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ABSTRACT We measure interface trap density near the conduction band edge and fixed oxide charge in
commercial, packaged, 4H-SiC 1.2 kV planar Power MOSFETs. These traps determine the device threshold
voltage, performance, and reliability. The subthreshold slope is used to extract interface trap density at the
SiO2-SiC interface near the conduction band edge from three vendors, which varies from 5.8 × 1012 to
9.3 × 1012 cm−2·eV−1. Good agreement is obtained with threshold voltage measurements from 25◦C to
150◦C as devices with the highest interface trap densities exhibit the largest threshold voltage reduction over
temperature. Fixed positive oxide charge, Not , balanced with interface traps and substrate doping, varies
from 3.3×1012 cm−2 to 3.7×1012 cm−2. At high temperatures, electrons captured in interface traps emit to
the conduction band and lower the threshold voltage together with fixed oxide charges, which are as high as
interface trap densities. Thus, device design should be considered for a suitable threshold voltage to ensure
the device does not operate in a Normally-ON condition and to protect against gate voltage surges. Therefore,
more focus on characterization and reduction of the interface trap density and fixed oxide charge is needed
to enable further improvement in effective electron mobility of SiC MOSFETs.

INDEX TERMS Silicon carbide (SiC), power MOSFET, oxide reliability, interface trap density, oxide
charge, subthreshold slope, threshold voltage.

I. INTRODUCTION
SiC Power MOSFETs are efficient switching devices with
low switching losses and high-power density over an
extended temperature range [1]–[3]. SiC, similar to Si, uses
thermally grown silicon dioxide (SiO2) as a native oxide.
However, the gate oxide of SiC MOSFETs exhibits a higher
density of trapped charges at or near the SiC-SiO2 interface.
The high density of electrons in the interface traps (Dit)
near the conduction band edge, along with fixed positive
charges, Not , near the SiC-SiO2 interface create a design
challenge for threshold voltage and cause reduced electron
density in the conduction band. Furthermore, scattering of
electrons in the channel results in a low effective electron
mobility, a reduced current drive, and an increase in channel
and ON resistance [4]–[7]. Post-oxidation annealing (POA)
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techniques with nitric oxide (NO), nitrous oxide (N2O),
phosphosilicate glass (PSG), and phosphorus oxychloride
(POCl3) have been employed to improve gate oxide quality
and increase inversion electron mobility by passivating the
SiC-SiO2 interface [8]–[16]. Recently, Kobayashi et al. [17]
and Takichi et al. [18] have reported new approaches to
reduce Dit and improve effective mobility by preventing oxi-
dation of SiC during gate oxide formation.

The combination of extremely low intrinsic carrier density
combined with p-base doping places the Fermi level near
the conduction band edge in strong inversion, where the
high values of Dit affects the threshold voltage and device
reliability. The issues arising from the high Dit become com-
plex when devices with dissimilar Dit operate at elevated
temperature. Electrons trapped by interface traps emit back
into the conduction band. This results in an uneven thresh-
old voltage reduction and current drive. In a power module,
where multiple devices are connected in parallel to share the
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current, the uneven threshold voltage reduction in paralleled
devices results in uneven current sharing. The nonuniform
current sharing can affect the long-term reliability of power
modules. Even with reduction of Dit , the electron mobility
is degraded by the scattering from the high density of fixed
positive charges near the SiC-SiO2 interface. Although the
origin of oxide charge has not been determined, a SiC-SiO2
transition layer with carbon clusters formed during the ther-
mal oxidation process may be responsible for the donor-like
defects [19]–[22].

In our work, we determine Dit and Not in commercially
available 1.2 kV SiC Power MOSFETs. Transfer current-
voltage (I-V) characteristics in the subthreshold region are
used to extract the Dit near the SiC conduction band edge,
which are confirmed with high temperature measurements of
the device threshold voltage. We extract Not for an assumed
p-base doping density.

II. EXTRACTION METHOD FOR Dit
In order to examine the trap density at the interface of
SiO2-SiC, we use the subthreshold characteristics. This per-
mits the extraction of energy-dependent trap density by incor-
porating the surface potential derived from the subthreshold
characteristics. We begin with the drain current in the sub-
threshold region [23], [24]

IDS = I0e
qVGS
nkT

(
1− e

−qVDS
kT

)
= IDMe

qφs
kT (1)

where I0 is the current at VGS = 0 and VDS � kT/q. IDM is
the maximum drain current at zero surface potential (φS = 0)
which incorporates VDS . The ideality factor n is given as

n =
q

2.3kT

(
∂logIDS
∂VGS

)−1
=
dVGS
dφs

= 1+
CD + Cit
Cox

(2)

where CD is the depletion capacitance, Cox is the oxide
capacitance and Cit is the interface trap capacitance per unit
area with the interface trap density

Dit (φs) =
Cit
q

(3)

In practice, Dit is extracted at several gate voltages, as a
function of surface potential, within the subthreshold region.
Fig. 1 shows the energy band diagram under weak inversion
where the Fermi level (EF ) is slightly above the intrinsic
Fermi level at the surface (EiS ).

The traps in the range EF − EiS are filled with electrons
and this range extends as the applied gate voltage increases
to bring EF closer to the conduction band at the surface, ECS .
The onset of inversion at φS = 2φF places the EF near the
edge of ECS , where there is an increasing density of interface
traps. The amount of the interface charge varies as the surface
potential changes with the gate voltage. The surface potential
is related to trap level, ET0, by the following expression:

ECS − ET0 =
Eg
2
− q (φs − φF ) (4)

where φF is the Fermi potential. Both φS and φF are positive
quantities in (4). The drain current value at a certain gate

FIGURE 1. Energy band diagram of the SiC-SiO2 system in weak inversion.

voltage at a fixed value of VDS can be expressed as the last
term in (1). The threshold voltage is set at φS = 2φF in (1),
such that

IDS
(
2φF

)
= IDMe

2qφF
kT (5)

Combining (1) and (5) leads to φS with the current level
IDS (φS ) measured at a certain gate voltage as

φs = 2φF − 2.3
kT
q
log

IDS
(
2φF

)
IDS (φs)

(6)

where the surface potential is in the range φF < φS < 2φF .
IDS (2φF ) is the drain current at threshold voltage which
is determined by the linear extrapolation method from the
measurement data. Finally, from (4) and (6), ECS − ET0 is
expressed as a function of surface potential:

ECS − ET0 =
Eg
2
− q

(
φF − 2.3

kT
q
log

[
IDS

(
2φF

)
IDS (φs)

])
(7)

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. INTERFACE TRAP DENSITY DISTRIBUTUION
EXTRACTION
We examine commercial SiC planar power MOSFETs. The
devices under test (DUTs) are from three vendors, referred to
as C, D, and E, which are rated at 1.2 kV and 7 – 12 A. Five
devices from each vendor are selected with threshold voltage
variation less than 0.05 V. All the electrical characterizations
are performedwith aKeysight B1505A analyzer. Fig. 2 shows
IDS–VGS characteristics with a drain voltage of 0.1 V at room
temperature. Threshold voltage at φS = 2φF is determined
by a linear extrapolation (LE) method [25]. From the sub-
threshold curves, the ideality factors n can be determinedwith
(2) as a function of VGS . Several gate voltages are selected
in the subthreshold region. Dit , as a function of trap energy,
is obtained with (3) and (7). To determine Cox , oxide thick-
nesses are estimated by voltage ramp-to-breakdown mea-
surements at room temperature as shown in Fig. 3. With an
oxide breakdown field of 11 MV/cm [26], [27], DUT oxide
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thickness, from vendors C, D, and E, are 456, 452, and 389 Å,
respectively. A p-type base doping concentration, NA = 2 ×
1017 cm−3 has been assumed for all samples.

FIGURE 2. IDS -VGS transfer characteristics at room temperature.

FIGURE 3. Voltage ramp-to-breakdown (V-ramp) measurements on DUTs.

Fig. 4 shows a sensitivity analysis of the extraction of
interface trap density with varying p-base doping concentra-
tions and oxide breakdown fields which affect the estimated
gate oxide thickness. A small error can be incurred with this
method since the p-base doping profile is not known for each
vendor. Dit distributions of devices from vendors C, D and
E are shown in Fig. 5. For each vendor, Dit distributions of
five devices are overlapped which shows a small deviation
across the devices from the same vendor. The Dit increases
exponentially near the conduction band edge. The chan-
nel electrons are captured and scattered by these interface
traps during device operation and their effective mobility is
reduced, which decreases the drive current since SiC Power
MOSFETs operate in the region ECS − ET0 ≤ 0.1 eV,
where Dit is high. At ECS − ET0 ∼= 0.1 eV, where inversion
occurs, the average Dit values from the vendors C, D and E
are 9.3 × 1012, 6.8 × 1012, and 5.8 × 1012 cm−2 · eV−1,

FIGURE 4. Sensitivity analysis of interface trap density with varying
(a) p-base doping concentration and (b) oxide breakdown field
(vendor D).

respectively. Vendors D and E might have very similar inter-
face trap distribution since there can be a variation in p-base
doping concentrations whereas vendor C appears to be quite
different even at deeper energy levels. The post oxidation
anneal (POA) of the gate oxide plays a role in determining
the Dit . Studies on the SiO2-SiC interface demonstrate N2O
andNO anneal work best for the Si-face of 4H-SiC, which has
been used in industry [28], [29]. N2O and NO treated MOS
capacitors, compared with simply oxidized MOS capacitors,
exhibited approximately 83 percent and 90 percent lower Dit
at 0.1 eV below the conduction band, respectively [29]. Our
Dit values are higher than reported values in [29] since the
DUTs are commercial MOSFETs with heavily implanted Al
p-base regions.

B. TEMPERATURE-DEPENDENT THRESHOLD VOLTAGE
Threshold voltages are measured as a function of temperature
in order to study the performance of DUTs with different Dit
values at high temperature. The devices were placed in an
oven and measured at 25◦C intervals from room temperature
to 150◦C. IDS–VGS transfer characteristics as a function of
temperature are shown in Fig. 6 (a). As the temperature
increases, the curves shift in the negative direction in all sam-
ples. Noticeable difference in subthreshold characteristics

149120 VOLUME 9, 2021



S. Yu et al.: Experimental Determination of Interface Trap Density and Fixed Positive Oxide Charge

FIGURE 5. Extracted energy-dependent interface trap density distribution.

between vendors is observed. Subthreshold swing (SS) which
is the inverse slope of the log (IDS ) versus VGS in the sub-
threshold region, is a simple indicator for Dit , as shown
in (2) and (3).

Generally, the SS is higher in devices with larger Dit ,
which shows a gradual subthreshold slope. Fig. 6 (a) shows
devices from vendor C present gradual subthreshold slopes
with larger shift in IDS–VGS curve over the given temperature
range whereas subthreshold slopes of devices from vendor E
are steep and shift over the temperature is smaller. This indi-
cates devices from vendor C have higherDit . Vendor D is not
shown for clarity but is located between the two vendors with
medium subthreshold slope. Fig. 6 (b) shows the threshold
voltage reduction with temperature. Devices from vendor C
show the largest variation in threshold voltage with the tem-
perature change as expected from the variation in I-V curves
in Fig. 6 (a). High threshold voltage at 150◦C for vendor C
may be seen as an advantage from the point of view of safe
operation of the circuit.

When threshold voltage at room temperature is taken as
a reference, the threshold voltage reductions at 150◦C in
devices from vendors C, D, and E are 3.4 V, 2.6 V, and
1.7 V, respectively. The threshold voltage reduction at high
temperature is primarily due to release of trapped electrons in
interface states to the conduction band. The threshold voltage
is defined as

VTH = φGS + 2φF +
√
4εsqNAφF
Cox

−
Qit
Cox
−
QF
Cox

(8)

Consequently, the less negative charges in the interface
traps and more carriers in the conduction band result in
threshold voltage reduction. Threshold voltage reduction
from room temperature to 150◦C, 1VTH , can be described
as

1VTH ∼=
1Qit
Cox

(9)

where variations in QF with temperature is assumed to be
small. The first three terms in (8) involve temperature changes

FIGURE 6. Temperature-dependent (a) IDS -VGS transfer characteristics
and (b) threshold voltages.

due to φF and bandgap narrowing and amount to threshold
voltage reduction of only 0.19 V, 0.19 V, and 0.18 V for
vendors C, D and E, respectively. Thus, the threshold voltage
shift in experimental data is assumed to largely come from
the emission of trapped charges in interface states. Interface
traps per unit area, 1Nit , can be expressed as

1Nit =
∫ φF,RT

φF,HT

Dit (φF ) dφF =
1VTHCox

q
(10)

where the threshold voltage is determined at φS = 2φF .
The Fermi potential change (1φF ) from room temperature
(φF,RT ) to 150◦C (φF,HT ) is depicted in Fig. 7 (a) [30].
At elevated temperature, EF is closer to the Ei at the bulk due
to increasing intrinsic carrier density. Therefore, less band
bending is required to induce a sufficient carrier density in the
conduction band at the surface. Trapped electrons above the
EF emit back to the conduction band by the amount of Fermi
potential change which results in fewer negative charges at
the interface.1φF is the same for all samples as 0.085V since
we assume the same p-base doping for all DUTs. The effect
of Fermi-Dirac distribution broadening at high temperature is
neglected in the calculation.
Nit can be calculated by two methods, either by inte-

grating Dit within the potential change using the Dit
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FIGURE 7. (a) Fermi potential difference at room temperature and
elevated temperature are shown in energy band diagrams at φS = 2φF
with temperature-dependent Fermi-Dirac function f (E) and (b) Extended
interface trap density distribution towards the conduction band edge.

distribution obtained in the previous section A (method A),
or from temperature-dependent threshold voltage reduction
(method B). Table 1 shows the extracted Nit values from
two methods. Nit extracted from method B is indeed the
integration of Dit from the conduction band edge where EF
locates at room temperature (ECS − ET0 ∼= 0 eV) to 1φF
(ECS − ET0 ∼= 0.085 eV).

Therefore, in order to integrate Dit from the conduction
band edge through1φF , method A has been further extended
to estimate Dit in the strong inversion. IDS (2φF ) in (7)
is raised close to the inversion point, ECS − ET0 ∼= 0 eV.
Nit from method A in Table 1 is the integrated areas under
each Dit curve in Fig. 7 (b). Nit values extracted from both
the techniques are in good agreement.

The number of fixed charges per unit area, Not (=QF/q),
is also calculated from (8) by subtracting the contribution
of interface charges at room temperature. Here we assumed
that the negative trapped charges within 0.3 eV of the con-
duction band contribute most of the negative charge in Nit .
Therefore, integration is performed from ECS to ECS – 0.3 eV
for each vendor in Fig. 7. The value assumed for the p-base
doping NA is 2 × 1017 cm−3 as mentioned previously.
Extracted Nit and Not values from DUTs are summarized
in Table 1.

TABLE 1. Extracted Nit and Not values from DUTs.

Although this method may provide relative comparison
between devices and across the vendors, extracted values are
not highly accurate compared to the real values since occu-
pied trap density, Nit , is unlikely to be zero at T = 150◦C.
Therefore, our experimental condition gives a lower bound
on Nit and Not .

IV. CONCLUSION
We describe a method to extract interface trap density, Dit ,
and oxide trap density, Not , on 1.2 kV commercial, pack-
aged 4H-SiC Power MOSFETs. There is a delicate balance
between the interface and oxide trap densities together with
the design of the impurity profile to meet performance and
reliability at room and elevated temperatures. These devices
are under consideration for electric vehicles (EVs) and solar
energy applications.

A subthreshold slope method, combined with temperature
measurements of threshold voltage, is used to determine the
above-mentioned trap densities, as shown in Table 1. Since
process information is often not available from vendors,
in our studies we estimated a gate oxide thickness with ramp-
to-breakdown measurement and assumed a p-base doping of
2× 1017 cm−3. The results in Table 1 indicate the significant
differences among three vendors. Five devices, each from
three different vendors C, D, and E, are used in the study.
For example, a threshold voltage reduction over a temperature
range from 25◦C to 150◦C of 3.4 V for vendor C is correlated
with the highest integrated interface trap density. In terms
of device operation, under fast switching with high switch-
ing losses, increasing junction temperatures cause a negative
shift in threshold voltage. The threshold voltage should be
carefully chosen to be higher than a critical value for safe
operation of the circuit.

At high temperatures, electrons trapped in interface states
emit to the conduction band and lower the threshold volt-
age together with fixed oxide charges, which are as high
as interface trap densities. Thus, the impurity profile must
be adjusted to maintain a threshold voltage to ensure the
device does not operate in a Normally-ON condition and to
protect against gate voltage surges. Therefore, more focus on
characterization and reduction of the interface trap density
and fixed oxide charge is needed to enable further improve-
ment in effective electron mobility of SiC MOSFETs. More-
over, in high power applications where multiple MOSFETs
are paralleled within a power module and multiple power
modules are used, current sharing across devices should be
uniform for long-term reliability. Otherwise, devices with
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low threshold voltage will carry a larger share of the total
current.
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