 5. EMC prestrain
is applied in the X direction. The folded shape of the composite is expected to be symmetric about the XZ plane
whereas the deformation of the crease is expected to be symmetric about the YZ plane. By imposing symmetry
conditions, the displacement polynomials are simplified per the relations listed in table 3. For folds with flat
faces, the order of the polynomials for 1, v, and w, can be reduced to 1.

4.1. Folded shapes and model validation

The composite’s out-of-plane deflection is calculated for an EMC prestrain of 30% applied only across the
crease (figure 8). Deformation is seen only within the region of prestress application, i.e., at the crease, while
the faces remain flat. For comparison, the shape of a pure crease (without its adjoining faces) is also calculated.
By inspection, the inclusion of faces has minimal effect on the out-of-plane deflection at the straight edges
(£L,, y) of the crease. The small difference in deflection can be attributed to the tangency condition imposed
numerically between the crease and the face (inset in figure 8). This result is consistent with the observation by

8
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Figure 8. Comparison of the shapes of a pure crease and a crease with flat faces; the respective shapes are shown in the XZ plane with
black and red lines.

Table 3. Conditions imposed on displacement polynomials for the modeling of folds at a crease
with orthogonal EMC prestrain.

Crease Face
O; Condition O; Condition
U 3 Oddinx, eveniny, u,(0, 0) = 0 3 Eveniny
Yo 3 Oddiny,eveninx, v,(0, 0) = 0 3 Oddiny, vy(L; + Ly, 0) = 0
Wo 4 Eveninxandy, wy(0, 0) = 0 4 Eveniny

Mattioni et al [32] that the inclusion of an elastic boundary on the straight edge of a cylindrically-curved plate
has negligible impact on its curvature. Given the negligible difference between the shapes of a crease with and
without the faces, the analytical model can be validated by comparing the simulated curved shapes of pure
creases with the corresponding shapes of the physical specimens like those in figure 4. The crease specimens
have the same curvature and hence their deformation is quantified using the out-of-plane deflection. Creases
of various widths are fabricated with an EMC prestrain of 40%. The deflection of each crease is measured
using a vernier caliper and found to be in agreement with the corresponding calculated values at 40% prestrain
(figure 9).

Curved faces in a folded composite are created by extending the prestressed EMC lamina to cover the faces.
The folded shape obtained from model-based simulations is plotted in figure 10 with reference to a fold with flat
faces for a 90° EMC prestrain (e9) of 30%. By inspection, it is seen that the tangency constraint specified in the
model is maintained at the edges common to a crease and its adjacent faces. The out-of-plane displacement at
(Lc + 2Ly, 0)is higher when the faces have a convex curvature, thereby yielding a higher fold angle than in the
case where the faces are flat even though the deformation at the crease is the same (inset in figure 10). Therefore,
for a given EMC prestrain, fold angle is smaller in surfaces with higher initial convex curvature.
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corresponds to prestrain (eg) of 40%.
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Figure 10. Comparison of fold shapes comprising a crease with flat and curved faces; the respective shapes are shown in the XZ plane
with red and blue lines.

4.2. Model-based parametric study
4.2.1. Effect of crease width

The variation of fold angle as a function of crease width for various values of EMC prestrain is shown in figure 1 1.
For a given EMC prestrain g, fold angle decreases with an increase in crease width. Such a response, also

10
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Figure 11. Fold angle as a function of crease width shown for a crease thickness and modulus of 0.003 in. (76 1tm) and 200 GPa,
respectively.

observed experimentally (figure 9), can be explained using the mathematical relationships between the
displacement polynomials and fold angle. The out-of-plane deflection w, is an even monotonically increasing
function of x. In-plane displacement 1, also increases monotonically with increase in x but at a lower rate than
Wy since the polynomial 1 is of lower order (see table 3). Therefore, from (20), 7 decreases with an increase in
crease width since tan~!(x) is an increasing function. In narrow creases, higher EMC prestrain is required to
create the same fold angle as in wider creases. Further, the sensitivity of fold angle to EMC prestrain reduces with
adecrease in crease width. This trend can be explained by the fact that in narrow creases, where EMC thickness is
comparable to crease width, the strain energy associated with prestress manifests as high in-plane strain in the
EMC. On the other hand, in wide creases the input strain energy primarily manifests as out-of-plane
deformation.

4.2.2. Combined effect of crease modulus and width

Figure 12 shows the variation of fold angle as a function of crease modulus and width. For a given width of the
crease, fold angle reduces exponentially with linear reduction in modulus. Fold angle is more sensitive to
modulus change in wide creases as compared to narrow creases. Fold limit can be maximized by maximizing
width and minimizing modulus. However, crease width may be limited by the required scale and resolution of
folds in an origami structure. Folding can be achieved by actively softening the crease. This actuation approach
can be realized using smart materials with controllable modulus such as SMAs [33] and SMPs [34],
magnetorheological materials [35], and phase change materials [36]. Fold angle reduces upon softening of the
crease due to the intrinsic restoring force in the prestressed EMC. For example, an SMA crease, laminated with a
prestressed EMC in its twinned Martensite phase, can fold by undergoing detwinning; elastic modulus of
detwinned Martensite is about 25 GPa. The composite can be unfolded by heating the SMA to the Austenite
phase (modulus of about 75 GPa). The range of folding that may be achieved using SMA creases is indicated
using planes in figure 12.

4.2.3. Combined effect of crease thickness and width
Fold sharpness (£2) is defined in terms of fold angle (7)), crease thickness (t = h, — h;), and width (2L,) as
follows:
n
2Lt 1)

Figure 13 shows the variation of fold sharpness as a function of crease width and thickness, calculated fora
crease modulus of 2 GPa. EMC prestrain is maintained constant at 30%. For a given thickness, €2 reduces
exponentially with an increase in crease width. At constant crease width, sharpness can be increased by reducing
crease thickness up to a critical value. Below this critical £, the composite is completely folded, i.e., n — 0.
Therefore, lowering t below the critical value does not yield a higher 2. Fold sharpness can be maximized by
minimizing crease width and thickness. It is emphasized that the composite’s thickness can also be lowered by
reducing the EMC’s thickness, thereby increasing fold sharpness. However, a reduction in EMC thickness
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Figure 12. Fold angle as a function of crease modulus and width at a constant thickness of 0.003 in. (76.2 pm). The modulus range for
shape memory alloys is illustrated as an example for the selection of materials with controllable modulus.

corresponds to a reduction in the strain energy associated with a given prestrain. Thin EMCs would require
higher prestrain to generate a given fold angle as compared to thick EMCs.

4.2.4. Effect of EMC orientation

The orientation of EMC prestrain relative to the crease is expected to influence fold angle. In this study,
displacement polynomials are chosen so as to include twist in the crease at non-orthogonal orientations of the
EMC; the prestressed EMC spans only the crease. The conditions imposed on the polynomials are listed in

table 4. While the crease can undergo twist, the faces are assumed to be inflexible; displacement polynomials are
chosen such that the material properties of the face do not influence the results. As a result, the edges of the crease
that are parallel to the XZ plane in a flat composite, remain straight when folded.

For a crease modulus, thickness, and width of 200 GPa, 25 im, and 19 mm, respectively, fold angle (1) is
calculated as a function of prestrain angle (6). Figure 14 shows 7 for various values of the EMC’s transverse
modulus E,. Fold angle increases with an increase in 6, yielding an almost flat composite at around 45°. The
range of 6 for fold generation, increases with a decrease in E,. However, the tradeoff in reducing bond strength
between the EMC’s fibers and matrix is a non-negligible in-plane Poisson’s ratio. For 0 < 6 < 45, calculations
of the slope Owy /Oy of the faces revealed that the twist in the composite is negligible (not illustrated). Such a
response can be attributed to three factors: high aspect ratio of the crease in the XY plane; the straight-edge
condition imposed on the edges common to the crease and faces; and a high crease modulus. For § = 45°,
calculations show a large angle of twist; the result corresponds to a pure twisting mode in a fold-free composite.

Fold angle can be maximized by orienting the EMC prestrain orthogonal (X axis) to the crease (Yaxis). Fora
given fold angle, the reduction in the EMC’s strain energy in the X direction due to its rotation can be
compensated by increasing the prestrain. However, there may be practical limits on prestrain from a durability
standpoint; minimal prestrain translates to minimal shear stress between the EMC and the constraining layer.
When considering the combined effect of orientation and crease width, the range of prestrain orientations
(0 < 0 < 45) thatyield folds is found to be independent of crease width (figure 15). However, wider creases
provide a higher range of foldability (1), as shown in previous results. The calculations of fold angle in figure 15
are performed for an EMC transverse modulus of 250 MPa.
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Figure 13. Fold sharpness as a function of crease width and thickness, shown for a crease modulus of 2 GPa. The critical value of fold
sharpness is found as the maximum value for a given crease width.

Table 4. Conditions imposed on displacement polynomials for the modeling of folds at a crease with non-orthogonal EMC prestrain.

Crease Face
O; Condition O; Condition
Up 3 Terms with odd power, 1,(0, 0) = 0 1 Includes xy term
Yo 3 Terms with odd power, (0, 0) = 0 1 Includes xy term
Wo 4 Terms with even power, w, (0, 0) = 0 1 Includes xy term

5. Conclusions

Foldable structures address the need for creating three-dimensional objects from flat, inextensible panels and for
stowing or deploying them to serve various functions. The special kinematic behaviors possible with origami
folding provide possibilities for novel designs in engineering applications. The understanding created in this
paper on folding laminated composites with finite thickness enables origami-inspired designs for a variety of
applications including solar arrays, deployable robots, and automotive airbags. We have shown that smooth
folds can be created in pre-creased laminated composites by applying mechanical prestress to select laminae.
This versatile approach not only enables localized prestress application at a crease, but also allows folding at
multiple non-parallel creases using a single source of prestress.

Smart laminae with controllable modulus can be locally activated to realize autonomous folding in
prestressed composites. The analytical model developed in this work serves as a tool for designing folds for a
given set of laminae. From model-based analyses, it is shown that narrow creases require higher input prestrain
when compared to wider creases. Fold sharpness can be maximized by minimizing crease width and thickness.
From an internal-energy standpoint, folding is most effective when the applied prestress is orthogonal to the
crease. The EMC’s anisotropy is a tradeoff between achieving zero in-plane Poisson’s ratio for undirectional
prestress and maximizing the range of crease orientations for foldability. The stress-biased composites presented
in this work have the potential to serve as a framework for smart origami structures with reconfigurable creases.
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