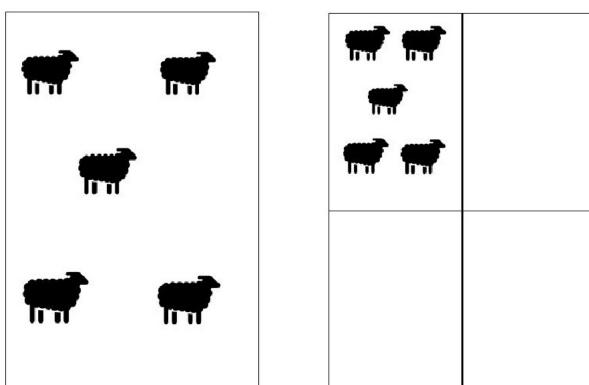
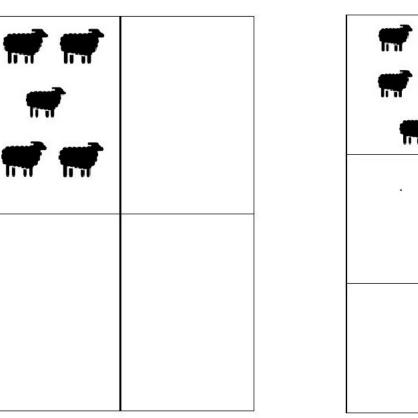
The Ohio State University / College of Food, Agriculture, and Environmental Sciences / Department of Animal Sciences

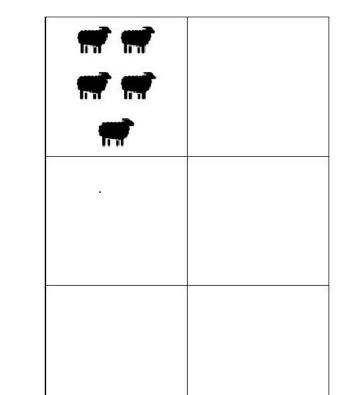
Comparison of Continuous vs. Management Intensive Grazing

DeVaughn Davis, Nathaniel Kinney, Kristy Payne, Dalton Shipley

Introduction


 There are different cost and labor variables to each grazing system, but the most important outcome for every farm is increased production. Each producer has to make a decision on how to graze their sheep in order to increase their production and efficiency.


Grazing Systems


- Continuous grazing is when sheep graze in a pasture with no rotations and only a perimeter fence.
- Simple rotational grazing involves more than one area of pasture that the sheep are rotated after a set period of time.
- Management Intensive Grazing (MIG) involves smaller areas of pasture called paddocks where sheep are rotated more frequently.

Continuous

Simple Rotational Management Intensive

- Sheep are rotated based on length of forage, stocking density, and pasture quality.
- Begin grazing a pasture when plants are 6-10 inches in height because at this stage forages have higher Total Digestible Nutrients (TDN) and lower Neutral Detergent Fiber (NDF).4
- Before forages reach a height of 3 inches, sheep are removed to allow for maximum plant growth of 1200-1600 lbs./ac of dry matter leaf area² and to prevent the invasion of weeds.
- Ohio pastures typically require 10-60 days to recover depending on the amount of rainfall, soil fertility, temperature.²

Continuous Grazing

Benefits:

- Low financial input
- Low capital costs
- Minimal labor

- Reduction in yield per acre
- Susceptibility to overgrazing
- Uneven pasture usage / manure distribution
- Sporadic overgrowth or forages and weeds
 Low stocking rate

Management Intensive Grazing

Benefits:

- Increased pasture yields
- Higher quality feed
- Increased stocking rate
- Improved distribution of manure nutrients
- Improved parasite management
- Improved income

Costs:

- Increased labor / management
- Initial costs for waters / fencing

Utilization % Useable Strategy Annual Yield Yield (tDM/ac) (tDM/ac) 3.6 60 Continuous | 6 65 Rotational 5.85 Paddock 80

*tDM - Total Dry Matter

Analysis:

Analysis based on⁶:

30 early lactating ewes @154 lbs. requires a DMI of 4% BW Stocking Rate 0.75 AU/ac 5.2 t needed for an 8 week period Orchard grass/ mix hay valued @ \$150 / t

Continuous:

3.6 t @ \$150 t = \$540 value on continuous grazing 3.6 - 5.2 t = -1.6 t (-\$240/ac for 8 weeks)

Enough forage for 39 days (5.5 wks.)

7.2 t @ \$150 t = \$1080 value on MIG grazing 7.2 t - 5.2 t = + 2 t (+\$300/ac for 8 weeks)

Can graze for 21 more days / ac for 30 lactating ewes

Conclusion

 MIG is one solution for maximizing annual yield and utilization of pastures. MIG is a key strategy for improved returns due to increased stocking rate, acreage yield, nutrient management, and higher quality forages.

Keys to Success

- Begin grazing pasture when forages are 6-10 inches in height
- Do not graze forages below 3 inches in height
- Let paddocks recover for 10-60 d
- Adapt to environmental conditions

BIBLIOGRAPHY

(1)"A Great Grazing Systems Planning Guide." On Pasture, Sept. 2014, onpasture.com/2014/09/01/-great-grazingsystems-planning-guide/.

(2) Hendershot, Bob. "Pasture: Evaluation and Management of Existing Pasture." OSU Sheep Team, 13 Mar. 2018.

(3) "Managing and Utilizing Pasture and Harvested Forages for Sheep ID-153." Purdue Forage Information.

(4) Planning Grazing Strategies for Better Returns. AHDB Beef and Lamb. (5) "Rotational Grazing Systems." Pasture Project, pastureproject.org/pasture-management/rotational-

grazing-systems/. (6) "Sheep Grazing Management." VCE Publications | Virginia Tech, pubs.ext.vt.edu/410/410-366/410-366.html.