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ABSTRACT

In this paper, a computational study is presented of structural vibration control that is realized by switching a
magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either chang-
ing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer’s
coil (i.e., the magnetostrictive material’s magnetic boundary condition). Switched-stiffness vibration control
is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount),
which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while
varying the mount’s stiffness according to a reference switched-stiffness vibration control law. The results
reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired
actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness
control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiff-
ness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled
stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13;
this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of
magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage-
and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For
the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and
shunt-controlled stiffness switching.

Keywords: magnetostrictive materials, switched-stiffness vibration control, stiffness tuning, shunt damping,
Terfenol-D

1. INTRODUCTION

Magnetostrictive materials, such as Galfenol (Fe1−xGax, 0.13 ≤ x ≤ 0.29) and Terfenol-D (TbxDy1−xFey,
x ≈ 0.3, y ≈ 2), exhibit a bi-directional coupling between magnetic and mechanical domains, thereby provid-
ing actuation and sensing effects. These materials also exhibit stress- and magnetic field-dependent elastic
moduli, which result from the superposition of magnetoelastic strain and purely elastic strain.1 The moduli
can be controlled precisely and remotely using electromagnets. This effect can be utilized for many vibration
control applications, such as adaptive suspensions, variable-frequency mechanical oscillators,2 semi-active
vibration absorbers,3–6 and switched-stiffness vibration control.7,8 Recently, Scheidler et al.9 developed
a magnetostrictive transducer having a stiffness that can be controlled in real-time to enable continuous
stiffness tracking or stiffness switching.
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In this paper, the usefulness of a magnetostrictive transducer with dynamically-tunable stiffness is studied
by applying the transducer to switched-stiffness vibration control of a single-degree-of-freedom mechanical
system. Switched-stiffness vibration control is a simple form of stiffness control in which vibration is atten-
uated via coordinated switching between high and low stiffness states.7,8 Two distinct methods of stiffness
switching are considered: changing the bias magnetic field using a voltage excitation and changing the
impedance of an electrical shunt connected to the transducer’s electromagnet. A computational study is
presented to investigate the uncontrolled and controlled free vibration responses of the mass. First, a model
is introduced that quantifies the nonlinear electromechanical behavior of the magnetostrictive transducer and
its effect on the vibration of the mechanical system. Constitutive nonlinearities are incorporated by using
a fully-nonlinear constitutive model for magnetostrictive materials from the literature. Then, a discussion
of the control algorithm is presented and modifications to the algorithm are proposed to account for the
magnetostrictive force generated by the transducer. Next, control of the mass’s free vibration using voltage-
controlled stiffness switching is calculated and the effect of the magnetostrictive force is discussed. The
effectiveness of voltage-controlled stiffness switching is then compared to that of shunt-controlled stiffness
switching and optimal resistive shunt damping.

2. MODEL DEVELOPMENT

Switched-stiffness vibration control using a magnetostrictive transducer is investigated for the mechanical
system shown in Fig. 1, where the transducer is used as a spring mount to control the motion x of mass m
that is caused by an applied force F . Two methods of controlling the transducer’s stiffness are considered:
(1) an excitation voltage V that produces current i, which generates an axial magnetic field H in the mag-
netostrictive material and (2) an electrical shunt Zsh with controllable impedance that changes the electrical
boundary condition on the coil and thus the magnetic boundary condition imposed on the magnetostrictive
material. Due to magnetostriction, the field generated in case (1) also produces an unwanted magnetostric-
tive force Fmag that excites the mass; the presence of Fmag complicates the vibration control strategy, as
discussed in Section 3. A viscous damper c is included to provide conventional mechanical dissipation. First,
the equations governing the dynamic, nonlinear, electromechanical response of the system shown in Fig. 1
are derived for the case when both the excitation voltage and shunt are simultaneously connected to the
transducer. Then, the equations are simplified for the two aforementioned cases.

Figure 1: Mechanical system used to investigate switched-stiffness vibration control; the magnetostrictive
transducer (dotted magenta box) has electrical inputs (green), magnetic states (red), and mechanical outputs
(blue).



The equation of motion for the mechanical system is

m
d2

dt2
(∆x) + c

d

dt
(∆x) + ∆Ftrans(H,T ) = ∆F, (1)

where ∆x is the incremental displacement of the mass and ∆Ftrans is the total force imposed by the trans-
ducer, which depends on the total field and stress inside the magnetostrictive material,

T = ∆T + Tbias, (2)

H = ∆H +Hbias. (3)

Here, Hbias and Tbias are the bias field and stress, respectively. The equation of motion is formulated in
incremental form to be consistent with the piezomagnetic equations that govern the transducer’s magne-
tomechanical behavior,

∆B = µS(H,T )∆H + d(H,T )EH(H,T )∆S, (4)

∆T = −d(H,T )EH(H,T )∆H + EH(H,T )∆S, (5)

where ∆B, ∆T , and ∆S respectively denote the incremental magnetic flux density, stress, and strain along
the axis of the magnetostrictive rod, which is described by its magnetic permeability at constant strain
µS , Young’s modulus at constant field EH , and piezomagnetic coefficient d. The permeability at constant
strain is related to the permeability at constant stress µT through µS = µT

(
1− κ2

)
, where κ is the magne-

tomechanical coupling factor. Eqs. (1), (4), and (5) are nonlinear, because the dependence of the material
properties on H and T is explicitly considered through the use of a fully-nonlinear constitutive model for
magnetostrictive materials.10–12 Hereafter, the dependence of the material properties on H and T is dropped
from the notation for clarity.

If the magnetic flux leakage and the magnetic reluctance of the transducer’s flux return path are assumed
to be negligible, the magnetic field in the magnetostrictive rod is ∆H = N∆ic/lc, where N and lc are the
number of windings in and axial length of the electromagnet, respectively. When the mass vibrates at
frequencies sufficiently below the transducer’s 1st resonant frequency, ∆T and ∆S are uniform and can be
calculated as ∆Ftrans/Ar and ∆x/lr, respectively, where Ar and lr are the cross-sectional area and length of
the magnetostrictive rod, respectively. Insertion of these expressions into Eq. (5) gives

∆Ftrans =
ArE

H

lr
∆x− dNArE

H

lc
∆ic = kH∆x−Θ∆ic, (6)

where kH is the transducer’s stiffness and Θ is an electromechanical coupling coefficient. From Eq. (6), the
magnetostrictive force can be identified as

∆Fmag = −Θ∆ic. (7)

The Faraday-Lenz law governs the electromotive force ∆Vemf induced in the transducer’s electromagnet
due to the magnetic response of the magnetostrictive material,

∆Vemf = −NAc
d

dt
(∆B) , (8)

where Ac is the cross-sectional area of the electromagnet. Insertion of Eq. (4) and the expressions for ∆S
and ∆H into Eq. (8) gives

∆Vemf = − d

dt

(
dNAcE

H

lr
∆x+

N2Acµ
S

lc
∆ic

)
= − d

dt

(
Θ∆x+ LS

c ∆ic
)
, (9)

where LS
c is the inductance of the transducer at constant strain∗ and it was assumed that lc = lr and

Ac = Ar. L
S
c is related to the inductance at constant stress LT

c through LS
c = LT

c

(
1− κ2

)
.

∗This quantity has also been referred to as the self inductance of a magnetostrictive transducer.13



2.1 Stiffness switching via controlled voltages

When the electrical switch in Fig. 1 is connected to the excitation voltage, the electrical system is charac-
terized by the following equations,

∆i = ∆ic, (10)

∆V −Rc∆ic + ∆Vemf = 0, (11)

where ∆ic are Rc are the incremental current in and resistance of the electromagnet, respectively.

The equations governing the electrical and mechanical responses of the voltage-controlled transducer are
found by combining Eqs. (1), (6), (9), (10), and (11), resulting in

m
d2

dt2
(∆x) + c

d

dt
(∆x) + kH∆x−Θ∆i = ∆F , (12)

d

dt
(Θ∆x) +

d

dt

(
LS
c ∆i

)
+Rc∆i = ∆V . (13)

Eqs. (12) and (13) constitute a nonlinear model that incorporates the mechanical vibration of the mass,
the electrical dynamics associated with voltage control of the transducer, the magnetostrictive force, and
constitutive nonlinearities.

2.2 Stiffness switching and shunt damping via electrical shunting

When the electrical switch in Fig. 1 is connected to the shunt Zsh, the electrical system is characterized by
the following equations,

∆ish = ∆ic, (14)

∆Vemf −Rc∆ic − Zsh{∆ish} = 0, (15)

where ∆ish is the incremental current in the shunt and Zsh {·} is an operator that describes the current-to-
voltage relation of the shunt; for example, if the shunt is a resistor Rsh and inductor Lsh in series, then

Zsh{·} =
d

dt
(Lsh (·)) +Rsh (·) . (16)

The equations governing the electrical and mechanical responses of the electrically shunted transducer
are found by combining Eqs. (1), (6), (9), (14), and (15),

m
d2

dt2
(∆x) + c

d

dt
(∆x) + kH∆x−Θ∆i = ∆F , (17)

d

dt
(Θ∆x) +

d

dt

(
LS
c ∆ic

)
+Rc∆ic + Zsh{∆ish} = 0. (18)

Eqs. (17) and (18) constitute a nonlinear model that incorporates the mechanical vibration of the mass,
the electrical dynamics associated with electrical shunting of the transducer, the magnetostrictive force, and
constitutive nonlinearities.

As discussed in Section 3.3, shunt-controlled stiffness switching is implemented in this paper using resistive
shunts. Thus, the shunt operator is Zsh {·} = Rsh (·) here. After linearizing Eqs. (17) and (18), it can be
shown that magnetostrictive shunt damping is analogous to piezoelectric shunt damping. Consequently, the
optimal shunt resistance Rsh,opt is equivalent to that for piezoelectric shunt damping14 with the inductive
impedance of the transducer being analogous to the capacitive impedance of the piezoelectric,

Rsh,opt = LT
c ω

H
n

√
1− κ2 −Rc, (19)

where ωH
n is the mechanical natural frequency of the system,

ωH
n =

√
kH

m
. (20)



2.3 Eddy current effects

Since the proposed models are nonlinear, the incorporation of mechanically-induced15 or field-induced eddy
current effects into the models would require that the nonlinear PDE governing magnetic diffusion16 be solved
concurrently with either Eqs. (12) and (13) (for voltage control) or Eqs. (17) and (18) (for shunting). These
effects are not considered here, because this would add a significant amount of complexity to the model.†

Hence, the proposed model is accurate when the mass vibrates at a frequency that is below the transducer’s
mechanically- and field-induced magnetic diffusion cut-off frequencies. Terfenol-D and Galfenol are the
magnetostrictive materials that are typically used in uniaxial magnetostrictive transducers. A Terfenol-D
rod has magnetic diffusion cut-off frequencies about 40 times greater than those of an equally-sized Galfenol
rod.9,15 Thus, this paper considers a Terfenol-D-based transducer to improve the accuracy of this assumption.

3. RESULTS AND DISCUSSION

This section first presents a modified control law for switched-stiffness vibration control of voltage-controlled
magnetostrictive transducers. Then, the control law is implemented to explore the effectiveness and limita-
tions of voltage-controlled stiffness switching. Next, the performance of voltage-controlled stiffness switching
is compared to that of shunt-controlled stiffness switching and optimal resistive shunt damping.

Eqs. (12) and (13) are simultaneously solved using a commercial differential equation solver after ap-
proximating the time derivatives of Θ and LS using the 2nd order, backward finite difference method. The
solution procedure is iterative and piece-wise linear (i.e., the material properties are updated at the end of
each time step). Accordingly, a very small time span is used for each call of the differential equation solver
to maintain accuracy.

3.1 Switched-stiffness vibration control law

The control law for switched-stiffness vibration control is simple: when the mass is moving toward static
equilibrium, switch the stiffness to the soft state; otherwise, switch to the stiff state.7,8 In terms of energy,
if the stiffness is instantaneously decreased by ∆k at the ith displacement maximum xmax,i, the potential
energy in the system decreases by 0.5∆kx2max,i. Then, if the stiffness is instantaneously increased by ∆k

at static equilibrium, the potential energy does not increase. Thus, energy in the amount of 0.5∆kx2max,i is
dissipated every half cycle.

In the absence of a magnetostrictive force, the performance of this control method tends to improve as
the amplitude of stiffness switching (∆k) increases and the time required to switch the stiffness decreases.
However, Fmag can have a significant magnitude; thus, it complicates the control method and can produce
unexpected motion of the mass. In particular, resonance of the mass can be induced by the control during
damped, free vibration, as shown in Fig. 2a. In this case, Fmag overcomes the existing damping and the
energy lost due to stiffness switching. This can result when Fmag acts in only one direction (as seen in Fig. 2b),
which occurs when the transducer is operated about a variety of bias conditions. Hence, the control law for
switched-stiffness vibration control should be modified to that illustrated in Fig. 3 when voltage (or current)
control of a magnetostrictive material is used to realize the stiffness changes. Ideally, Fmag is as small as
possible and always pushes or pulls the mass toward the static equilibrium position. However, it does not
seem possible to satisfy the stiffness and force criteria for every motion condition. As such, for half of the
vibration cycle, the field is set to the bias value and stiffness switching is inactive; during this time, Fmag is
approximately zero.

To determine a magnetomechanical bias condition for which the tuning conditions shown in Fig. 3 will
be satisfied, it is beneficial to reference the Young’s modulus of the magnetostrictive material and the
electromechanical coupling coefficient of the transducer, which are depicted in Fig. 4. For a given magnetic
field change in Terfenol-D, a larger change in Young’s modulus is obtained at a moderate to high bias

†If the proposed models are linearized, eddy current effects can be easily considered by replacing the magnetome-
chanical material properties with effective properties that are complex-valued and frequency dependent.15,17
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Figure 2: Mechanical resonance induced by switched-stiffness vibration control due to the unwanted magne-
tostrictive force; model parameters given in Table 1; H = 0+35

−0 kA/m.

Figure 3: Tuning conditions of the magnetostrictive transducer needed to realize switched-stiffness vibration
control in the presence of a magnetostrictive force; S.E.P. denotes the static equilibrium position.

compression than at a small compression. Larger bias compressions also help to prevent unloading of
the brittle Terfenol-D rod during dynamic operation. Thus, a moderate to high bias compressive stress
is considered herein. Fig. 4b shows that the electromechanical coupling coefficient is always positive for
positive magnetic fields.‡ According to Eq. (7), Fmag can therefore only change sign if ∆i changes polarity
during stiffness switching; this implies that the bias magnetic field should be between the maximum and
minimum tuning fields. At moderate to high bias compressive stress, Θ decreases rapidly with field at low
bias fields; this suggests that the bias field should be closer to the maximum tuning field Hmax than to
the minimum tuning field Hmin, in order for Fmag to have comparable positive and negative peak values.
Therefore, the bias and tuning fields are reported as

(Hbias)
Hmax−Hbias

Hmin−Hbias
. (21)

For example, H = 30+25
−15 kA/m means that the voltage is controlled such that the steady-state field is

switched from a bias of 30 kA/m down to 15 kA/m and up to 55 kA/m.

‡For negative magnetic fields (not shown in Fig. 4b), the electromechanical coupling coefficient is always negative.
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Figure 4: Stress and magnetic field dependence of the (a) Young’s modulus of a Terfenol-D rod and (b)
electromechanical coupling coefficient of a Terfenol-D-based transducer calculated using the DEA model
in;10 from blue to red (the direction of the arrow), H increases from 0 to 100 kA/m in increments of
10 kA/m; Ac = 1.27 × 10−4 m2, lr = 0.144 m, and N = 1840 turns (the minimum number needed to
generate 85 kA/m at steady state with 22 AWG wire).

3.2 Voltage-controlled stiffness switching

The modified control method was applied to the undamped, free vibration of the mass. The results are shown
in Fig. 5, where an uncontrolled response is compared to two controlled responses. The model parameters
common to all three cases are given in Table 1. In both of the controlled responses, switched-stiffness
vibration control introduces a significant amount of damping. Although the controlled responses do not
decay according to a simple, viscously damped system, the control-induced damping can be approximately
described using an effective viscous damping factor calculated by logarithmic decrement; the results are
shown in Table 2. On close inspection, controlled response 1 initially decays faster than controlled response
2, but it converges to a steady oscillation having a small amplitude. This is caused by a small imbalance
between the positive and negative peak values of the Fmag, as seen in Fig. 5d. If another damping mechanism
is present (e.g., shunt damping or c 6= 0), this oscillation can be easily eliminated by turning off the control
when the steady oscillation is reached. Fig. 5b illustrates that under voltage control, the Young’s modulus,
and thus the stiffness, can vary considerably while operating at a given voltage state. This is due, in part,
to the variation in magnetic field (Fig. 5c) that results from a changing current in the coil. This suggests
that the vibration control performance should improve if the applied current is controlled rather than the
applied voltage.

Table 1: Model parameters for switched-stiffness vibration control modeling.

dt, µs m, kg c, Ns/m Rc, Ω N Ar, cm2 lr, m Tbias, MPa

2 80 0 2.5 1840 1.27 0.144 -70

Table 2: Effective viscous damping factors for voltage-controlled stiffness switching.

System Effective Viscous Damping Factor

Controlled Response 1, H = 75+10
−55 kA/m 0.13

Controlled Response 2, H = 65+10
−45 kA/m 0.10

Controlled Response 2, H = 65+10
−45 kA/m (Fmag removed) 0.02
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Figure 5: Enhanced decay of damped, free vibration using switched-stiffness vibration control: no control
(dotted, Hbias = 75 kA/m), controlled response 1 (dashed-dotted, H = 75+10

−55 kA/m), and controlled response

2 (solid, H = 65+10
−45 kA/m).

The effect of Fmag on the controlled response is further studied by solving the governing equations after
artificially removing Fmag from the mechanical equation (Eq. (12)). By doing so, the mechanical domain
can influence the electrical domain, but the electrical domain only influences the mechanical domain through
magnetic-field-induced changes in the stiffness kH . Fig. 6 compares the uncontrolled response to controlled
response 2, with and without Fmag. The effective viscous damping factors are reported in Table 2. The
magnetostrictive force significantly improves the control of free vibration by acting as an uncontrolled form
of active vibration control.

As with the conventional control method, the performance of the modified control method improves with
increases in the stiffness change magnitude. However, the magnetostrictive force can play a more important
role than the stiffness change. In general, the performance of the modified control method improves as the
amplitude of the magnetostrictive force is decreased by a change in the bias conditions or the range of the
magnetic field. Optimizing the performance requires trial and error.
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Figure 6: Effect of the magnetostrictive force on switched-stiffness vibration control of free vibration; no
switching (dotted), and controlled response 2 (H = 65+10

−45 kA/m) with (solid) and without (dashed-dotted)
the magnetostrictive force.

3.3 Comparison with shunt-controlled stiffness switching and optimal resistive shunt
damping

Fukada et al.13 showed that the stiffness of magnetostrictive transducers can be controlled by shunting the
electromagnet with a controllable inductor. In this case, the shunt operator is

Zsh{∆ish} = Lsh
d

dt
(∆ish) +

d

dt
(Lsh) ∆ish. (22)

When continuously tuning stiffness, the system that produces the shunt inductor (e.g., a circuit that controls
the V -i relation using feedback) needs to capture the dLsh/dt · ∆ish term to allow for responsive tracking
of the stiffness. However, when stiffness switching, this term acts as a very high bandwidth parametric
excitation, which can work against the vibration control. To avoid the parametric excitation, stiffness can be
changed by switching between open and short circuits (i.e., by switching between two resistive shunts). This
is a key distinction between shunt-controlled and voltage-controlled stiffness switching, because an unwanted,
high-frequency excitation cannot be avoided when switching with voltages (or currents). The open circuit
stiffness kH and short circuit stiffness kB = kH

(
1− κ2

)
bound the range of stiffness that is possible using a

shunt with positive inductance.§ Thus, the energy loss due to stiffness switching is maximized by switching
between open and short circuits.

Fig. 7 presents a comparison of voltage-controlled stiffness switching, shunt-controlled stiffness switching,
and optimal resistive shunt damping. The conventional switched-stiffness control law is used for shunt
switching, because it does not introduce a magnetostrictive force. Two forms of shunt control are considered:
switching between open and short circuits and switching between open circuit and optimal resistive shunt.7

Here, the magnetomechanical bias was moved to the center of the burst region where the coupling factor
κ is maximized, because shunt damping and shunt-controlled stiffness changes improve with increases in
κ. As a result, the nominal stiffness of the shunt-controlled transducer is considerably smaller than that of
the voltage-controlled transducer. The free vibration response is shown in Fig. 7a. Optimal resistive shunt
damping clearly performs the best, but voltage-controlled switching performs considerably better than either
form of shunt-controlled switching. Switching between open and short circuits attenuates the free vibration
slightly faster than switching between open and optimal resistive shunts, although energy is dissipated in
the former case only during stiffness switches. Effective viscous damping factors are shown in Table 3 for
completeness. However, it is more insightful to investigate the kinetic energy of the mass (0.5m d

dt (∆x)
2
),

§Larger stiffness changes are possible if a negative inductance shunt is used, but these shunts are not considered
in this paper.
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Figure 7: Comparison of voltage-controlled stiffness switching (controlled response 1) to shunt-controlled
stiffness switching and optimal resistive shunt damping; Tbias = −25 MPa, Hbias = 40 kA/m, κ2bias = 0.751.

because there is a large difference in the oscillation frequencies. Fig. 7b shows how each control technique
dissipates the kinetic energy of the mass. If the voltage-controlled stiffness switching was turned off and the
electromagnet was shorted at about 12 ms, the oscillation energy would be sufficiently dissipated by about
14 to 16 ms. However, the shunt-controlled switching techniques do not sufficiently dissipate the oscillation
energy until about 22 to 24 ms.

Table 3: Effective viscous damping factors for voltage- and shunt-controlled stiffness switching.

System Effective Viscous Damping Factor

Switched shunt, open to short 0.20
Switched shunt, open to Rsh,opt 0.17
Switched voltage (controlled response 1) 0.13
Optimal shunt damping 0.37

4. SUMMARY AND CONCLUSIONS

A computational study of switched-stiffness vibration control using a magnetostrictive transducer was con-
ducted. Two methods of stiffness switching were considered: changing the bias magnetic field using a voltage
excitation and changing the impedance of an electrical shunt connected to the transducer’s electromagnet.
The transducer was implemented as a tunable spring mount to dampen the vibration of a single-degree-of-
freedom mechanical system. A model was presented that incorporates constitutive nonlinearities, mechanical
vibrations, the electrical dynamics associated with voltage control or shunt control of the transducer, and the
magnetostrictive force generated by the transducer. To greatly simplify the model and numerical method,
mechanically-induced and field-induced eddy current effects were neglected. According to the analytical
and experimental findings of Scheidler et al.,9 this is a valid assumption for Terfenol-D-based transducers
operated at forcing frequencies up to about 1 kHz.

Voltage-controlled stiffness switching was studied in detail. Free vibration of the mass under passive
damping and switched-stiffness vibration control was calculated. The magnetostrictive force, which is un-
wanted, but accompanies field-induced stiffness changes, was shown to play a significant role in the perfor-
mance of the control. If the net magnetostrictive force over one vibration cycle is not small, the force can
resonate the mass by overcoming the energy lost due to passive damping and stiffness switching. Thus, a



modified control law was proposed to minimize the influence of the magnetostrictive force. Stiffness switch-
ing according to the modified law was found to introduce a level of damping that is similar to an effective
viscous damping factor of up to 0.13. Performance may be improved if the bias magnetic field is adjusted by
exciting the transducer with a controlled current source rather than a controlled voltage source. In general,
the performance of the control improved as the stiffness change magnitude increased and the amplitude of the
magnetostrictive force decreased. Although, the magnetostrictive force can significantly improve vibration
attenuation by acting as a very simple form of active vibration control; from this perspective, the magne-
tostrictive force is a partially-controlled external force generated by external energy. For the magnetostrictive
force to improve attenuation, the modified control law must be used and the bias conditions and magnetic
field changes must be carefully selected. In practice, it may be difficult to achieve good performance due to
time delays in the feedback loop and to uncertainty and noise in the determination of the mechanical states;
it may be particularly difficult when the structure to be controlled vibrates at multiple modes.

The effectiveness of voltage-controlled stiffness switching was compared to that of shunt-controlled stiff-
ness switching and optimal resistive shunt damping. The results show that voltage control performs better
than shunt control due to the magnetostrictive force. Also, large changes in modulus can be achieved using
voltage or current control. However, voltage control and current control require external energy. Shunt
control can only provide moderate modulus changes and it generates a parametric force if reactive shunts
are used. Nevertheless, shunt control can be easily realized with synthetic impedance shunts, which use a
feedback circuit to actively control the current-voltage relation of the shunt; these circuits require very little
energy, which can be harvested from the mechanical vibration using the transducer. Moreover, shunt control
does not introduce a magnetostrictive force (i.e., an external force) and does not produce a parametric force
if resistive shunts are used. Thus, compared to voltage control and current control, shunt control should be
easier to realize in practice and more robust to error in mechanical state sensing, to more complex loading,
and to changes in operating conditions. Both stiffness tuning methods can also provide continuous stiffness
tuning in addition to stiffness switching. However, one benefit of voltage-controlled (or current-controlled)
switching over voltage-controlled continuous tuning is that a switching amplifier can be used rather than a
linear amplifier, which are heavier, bulkier, and more expensive.

For the cases considered in this paper, optimal resistive shunt damping performed considerably better
than both voltage- and shunt-controlled stiffness switching. Shunt damping is also a fully passive technique
that is compact and very simple to implement. This suggests that there may not be a benefit to using stiff-
ness switching techniques. Accordingly, future work should investigate the performance of these techniques
under forced vibration over a broad frequency range to determine if this trend applies generally. Alterna-
tively, future work can study whether the best vibration control performance is achieved by concurrently
implementing optimal shunt damping and voltage-controlled (or current-controlled) stiffness switching.

The constitutive model used in this study is anhysteretic. Energy loss inside the magnetostrictive ma-
terial - namely eddy currents, magnetic hysteresis, and mechanical material damping - will reduce the
magnetomechanical energy conversion, which should negatively affect the peformance of shunt damping and
shunt-controlled stiffness switching. However, it is unclear how the presence of these internal loss mecha-
nisms affects the total energy dissipated and therefore the overall vibration attenuation. This is a possible
topic of future work.
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