
A Coupled Structural-Magnetic Strain and Stress Model
for Magnetostrictive Transducers

MARCELO J. DAPINO,1,* RALPH C. SMITH,2 LEANN E. FAIDLEY1 AND ALISON B. FLATAU1

1Department of Aerospace Engineering and Engineering Mechanics, Iowa State University,
2271 Howe Hall, Room 1200, Ames, IA 50011

2Center for Research in Scientific Computation, Department of Mathematics, North Carolina State University, Raleigh, NC 27695

ABSTRACT: This paper addresses the modeling of strains and forces generated by magnetostric-
tive transducers in response to applied magnetic fields. The magnetostrictive effect is modeled by
considering both the rotation of magnetic moments in response to the field and the elastic vibrations
in the transducer. The former is modeled with the Jiles-Atherton model of ferromagnetic hysteresis in
combination with a quartic magnetostriction law. The latter is modeled through force balancing
which yields a PDE system with magnetostrictive inputs and boundary conditions given by the spe-
cific transducer design. The solution to this system provides both rod displacements and forces. The
calculated forces are used to quantify the magnetomechanical effect in the transducer core, i.e., the
stress-induced magnetization changes. This is done by considering a “law of approach” to the
anhysteretic magnetization. The resulting model provides a representation of the bidirectional cou-
pling between the magnetic and elastic states. It is demonstrated that the model accurately character-
izes the magnetic hysteresis in the material, as well as the strains and forces output by the transducer
under conditions typical of engineering applications.

1. INTRODUCTION

WE address the modeling of the magnetomechanical be-
havior of transducer systems which utilize magneto-

strictive materials to drive structural loads. The growing in-
terest in magnetostrictive transducers arises from the
availability of highly capable magnetostrictive materials,
such as the rare earth–iron alloys, which deliver strains in the
10–3 range and forces in the order of several kN. While mag-
netostrictive transducers provide adequate performance at
the low signal levels where their behavior is quasilinear, the
demand for high performance transducers often dictates that
they be driven at the high operating regimes where hysteresis
and nonlinearities are intrinsic to magnetostrictive behavior.
In addition, the advantages of magnetostrictive materials
over alternative transducer technologies are typically real-
ized at high operating regimes. This motivates the develop-
ment of models that accurately characterize the hysteresis
and nonlinearities intrinsic to magnetostrictive transduction.

Due to the reciprocal nature of magnetomechanical
transduction, magnetostrictive transducers are capable of
providing not only actuation but sensing capabilities as well.
One crucial aspect of the bidirectional energy exchange be-
tween the magnetic and elastic regimes is that neither
transduction mechanism occurs independently, but rather
they both occur simultaneously during transducer operation.

In the direct or magnetostrictive effect, the action of a mag-
netic field and ensuing magnetization generates strains in the
magnetostrictive material. These strains are in turn associ-
ated with a stress field which affects the magnetic state by
virtue of the inverse or magnetomechanical effect. This issue
motivates the development of models capable of addressing
the magnetomechanical coupling effects intrinsic to magne-
tostrictive transduction.

The close connection between magnetostriction and the
magnetic behavior under stress has long been recognized,
and extensive experimental evidence on the magneto-
mechanical effect has been documented [1–3]. In recent
years there has been renewed interest in this phenomenon
[4,5] because of its relevance for applications such as non-
destructive evaluation and sensing. In the specific case of the
R-Fe2 (R = Tb, Dy, Sm, Ho) alloys, of which Terfenol-D
(Tb0.3Dy0.7Fe1.9–2) is at present the most widely known com-
mercially available example, it has been demonstrated that
desirable properties such as high magnetostriction and low
hysteresis are strongly dependent upon the operating stress
[6–8].

Material models such as the linear piezomagnetic equa-
tions and related formulations [9,10] are widely used to char-
acterize magnetostrictive transducer performance. The most
common formulation for these equations is

(1)

(2)
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in which ε is the strain, sH is the compliance at constant field
H, d33 and d33

* are the magnetoelastic coupling coefficients,
σ is the stress, and µσ is the permeability at constant stress. It
is emphasized that this model is in essence a generalization
of two phenomenological relationships, namely the Hooke’s
law for linearly elastic solids ε = sσ and the magnetic consti-
tutive equation B = µH. The total magnetoelastic strain ε
given by Equation (1) is interpreted as the superposition of
the elastic or passive response ε ≡ sσ and the magnetostric-
tive component λ ≡ d33H associated with domain processes
in the material. In a similar fashion, the magnetic induction B
of Equation (2) is interpreted as due to the constant-stress
magnetic component µσH, and a term due to magnetoelastic
interactions d33

* σ. It is often assumed on the basis of small re-
versible magnetostrictions that d33

* = d33, which suggests
that, for reversible processes, a large magnetomechanical ef-
fect d33

* = (∂B/∂σ)H should be observed in materials with
large axial strain coefficient d33 ≡ (∂ε /∂H)σ.

The linear piezomagnetic model provides adequate char-
acterization of magnetostrictive performance at the low op-
erating regimes where the behavior is quasilinear and mag-
netic hysteresis is negligible. At high operating regimes,
however, several mechanisms lead to hysteresis, nonlin-
earities, and magnetoelastic coupling. These mechanisms
cannot be neglected in accurate transducer models.

This paper presents a nonlinear and hysteretic magneto-
mechanical model for the strains and forces generated by
magnetostrictive transducers in response to applied mag-
netic fields. The formulation presented here extends prior

modeling capabilities [11,21], which include magnetic hys-
teresis and nonlinearities as well as structural vibrations, by
including the sensing or magnetomechanical effect in a mag-
netostrictive rod as it drives a transducer. This novel model-
ing approach provides an improved representation of the
magnetomechanical behavior of magnetostrictive transduc-
ers as used in structural applications, and it provides the
framework necessary for the modeling of magnetostrictive
materials when utilized as sensors. The model is illustrated in
the context of the prototypical Terfenol-D transducer de-
picted in Figure 1, but is not limited to this material or trans-
ducer design. This design provides a template for the key
physical components required to fully utilize the magneto-
strictive transducer capabilities, namely the magnetostrictive
rod, DC magnetic circuit, AC magnetic circuit, and mechani-
cal prestress mechanism.

The model is presented in three stages. In the first stage,
discussed in Section 2, we consider the magnetization of the
magnetostrictive rod under an externally applied magnetic
field H and a stress field σ. The field-induced component of
magnetization is quantified with the mean field model of fer-
romagnetic hysteresis originally developed by Jiles and
Atherton [11–13]. The stress-induced component of magne-
tization is modeled with a law of approach to the anhysteretic
magnetization as presented in Reference [5]. The two com-
ponents considered together provide a magnetization model
based on the energy dissipated when domain walls attach to
and unattach from inclusions in the material. Increasing
magnetic fields augment the energy dissipation and hence
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Figure 1. Cross section of the prototypical Terfenol-D transducer employed for model develop-



the amount of energy lost to hysteresis. Conversely, in-
creased stresses help to overcome domain wall pinning and
hence to reduce hysteresis.

The second stage, illustrated in Section 3, involves the
characterization of the magnetostriction λ produced when
the magnetostrictive rod is magnetized. This is done through
a phenomenological model consisting of an even-terms se-
ries expansion. While λ includes the active contribution to
the strain arising from the rotation of magnetic moments, it
does not account for the passive or material response of the
kind found in ordinary (i.e., nonmagnetostrictive) elastic ma-
terials and modeled by sHσ in Equation (1).

The passive effects are provided in Section 4 through con-
sideration of force balancing in the magnetostrictive rod, in
the form of a PDE equation which includes the magnetostric-
tion, system compliance, internal damping, and boundary
conditions associated with the mechanical transducer de-
sign. The solution to this PDE provides the rod displace-
ments and corresponding total magnetoelastic strain ε.

The complete model is summarized in Section 5, while its
performance is evaluated in Section 6 by means of a compari-
son of model simulations with experimental measurements.
Two examples are provided. In the first, the accuracy of the
magnetization and strain simulations is demonstrated at two
current levels and two prestress levels for a transducer de-
signed following the guidelines of Figure 1. The second ex-
ample demonstrates the ability of the model to accurately
characterize the force output by a magnetostrictive rod oper-
ated under mechanically blocked conditions (ε = 0).

2. MAGNETIZATION OF
MAGNETOSTRICTIVE ELEMENT

Highly magnetostrictive materials such as Terfenol-D ex-
hibit substantial deformations when magnetized. Changes in
magnetization are due to the application of magnetic fields,
stresses, or thermal energy. At this stage, we focus on
changes in magnetization and subsequent strains produced
by the application of magnetic fields and stresses. While op-
erating temperature has a strong influence on the perfor-
mance of magnetostrictive materials [16], the model in its
present formulation assumes isothermal behavior. In the
presence of both an applied magnetic field H and a varying
stress σ, the rate of change of magnetization with time dM/dt
is dictated by the expression

(3)

which motivates treating each magnetization term independ-
ently. In the first term, the main magnetoelastic component is
the differential susceptibility ∂M/∂H, which is identified
from the ferromagnetic hysteresis model. The time rate of
change of magnetic field dH/dt is readily determined since
the magnetic field input to the transducer is, to a first approxi-

mation, known in advance. In the second term, it is necessary
to quantify both the magnetomechanical effect ∂M/∂σ and
the time rate of change of stress dσ/dt, since the stress de-
pends on the amount of strain generated by the transducer.

2.1 Field-Induced Magnetization:
Differential Susceptibility

The magnetization of a ferromagnetic material in response
to applied magnetic fields can be explained by considering
two related mechanisms [15–18]. The first mechanism is that
domain walls (the transition layers between highly aligned
regions termed magnetic domains) move under the influence
of the magnetic field in such a way that favorably oriented
domains grow at the expense of unfavorably oriented do-
mains. The wall thickness is determined by a balance be-
tween the anisotropy, which tends to make the walls thinner,
and the Weiss-type interaction coupling between atomic
magnetic moments, which tends to make the walls thicker.
The second mechanism involves the rotation of magnetic
moments within domains towards the field direction.

In the theory originally proposed by Jiles and Atherton
[11–13,19] and implemented here, the magnetization is
quantified from the difference between the total magnetic en-
ergy available to magnetize the material and the energy lost
to domain wall pinning. The former energy state is achieved
in the anhysteretic condition, which has a magnetization
value Man. The energy lost to pinning is modeled assuming a
friction-type mechanism which opposes changes in magneti-
zation. To quantify these energies, minimization of a suitable
thermodynamic potential A is used to identify first the effec-
tive field He acting on the material,

(4)

where H is the applied field, αM is the Weiss interaction field
responsible for the alignment of neighboring magnetic mo-
ments within domains, and Hσ ≡ 1/µ0{∂[(3/2)σε]/∂M} is the
field due to magnetoelastic interactions.

The effective field calculated from expression (4) is then
used to compute the anhysteretic magnetization, which is
quantified using the Langevin function L(z) ≡ coth(z) – 1/z,
with –1 < L(z) < 1,

(5)

in which Ms is the saturation magnetization and the constant
a, representing the effective domain density, is treated as a
parameter to be estimated through a least squares fit to the
data. It is emphasized that while the Langevin function pro-
vides satisfactory fits of the ferromagnetic anhysteretic mag-
netization, its applicability to ferromagnets should be con-
sidered as semi-phenomenological in nature. The Langevin
function was originally developed for the paramagnetic
state, in which all possible orientations have the same proba-
bility and the material can be considered isotropic. In addi-
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tion to being intrinsically anisotropic, the motion of domain
walls in ferromagnetic materials is impeded by imperfec-
tions or pinning sites. These pinning sites, which are attribut-
able to crystallographic defects and to the presence of den-
dritic twin boundaries in the case of Terfenol-D, form energy
wells that are energetically favorable for domain wall attach-
ment.

The effect of pinning sites on domain wall motion under
constant stress conditions has been assessed through consid-
eration of reversible Mrev and irreversible Mirr components of
the magnetization. For low magnetic field intensities about
an equilibrium level, the domain walls bend reversibly while
remaining attached to pinning sites. As the applied magnetic
field is increased, the domain walls achieve sufficient energy
to break free from pinning sites while moving up the energy
well where they were originally located, and attach to remote
sites where the energy configuration is favorable. The energy
lost to domain wall pinning manifests itself as hysteresis in
the magnetization. This means that under the assumption of
no other loss mechanisms, the hysteresis loss per unit volume
and per cycle can be quantified experimentally from the area
enclosed by the M-H loop.

Energy balancing is used to derive a differential equation
for irreversible changes in magnetization, which can be
shown to be [15]

(6)

where the constant k quantifies the energy needed to break
pinning sites, and δ has the value +1 when dH/dt > 0 and –1
when dH/dt < 0 to ensure that the energy lost to pinning al-
ways opposes magnetization changes. Applying the chain
rule, expression (6) can be modified to give the differential ir-
reversible susceptibility,

(7)

Recognizing that in this case the effective field given by
Equation (4) should be defined in terms of the irreversible
magnetization,

the partial derivative of the effective field with respect to field
takes the form

(8)

where ~( , )α σM irr is a unitless effective coupling term which
is defined as

It is noted that the final form of ~αdepends upon the character-
ization of ε and σ.

Direct substitution of Equation (8) into (7) yields the dif-
ferential equation for the irreversible susceptibility,

(9)

It is noted that Equation (9) can yield nonphysical solutions
when dH is reversed near saturation. Specifically, when the
magnetization Mirr is below the anhysteretic Man for increas-
ing field, or when the magnetization Mirr is above the
anhysteretic Man for decreasing field, direct solution of
Equation (7) leads to a negative, and hence nonphysical, dif-
ferential susceptibility. A mathematical strategy has been de-
vised in Reference [22] that produces a physically consistent
expression

(10)

where

Numerical integration of differential equation (10) gives the
irreversible magnetization Mirr.

It has been hypothesized in Reference [15] that the revers-
ible component of magnetization reduces the difference be-
tween the prevailing irreversible magnetization Mirr and the
anhysteretic magnetization Man at the same field. This can be
modeled mathematically with the expression

(11)

where the coefficient of proportionality c quantifies the
amount of reversible domain wall bulging. The value of c is
determined experimentally from the ratio of the initial and
anhysteretic susceptibilities [22] or through a fit to experi-
mental data. Differentiation of Equation (11) gives the re-
versible differential susceptibility

(12)

Finally, the irreversible and reversible terms given by ex-
pressions (10) and (12), are added to give the total suscepti-
bility
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(13)

which after numerical integration gives the total magnetiza-
tion arising from the application of a magnetic field. Alterna-
tively, M can be computed by solving Equation (10) and then
adding Mrev from Equation (11).

2.2 Stress-Induced Magnetization Changes:
Magnetomechanical Effect

We now consider the contribution of stress to the total
magnetization, or magnetomechanical effect ∂M/∂σ. A uni-
fying description of the changes in magnetization due to the
action of stress has been developed recently [4,5,13]. In the
theory presented by Jiles [5,14] and implemented here, the
main mechanism governing the magnetomechanical effect is
the unpinning of domain walls produced when a stress is ap-
plied. On the basis of the key model assumption that hyster-
esis is originated mainly from domain wall pinning, the free-
ing of domain walls from their pinning sites must cause the
magnetization to change in such a way as to approach the
anhysteretic.

Experimental measurements [3,4,14,23] suggest that both
the magnitude and direction of stress-induced magnetization
changes are profoundly influenced by the magnetic history
of the specimen. To illustrate, Figure 2 shows a schematic

representation of the approach to the anhysteretic. The mag-
netization is first increased to saturation, and the field is then
removed so that the magnetization lies close to positive or
negative remanence, as respectively denoted by points A and
B in Figure 2(a). The magnetization changes ∆M are then
computed for varying compressive stresses while the field is
held constant. The magnetization changes are illustrated in
Figure 2(b). It is noted that the magnitude and direction of
∆M depend on whether the initial magnetization lies above or
below the anhysteretic. Furthermore, the magnetization at
point X changes slightly upon removal of the stress.

The change in magnetization exhibited by point X upon
removal of the stress is explained by a second, related effect,
that is the anhysteretic curve itself varies under the action of
stress. Application of tensile stress to a material with positive
magnetostriction coefficient (such as Terfenol-D) produces
an increase in both the slope of the M-H loop and the
remanent magnetization value, while compressive stress pro-
duces a shearing of the M-H loop. This effect is illustrated in
Figure 3, where the influence of stress on both the
anhysteretic and total magnetization is shown for the stress
levels +10, 0, –10 and –20 MPa.

The net result of both effects considered in combination is
that a monotonically increasing stress causes the magnetiza-
tion value of X to be approached in the fashion depicted in
Figure 2, while the magnetization value of X itself varies as
shown in Figure 3. The magnetomechanical effect model uti-
lized here is then formulated in the context of: (1) the effect
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of stress on the anhysteretic magnetization and (2) a law of
approach to the anhysteretic magnetization upon application
of stress.

2.2.1 ANHYSTERETIC MAGNETIZATION
The anhysteretic magnetization Man given by expression

(5) should be interpreted as a local function of both H and the

particular value of the prevailing magnetization M, with both
operating through the effective field He given by Equation
(4). For instance, at point A in Figure 4, the material is in a
state of equilibrium in the presence of zero applied field, due
to the coupling between magnetic moments αM and the
magnetoelastic interactions Hσ in the material. Application
of a small magnetic field perturbs this equilibrium slightly,
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Figure 3. Model simulations representing the effect of stress on the total magne-
tization ( ), and on the global anhysteretic magnetization (– . –), for +10, 0, –10,
and –20 MPa. A positive magnetostriction coefficient is assumed [14].

Figure 4. Model simulations showing the relative magnetization M/Ms , relative
local anhysteretic Man(H,M,σ)/Ms = coth[( H +~α(M,σ)M)/a] – [a/( H +~α(M,σ)M)],
and relative global anhysteretic Man(H,σ)/Ms = coth[( H + α( Man,σ)Man )/a] – [a/
(H + α( Man,σ)Man )], as a function of H.



giving a new value of Man. Applying small field increments
successively, the two-valued local anhysteretic curve shown
in Figure 4 is obtained. Note, however, that global equilib-
rium is never achieved in this case.

A closer look at the Langevin function (5) reveals that it is
possible to find a solution Man which, for a given value of H
and σ, satisfies the equation identically,

(14)

The solution Man to the Langevin function is unique, and may
be interpreted as a state of equilibrium associated with the
minimization of the total energy. In consequence, the locus
of points obtained by mapping all possible values of H for a
given stress state is a single-valued function, as illustrated in
Figure 4. We term this function the “global” anhysteretic
magnetization. The global anhysteretic Man is the
anhysteretic used to describe the law of approach, on the ba-
sis of the observation [4] that the application of stress causes
the prevailing magnetization to approach the single-valued
anhysteretic state obtained in experiments by superimposing
a decaying AC field on top of a fixed DC field. It is noted that
in the absence of magnetic coupling (α = 0) and constant
magnetoelastic interactions [Hσ ≠ Hσ(M )], the local and
global anhysteretic curves coincide.

The global anhysteretic depends significantly on the stress
state in the material. It has been even suggested [24] that the
global anhysteretic defines not a curve, but a surface depend-
ent on H and σ. This dual dependency is described in terms of
the effective field He, by recognizing [5] that the global
anhysteretic magnetization under a field H and stress σ is
equivalent to the global anhysteretic magnetization under
field He and zero stress, Man(H,σ) = Man(He,0).

In order to compute the global anhysteretic, the effective
field given in Equation (4) is written in the form

where the effective coupling parameter α(M,σ) is

The global anhysteretic is then given by the following ex-
pression,

which may be solved numerically using an iterative tech-
nique such as the Newton-Raphson method.

2.2.2 LAW OF APPROACH
It has been observed experimentally that the direction in

which the magnetization changes with applied stress is inde-
pendent of the sign of the stress, for small stresses and when
the magnetization is sufficiently distant from the
anhysteretic. It is then inferred that the direction of change is
dependent not on the stress itself, but on a quantity which is
independent of the sign of the stress. In this context, Jiles hy-
pothesized [5] that this quantity is the elastic energy per unit
volume, W = σ2/(2E). The “law of approach” to the
anhysteretic condition is then formulated as follows: the rate
of change of magnetization with elastic energy is propor-
tional to the displacement of the prevailing magnetization
from the global anhysteretic magnetization. The concept of
the law of approach is now applied to the stress-induced mag-
netization of a magnetostrictive material.

As before, this may be posed via irreversible and revers-
ible components of the magnetization. It is noted that to a
first approximation, the application of stress produces irre-
versible magnetization changes since ∆M arising from stress
unloading is negligible. Thus, it is reasonable to formulate
the law of approach in terms of the irreversible magnetization
Mirr,

(15)

where ξ is a coefficient with dimensions of energy per unit
volume that needs to be identified for magnetostrictive mate-
rials. Making the substitution ∂W/∂σ = σ/E in Equation (15),
along with application of the chain rule, permits writing the
irreversible component of the magnetomechanical effect as
follows,

(16)

A similar argument to that used in the field-induced case
yields an expression for the reversible component,

(17)

with c the same coefficient as that defined in Equation (11)
because the energy available for domain wall bulging should
be independent of the mechanism that produces the bulging,
which can be either field- or stress-induced.

Summing the irreversible and reversible contributions
leads to

(18)

which after numerical integration gives the magnetization

A Coupled Structural-Magnetic Strain and Stress Model for Magnetostrictive Transducers 141

rev an irrM M M
c

σ σ σ
∂ Ê ∂ ∂ ˆ= -Á ˜Ë ¯∂ ∂ ∂

1
( )irr

an irr
M

M M
W ξ

∂ = -
∂

( )irr
an irr

M
M M

E

σ
σ ξ

∂ = -
∂

( , )
coth

( , )

an an
an s

an an

H M M
M M

a

a

H M M

α σ

α σ

È Ê + ˆ= Í Á ˜Ë ¯Î

˘Ê ˆ
- ˙Á ˜Ë ¯+ ˚

0

3 1 ( )
( , )

2
M

M M

σεα σ α
µ

∂= +
∂

( , )eH H M Mα σ= +

[ ( ) / ]an s e anM M H M a= L

(1 ) ( ) an
an irr

M M
c M M c

E

σ
σ ξ σ

∂ ∂= - - +
∂ ∂



arising from the application of stress. As before, M may be
alternatively computed by solving Mirr from Equation (16)
and then adding Mrev from Equation (17).

3. ACTIVE COMPONENT OF STRAIN

It is ultimately necessary to quantify the strains generated
by the magnetostrictive material when a magnetic field is ap-
plied. For this purpose, we consider first the deformations
occurring in the crystal lattice when the domain configura-
tion changes. Several models exist for quantifying these de-
formations, including the quadratic law for domain magneti-
zation rotation discussed in References [19] and [20], energy
or thermodynamic formulations [23–25], elastomagnetic
models [26–30], micromagnetic theories [32], magnetiza-
tion rotation analysis [7], and empirical models [5]. At low to
moderate operating levels, or when material stresses are in-
variant, these deformations dominate over other material
elastic dynamics. Under such circumstances, it is theoreti-
cally possible to quantify the bulk magnetostriction upon
knowledge of the domain configuration and the magneto-
striction along easy crystallographic axes. In the case of
Terfenol-D, nominal values for the latter are λ111 = 1600 ×
10–6 and λ100 = 90 × 10–6, and λs ≈ 1000 × 10–6. In practical
terms, however, the domain configuration cannot be known
a priori.

To motivate the approach followed in this work, we con-
sider the particular case when the magnetic field is applied
perpendicular to the axis in which the magnetic moments
have been aligned by application of sufficiently large com-
pression in the case of a polycrystalline material such as
Terfenol-D, or perpendicular to the easy crystallographic
axis in a single crystal with uniaxial anisotropy. In either case
domain rotation is the prevailing magnetization mechanism,
and the magnetostriction along the field direction is given by
[19]

(19)

which establishes a quadratic relation between λ and M. Ex-
pression (19) is a single-valued functional, while extensive
experimental evidence demonstrates that the λ-M relation-
ship exhibits some degree of hysteresis. For transducer mod-
eling purposes, it is feasible to utilize a single valued λ-M
functional to model the overall shape, and to let M provide
the hysteresis through the hysteretic mechanisms in M-H.
This approach has proven effective in previous investigations
[33].

Even though Equation (19) is consistent with the physical
phenomena occurring in the above mentioned cases, it is not
sufficiently general in cases when domain wall motion is sig-
nificant such as when the operating stress acting on the
Terfenol-D material is not extreme. In order to provide a

more general magnetostriction model, we consider a series
expansion symmetric about M = 0,

in which the coefficients γi need to be identified from experi-
mental data. It is noted that quadratic relation (19) is
achieved for i = 1 with γ0 = 0 and γ1 = ( )/( )3 2 2λs sM . For
implentation purposes, we consider in this study a quartic
law in which the series is truncated after i = 2,

(20)

Note:
A convenient method for identifying γ1 and γ2 is by solving

simultaneously the constraints at magnetic saturation Ms and
at the inflection point M0,

in which (3/2)λs is the value of the magnetostriction at satura-
tion magnetization.

4. PASSIVE COMPONENT AND TOTAL STRAIN

The magnetostriction λ given by Equation (20) quantifies
the reorientation of magnetic moments towards the direction
of applied field. It was shown in Reference [12] that this mag-
netostriction is analogous to the term d33H in linear models,
but is inherently nonlinear and hysteretic through both the
magnetization M and the quartic relation between M and λ. It
ignores, however, the elastic properties of the magnetostric-
tive material as it vibrates, as represented in the linear models
by sHσ. In this section, a PDE system is formulated which
models the elastic response of the magnetostrictive material
and relevant transducer components located in the load path.
The input to this PDE is formulated through the magneto-
striction λ, which constitutes an “internal force” driving the
vibrations of the transducer. The solution to the PDE is the
longitudinal displacements u(t,x) relative to the prestressed
position. Additional details regarding this PDE formulation
are provided in Reference [12].

The structural dynamics are modeled through consider-
ation of the magnetostrictive rod (5), prestress bolt (6),
spring (7), and mass load (8) for the transducer in Figure 1.
The prestress bolt provides a stress σ0 < 0 by compressing the
magnetostrictive rod against the spring, modeled by a linear
spring kL and dashpot cL. The rod is assumed to have length L,
cross sectional area A, and longitudinal coordinate x. The
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material density is ρ, the elastic modulus is E, the internal
damping is cD, and the external load is modeled by a point
mass mL. It should be noted that parameter E lies between the
elastic modulus at constant H, EH, and at constant B, EB.
Since EH and EB depend upon the field intensity [34], so does
E. However, for simplicity E is treated as a nominal or opera-
tional material stiffness.

As detailed in References [11] and [12], the total stress at
cross sections x in the rod is given by

(21)

where the terms on the right hand side represent respectively
the linear elasticity at small displacements, Kelvin-Voigt
damping, magnetostriction-derived stress, and prestress.
Force balancing then yields the dynamic model for the longi-
tudinal displacements and strains.

For implementation purposes, the model is formulated in
weak or variational form by multiplying the strong form by
test functions φ followed by integration throughout the
length of the rod. This reduces the smoothness requirements
on the finite element basis since displacements and test func-
tions need be differentiated only once compared to the sec-
ond derivatives present in the strong form. The space of test
functions is V = H LL

1 0( , ) ≡ {σ ∈ H1(0, L) | φ(0) = 0}, so that
for all φ(x) ∈ V,

(22)

The solution u(t, x) to expression (22) defines the longitu-
dinal displacements about the prestressed position. Once the
displacements are computed, the strains are evaluated by tak-
ing derivatives with respect to position, ε(t, x) = ∂u/∂x(t, x),
and the material stresses σ(t, x) are calculated directly from
Equation (21). Note that the stress at the rod end σ(t, L) may
be equivalently calculated from the boundary condition
σ(t, L) = (1/A)[–kLu(t, L) – cL(∂u/∂t)(t, L) – mL(∂2u/∂t2)(t, L)].

5. TRANSDUCER MODEL SUMMARY

In the presence of both an applied magnetic field H and
stress σ, the total magnetization is dictated by the superposi-
tion of the field- and stress-dependent components given by
Equations (13) and (18). For implementation purposes, how-
ever, we consider the alternative approach in which the irre-
versible magnetization Mirr (t, x) is computed first and added

to the reversible component Mrev(t, x) to give the total magne-
tization M(t, x). The superposition of expressions (10) and
(16) leads to the differential equation for the time rate of
change of irreversible magnetization:

(23)

To characterize dH/dt, it is necessary to quantify first the
quasistatic field H(t, x) generated by the solenoid when a cur-
rent I(t) circulates through it. To this end, it is often assumed
that H(t) = (No. turns/length)I(t). However, this model is only
valid in the idealized situation of a lossless, infinitely long
solenoid in a lossless magnetic circuit. Experimental evi-
dence on research transducers indicates that H = nI is highly
inaccurate because it neglects solenoid end effects, demag-
netizing factors, ohmic losses, and flux leakage. One possi-
ble approach consists of identifying H-I by solving numeri-
cally Ampère’s law or the Biot Savart law, using for instance
finite element methods. For purposes of implementing the
coupled magnetomechanical model, an experimental ap-
proach is followed which consists of experimentally deter-
mining the magnetic circuit behavior via a position-depend-
ent filter Ψ(x) which accounts for the above-mentioned
effects. Thus, the time and spatial dependencies of the field
are formulated with the expression

(24)

Upon substitution of Equation (24) into (23), the final
form for the rate of change of irreversible magnetization is
obtained,

(25)

which relates the irreversible magnetization with the current
applied to the transducer and the varying stress arising during
operation.

The reversible magnetization is calculated directly upon
integration and subsequent superposition of Equations (11)
and (17),
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(26)

The total magnetization under the application of both a
field and a stress is then given by

which includes the irreversible and reversible components
given by Equations (25) and (26), respectively. It should be
noted that in the case of constant stress (dσ/dt = 0) or constant
field (dI/dt = 0), the expression reduces to the individual
components characterized by expressions (13) and (18).

After the magnetization M(t, x) arising from the applica-
tion of H(t, x) and σ(t, x) has been identified, the active com-
ponent of strain is computed from Equation (20),

where it is noted that since λ depends on the applied mag-
netic field, it is not homogeneous throughout the rod. Hence,
the magnetostriction varies along x.

The longitudinal rod displacements u(t, x) are computed
by solving Equation (22)

To approximate the solution to this equation, a Galerkin
discretization in x is used to reduce the system to a temporal
system which is then solved with finite difference approxi-
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Table 1. Coupled structural-magnetic model quantifying the
magnetization, strain and stress.



mations. Details regarding the solution method used are pro-
vided in References [11] and [12]. Once the displacements
have been characterized, the strain is computed directly us-
ing the equality

and the corresponding stresses acting on the rod are com-
puted directly from the strain using Equation (21).

The complete elastic-magnetic coupled model is summa-
rized in Table 1. It should be noted that for implementation
purposes it is convenient to assume ε � λ for computing ~α
and α, since the magnetostriction λ and its derivatives with
respect to M can be formulated explicitly.

6. MODEL VALIDATION

In this section, the model summarized in Table 1 is applied
to two distinct example cases: (1) characterization of rod
magnetization and strain output by a magnetostrictive trans-
ducer, and (2) characterization of force generated by a mag-
netostrictive rod under mechanically blocked (or, equiva-
lently, electrically short circuited) conditions.

The first example demonstrates the model accuracy for
quantifying the quasistatic magnetization and strain gener-
ated by a magnetostrictive material when used in a proto-
typical transducer. The performance of the model is evalu-
ated for four combinations consisting of two prestress levels
and two drive current levels. It is shown that while minor
changes in the coupling coefficient α and magnetostriction
parameters γi are necessary to fine tune fits across prestress
levels, a given set of parameters provides accurate fits across
drive levels. The variation in α across prestress levels is ex-
plained by the fact that the anhysteretic magnetization is
stress dependent, and that the shape of the anhysteretic has a
strong effect on the shape of the prevailing magnetization.
Regarding the magnetostriction parameters γi, is is noted that
the domain configuration does vary when the rod is unloaded
and preloaded again for operation at a new prestress value. It
is then expected that these domain configuration changes be
accounted for by variations of parameters γi.

A variety of transducer applications require high forces
of the kind typically associated with mechanically blocked
or near-blocked conditions. Examples of such applica-
tions include shaft clamping in inchworm-type linear motors
[35], mitigation of seismic vibrations in buildings, and deep-
submersion underwater communications. This motivates
the evaluation of the stress calculations provided by the
model. Hence, in the second example, model simulations
of transducer force output are compared with experi-
mental measurements performed under mechanically
blocked conditions [ε(t, L) = 0]. Experimental tests were per-
formed for four different drive current levels, at a constant
prestress. It is shown that a fixed set of parameters provides

accurate characterization of the force produced by a magne-
tostrictive rod.

6.1 Example 1

The model is applied to a Terfenol-D transducer with the
configuration illustrated in Figure 1 and used to characterize
the quasistatic magnetization and displacement produced by
the transducer in response to an applied current I(t). The mea-
sured output from the transducer during operation included
driving voltage and current, voltage induced in the pickup
coil, and rod displacement. The prestress levels were –6.9
and –10.35 MPa (–1.0 and –1.5 ksi), and the drive current
levels were 4.0 and 16.0 A zero-pk. The operating tempera-
ture was monitored with a thermocouple and was confined to
the range 21–28°C.

The driver was a 115 mm (4.53 in) long, 12.7 mm (0.5 in)
diameter, monolithic Tb0.3Dy0.7Fe1.92 rod manufactured us-
ing the modified Bridgman process. The magnetic field exci-
tation H(t) was provided by a surrounding solenoid, while an
innermost one-layer pickup coil was used to collect magnetic
induction measurements. The 1 Hz excitation frequency was
provided by a Tektronix 2642A Personal Fourier Analyzer
connected to a Techron 7780 amplifier operating in current
control mode. The magnetic induction B(t) was calculated
by integration of the pickup coil signal Vpu. Following the
Faraday-Lenz law of electromagnetic induction, B(t) =
–1/(Npu Apu) ¥ Ú 0

t
puV d( )τ τ, where Apu is the mean cross sec-

tional area of the pickup coil and Npu is the number of turns in
the pickup coil. The magnetization used for comparison with
model simulations was computed from the magnetic consti-
tutive equation M = (B/µ0) – H.

Flux closure was provided by 1018 steel end caps and a cy-
lindrical Alnico V permanent magnet, which was demagne-
tized to obtain unbiased operation. A slider and a Belleville
compression washer completed the magnetic circuit.

The compressive preloading necessary to avoid tensile
stresses on the moderately brittle Terfenol-D rod was pro-
vided by a steel bolt located within the transducer base. The
bolt pushed the rod against the compression washer, whose
stiffness kmps was calculated from the linear region of its
force-displacement characteristic curve. A PCB 208A13
force transducer located between the prestress bolt and the
Terfenol-D rod was used during preloading to obtain the de-
sired preload value.

The external load was a mass threaded onto the displace-
ment plunger which weighed mL = 0.5 kg. The load displace-
ment (i.e., the transducer output) was measured with a Lucas
Schaevitz LVM-110 linear variable differential transducer
equipped with a 0.25-MHR probe. The corresponding bulk
strain, used for comparison with model simulations, was
computed by dividing this displacement by L.

For identification of the Ψ filter, a series of flux measure-
ments was conducted with a Hall effect probe (F. W. Bell
9500 series), located within the transducer to allow charac-
terization of end effects, demagnetizing factors, and mag-

A Coupled Structural-Magnetic Strain and Stress Model for Magnetostrictive Transducers 145

( , ) ( , )
u

t x t x
x

ε ∂=
∂



146 MARCELO J. DAPINO, RALPH C. SMITH, LEANN E. FAIDLEY AND ALISON B. FLATAU

Figure 5. Experimental data collected from a Terfenol-D transducer, at the prestress
values –6.9/–10.35 MPa and the drive current levels 4.0/16.0 A zero-pk. (a) Magnetiza-
tion and (b) output strain.
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Figure 6. Magnetization results: comparison of model simulations ( ) with experimental data (– . –). Constant values of the
model parameters were a = 7000 A/m, k = 7000 A/m, c = 0.2, α = 0.045, E = 30 GPa, ρ = 9250 kg/m3, γ1 = 2.95 × 10–15 m2/A2,
γ2 = –6 × 10–28 m4/A4, ξ = 2.45 × 104 Pa, cD = 1 × 106 Ns/m, cL = 1 × 103 Ns/m, kL = 2.5 × 106 N/m, mL = 0.5 kg, L = 0.155 m, D =
0.0127 m.
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Figure 7. Strain results: comparison of model simulations ( ) with experimental data (– . –). Constant values of the model pa-
rameters were the same as in Figure 6, except α = 0.065, γ1 = 3.12 × 10–15 m2/A2.



netic circuit nonlinearities. A DC current was used to excite
the solenoid, and the flux density Bsur(x) was measured adja-
cent to the surface of the rod at locations 5 mm apart over a
longitudinal line. Since in air B = H in the CGS units system,
the flux density is equal to the magnetic field, Bsur(x) =
Hsur(x). The correction functional was then computed from
Ψ(x) = Hsur(x)/I. Additional details regarding the experimen-
tal analysis are provided in References [11] and [12].

The magnetization and strain calculations measured from
the experimental transducer are shown in Figure 5. It should
be noted that the reversal of strain magnitude observed across
drive levels when the prestress is changed from –6.9 MPa to
–10.35 MPa is consistent with the data reported in Reference
[36].

The performance of the model is illustrated in Figures 6
and 7. The model provides in all cases very accurate fits of
both the measured rod magnetization and transducer strain
output. It should be noted that the model does not provide a
mechanism to account for the contraction observed in the
magnetization data at low field levels, which explains the dis-
crepancy observed in the 4.0 A cases. It is expected that a
higher order truncation of the magnetostriction expansion
should translate into improved strain fits.

6.2 Example 2

The model is now used to characterize the force output by
a 19.05 mm (0.75 in) long, 8.89 mm (0.35 in) diameter,

monolithic Tb0.3Dy0.7Fe1.92 rod. To maintain mechanically
blocked conditions during operation, a testing clamp was de-
vised that consists of a stainless steel base which houses the
rod and magnetic circuit assembly, and a stainless steel cap
which houses a PCB 208A13 force transducer. The cap is at-
tached to the base via stainless steel bolts, which are tight-
ened until the desired prestress value is read from the force
transducer.

The magnetic field H(t) is supplied by a 400-turn solenoid,
which is calibrated using a Hall effect probe in the fashion
described in Example 1. The magnetic circuit was completed
by two magnetic steel end pieces and a surrounding magnetic
steel cylinder.

The tests were performed at a prestress value of –6.9 MPa
for four drive current levels: 0.5, 1.0, 1.5, and 2.0 A zero-pk.
The excitation signal was 1 Hz in all cases. The operating
temperature remained in all cases between 21–30°C. The
force versus magnetic field measurements are shown in Fig-
ure 8.

Although in theory the clamp’s stiffness should be infinity,
the manufacturer’s specifications for the force transducer
were commensurate with that of the Terfenol-D rod itself. To
model this condition, the specified stiffness value was as-
signed to the boundary spring, kmps = 1.75 × 108 N/m. In a
similar fashion, the dynamic mass was weighed and assigned
to the corresponding model mass load, mL = 5 kg.

It should be noted that the elastic modulus under blocked
conditions (or equivalently, under constant magnetic induc-
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Figure 8. Force versus magnetic field generated by the Terfenol-D rod under blocked conditions, for
the drive levels 0.5, 1.0, 1.5, and 2.0 A zero-pk. The prestress was σ0 = –6.9 MPa.



tion conditions) represents the intrinsic material stiffness and
is the largest value that the material can achieve for a given
operating condition. The value of the elastic modulus used in
these simulations was E = 60 GPa, in accordance with the ex-
perimental measurements reported in Reference [34].

Model simulations and experimental measurements are
compared in Figure 9. The model performance is extremely
satisfactory at all drive levels, both in quantifying the ampli-
tude of the force and the hysteresis present in the data. It is
emphasized that the same set of values for model parameters
was used in all cases.

7. CONCLUDING REMARKS

A coupled magnetomechanical model for the magnetiza-
tion and strain behavior of magnetostrictive transducers in

response to applied currents has been presented. The model
includes the nonlinearities and hysteresis present in the mag-
netic response of magnetostrictive materials, and the linear
elastic effects which are characteristic of high-signal magne-
tostrictive transduction. The magnetic and structural regimes
are coupled through the magnetization, which varies in re-
sponse to both the externally applied magnetic field and the
stress field which arises as the transducer actuates upon an
external load.

The model was constructed in three steps. In the first, the
mean field theory of Jiles and Atherton was used as a basis
for quantifying the relation between the current input to the
transducer and the magnetization. The magnetization arising
from variations in stress was also addressed, by considering a
“law of approach” to the anhysteretic magnetization. The re-
sulting magnetization model provides a representation of the
hysteresis and saturation effects taking place when domain
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Figure 9. Comparison of model simulations ( ) with experimental data (– . –) at four drive levels and prestress of σ0 = –6.9 MPa.
The constant values of the model parameters were a = 4000 A/m, k = 5000 A/m, c = 0.4, α = 0.001, E = 60 GPa, ρ = 9250 kg/m3,
γ1 = 7 × 10–16 m2/A2, γ2 = –1 × 10–29 m4/A4, ξ = 2.45 × 104 Pa, cD = 1 × 105 Ns/ms, cL = 1 × 103 Ns/m, kL = 1.75 × 108 N/m, mL = 5
kg, L = 0.019 m, D = 0.009 m.



walls attach to and unattach from pinning sites in the mate-
rial. Pinning sites provide a mechanism for restraining the
motion of domain walls as the field is cycled, and hence for
magnetization hysteresis. The stress acting on the material
produces domain wall unpinning and hence causes the mag-
netization to approach the anhysteretic state. In the second
step, the magnetostriction due to the rotation of magnetic
moments was quantified by means of a quartic model formu-
lated in terms of the magnetization. Finally, force balancing
was posed in the form of a PDE equation which includes the
magnetostriction, system compliance, internal damping, and
boundary conditions given by the transducer design. The so-
lution to this PDE provides the material displacements and
forces produced by the transducer.

The examples demonstrated the accuracy of the model in
two cases typical of magnetostrictive transducer applica-
tions. In the first, the magnetization and strain output by a
typical actuator were characterized at two drive levels and
two prestress levels. A near-constant set of parameters was
used across drive levels and prestresses. In the second exam-
ple, the force output by a magnetostrictive rod operated un-
der mechanically blocked conditions was characterized for
four drive levels and fixed prestress. A constant set of model
parameters provided accurate simulations across drive lev-
els.
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