Thermodynamics Midterm 1 Review
 Sigma Gamma Tau

Section 1:
Topics:

- Energy Balance
- Pv and Tv Diagrams

Equations:

- $v=\frac{V}{m}=\frac{1}{\rho}$
- v : Specific Volume, V: Volume, m: Mass, ρ : Density
- Remember that specific volume and density account for the same intensive property.
- Force Equilibrium for Pressure: $\sum F=0=P_{1}+\sum \Delta P=P_{2}$
- Note that the units here allow for cross sectional area to cancel out, so the equation becomes only a function of height as a distance.
- $\Delta P=\rho \Delta h g$, or density times change in height times acceleration due to gravity.
- Pick a starting point, moving down is a positive ΔP and vice versa.
- Energy: e $=\mathrm{u}+\mathrm{ke}+\mathrm{pe}$
- u: specific internal energy, ke: specific kinetic energy, pe: specific potential energy
- For a fixed, closed system $\mathrm{KE}=\mathrm{PE}$
- Mass Flow: $m=\rho A V$
- $m^{\prime}=$ mass flow
- Specific pressure energy: $e=P v$
- Energy Balance: $\Delta E_{\text {sys }}=\Delta E_{i n}-\Delta E_{\text {out }}=\Delta U+\Delta K E+\Delta P E$
- Stationary System: $\Delta E_{\text {in }}-\Delta E_{\text {out }}=\Delta U$
- Primary Form: $\Delta E_{\text {sys }}=\left(Q_{\text {in }}-Q_{\text {out }}\right)+\left(W_{\text {in }}-W_{\text {out }}\right)+\left(E_{\text {mass }, \text { in }}-E_{\text {mass, in }}\right)$
- $\Delta U=m \Delta u$
- Constant pressure: $W_{b}+\Delta U=\left(P_{1} v_{1}+U_{1}\right)-\left(P_{2} v_{2}+U_{2}\right)=\Delta H$
- Mass dependent Δ can be rewritten as $m \Delta$: i.e. $\Delta U=m \Delta u$

Concepts:

- Intensive properties: Independent of mass (Temperature, Pressure, Density, Specific values)
- Extensive properties: Dependant on mass (Mass, Volume, total Energy)
- State Postulate: A state of a system can be completely defined by TWO INDEPENDENT, INTENSIVE PROPERTIES
- Adiabatic: Isentropic and Reversible; No heat transfer across a boundary.
- Stationary System: KE = PE
- PV and TV Diagrams:

(a) T-U diagram of a pure substance

- Critical Point - Point at which the saturated liquid and saturated vapor states are identical.
- Values associated with the critical point (Pcr, Tcr, vcr) can be found using your thermo tables
- Superheated Vapor - Substance where its temperature has exceeded the critical temperature ($\mathrm{T}>\mathrm{Tcr}$)
- Compressed Liquid - Substance where its temperature is below the critical temperature (T $<\mathrm{Tcr}$)
- Following the Ideal Gas Law, Tsat \propto Psat
- When $\mathrm{P}>\mathrm{Pcr}-$ There is no distinct phase change \& no mixture

Practice Problem 1:
A chip in a circuit radiates heat at $50 \mathrm{KJ} / \mathrm{min}$. Additionally two fans blow cool air over the circuit, each cooling at a rate of 45 W . If the temperature of the circuit rose enough to have a total energy change in the system of 15 W , how much heat is the rest of the circuit radiating. Give your answer in J/s. [ANS: 21.67]

Practice Problem 2:
A rigid tank contains 50 kg of saturated liquid water at 90 degrees Celsius. Determine the pressure in the tank and the volume of the tank. [ANS: $70.183 \mathrm{kPa} ; 0.0518 \mathrm{~m}^{\wedge} 3$]

$$
\begin{aligned}
& Q_{\text {in }}=50 \mathrm{k} F_{\text {min }}+x=83.33 \mathrm{~J} / \mathrm{s}+x \\
& Q_{\text {cut }}=3(\mathrm{us}) \mathrm{w}=90 \mathrm{w} \\
& \Delta u=15 \mathrm{w}
\end{aligned}
$$

$$
\begin{aligned}
83.33+x-90 & =15 \\
x & =21.67 w=21.67 \mathrm{~J} / 5
\end{aligned}
$$

2) Given: $m=50 \mathrm{~kg}$

Find: P \& V

$$
T=90^{\circ} \mathrm{C}
$$

Saturated liquid

$$
P=P_{\text {sat @ a } 0^{\circ} \mathrm{C}}=70.183 \mathrm{kPa} \text { (Table A-4) }
$$

$$
\begin{gathered}
V=V_{f @ a 0^{\circ} \mathrm{C}}=1.036 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad(\text { Table A-4) } \\
\forall=m v=(50)\left(1.036 \times 10^{-3}\right) \\
\forall=0.0518 \mathrm{~m}^{3}
\end{gathered}
$$

Section 2:

- Liquid, Saturated, and Vapor States
- Reading Thermodynamic Tables

Chapter 3: Properties of a Pure Substance

3.1: Pure Substance

- Pure substance: fixed (homogeneous) chemical composition throughout
- 3 phases: solid, liquid, and vapor
- Latent energy: amount of energy absorbed or released during a phase-change process.
- There is no increase in temperature during a phase change.

3.3: Phase-change Processes of Pure Substances

- Compressed liquid: a liquid that is not about to vaporize.
- Saturated liquid: a liquid about to vaporize.
- Saturated liquid-vapor mixture: the liquid and vapor phases coexist in equilibrium.
- Saturated vapor: a vapor about to condense.
- Superheated vapor: a vapor not about to condense.
- Saturation temperature ($T_{\text {sal }}$): the temperature at which a pure substance changes phase.
- Saturation pressure $\left(P_{s a t}\right)$: the pressure at which a pure substance changes phase.
- Phase change of water diagrams:

3.4: Property Diagrams for Phase-Change Processes

- T-v diagrams
- $\mathrm{P}-\mathrm{v}$ diagrams
- Critical point: Point at which the saturated liquid and saturated vapor lines are the same.
- $\mathrm{P}>\mathrm{P}_{\text {cr }}$: There is no distinct phase change, no mixture, and only one phase exists.
- $\mathrm{T}>\mathrm{T}_{\mathrm{cr}}$: Superheated vapor.
- $\mathrm{T}<\mathrm{T}_{\text {cr }}$: Compressed liquid.
- $\mathrm{P}_{\mathrm{cr}}, \mathrm{T}_{\mathrm{cr}}$, and v_{cr} are in Table A-1 for various substances.

3.5: Property Tables

- Quality of a Mixture
- $x=\frac{m_{\text {vapor }}}{m_{\text {total }}}$
- $\mathrm{x}=0$ means no vapor \rightarrow saturated liquid
- $\mathrm{x}=1$ means 100% vapor \rightarrow saturated vapor
- For unsaturated conditions, the quality x is meaningless.

- Total volume: $V_{\text {total }}=V_{\text {fluid }}+V_{\text {gas }}$
- Total mass: $m_{\text {total }}=m_{\text {fluid }}+m_{\text {gas }}$
- Average specific volume $v_{\text {avg }}=v_{f}+x\left(v_{g}-v_{f}\right)=v_{f}+x v_{f g}$
- Find specific volume values in the saturated water tables (A4 and A5)
- Average internal energy $u_{\text {avg }}=u_{f}+x u_{f g}$
- How to tell if it's a superheated vapor or a compressed liquid?
- For a superheated vapor:
- For a given $\mathrm{T}, \mathrm{P}<\mathrm{P}_{\text {sat }}$
- For a given $\mathrm{P}, \mathrm{T}>\mathrm{T}_{\text {sat }}$
- $(\boldsymbol{v}, \mathrm{u}, \mathrm{h})>(\boldsymbol{v}, u, h)_{g}$
- Use Table A-6
- For a compressed liquid:
- For a given $\mathrm{T}, \mathrm{P}>\mathrm{P}_{\text {sat }}$
- For a given $\mathrm{P}, \mathrm{T}<\mathrm{T}_{\text {sat }}$
- $(\boldsymbol{v}, u, h)<(\boldsymbol{v}, u, h)_{f}$
- Use Table A-7, but if there is no data use Table A-4. The liquid properties do not change much with pressure.

3.6: The Ideal-Gas Equation of State

- Ideal gas equation of state: $P v=R T$
- Relate two different states with $\frac{P_{1} v_{1}}{T_{1}}=\frac{P_{2} v_{2}}{T_{2}}$
- Water vapor can be approximated as an ideal gas at pressures below 10 kPa

An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160 kPa . Determine (a) the temperature, (b) the quality, (c) the enthalpy of the refrigerant, and (d) the volume occupied by the vapor phase

$$
\begin{aligned}
& V=80 L \cdot\left(0.001 \frac{\mathrm{~m}^{3}}{\mathrm{~L}}\right)=0.080 \mathrm{~m}^{3} \\
& m=4 \mathrm{~kg} \\
& P=160 \mathrm{kPa} \\
& v=\frac{V}{m}=\frac{0.080 \mathrm{~m}^{3}}{4 \mathrm{~kg}}=0.02 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{aligned}
$$

(a) Table A-12 a $P=160 \mathrm{kPa}$

$$
\begin{aligned}
& V_{f}=0.0007435 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
& V_{g}=0.12355 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
\end{aligned}
$$

$V_{f}<V<V_{g} \rightarrow$ saturated mixture

$$
T_{\text {sat }}(\rho=160 \mathrm{kPa})=-15.60^{\circ} \mathrm{C}
$$

(b) $V=V_{f}+x\left(V_{g}-V_{f}\right) \rightarrow x=\frac{V-V_{f}}{V_{g}-V_{f}}=\frac{0.02-0.0007435}{0.12355-0.0007435}=0.157$
(c) Table A-12@ $P=160 \mathrm{kPa}$

$$
\begin{aligned}
& h_{f}=31.18 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& h_{f g}=209.96 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

$$
\begin{aligned}
h & =h_{f}+x h_{f g}=31.18 \frac{\mathrm{~kJ}}{\mathrm{~kg}}+0.157\left(209.96 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right)=64.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
(d) x & =\frac{m_{\text {vapor }}}{m_{\text {total }}} \rightarrow m_{\text {vapor }}=x m_{\text {tot }}=0.157(4 \mathrm{~kg})=0.628 \mathrm{~kg} \\
V_{g} & =m_{g} V_{g}=(0.628 \mathrm{~kg})\left(0.12355 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}\right)=0.0766 \mathrm{~m}^{3}
\end{aligned}
$$

Section 3:

- Work and Power
- Piston-Cylinder

Chapter 4: Energy Analysis of a Closed System

4.1: Moving Boundary Work

- Moving Boundary Work (or Boundary Work) - work done by expansion or compression, often done in a piston-cylinder device.
- Think of a car engine!
- Also commonly called PdV work
- Quasi-equilibrium Process - A system that is close to being at equilibrium at all times.
- This is important for boundary work problems involving engines since they are not actually in equilibrium.
- Differential work done on the boundary:

$$
\delta W_{b}=P d V
$$

- Boundary work is positive during an expansion process and negative for a compression process:
- Total work done on the boundary:

$$
W_{b}=\int_{1}^{2} P d V
$$

- This allows for the area under the curve of a P-V diagram to be used to find the magnitude of the total work. During quasi-equilibrium expansion or compression of a closed system.
- Generalized boundary work relation:

$$
W_{b}=\int_{1}^{2} P_{i} d V
$$

4.2: Energy Balance for Closed Systems

- Energy Balance for Any System Undergoing a Process:

$$
E_{\text {in }}-E_{\text {out }}=\Delta E_{\text {system }}
$$

- The rate form of the energy balance for any system undergoing a process uses an E dot instead.
- For a closed system undergoing a cycle, with identical initial and final end states, the change in energy of the system is zero.
- Energy Balance for Closed System:

$$
\begin{gathered}
Q_{\text {net,in }}-W_{\text {net,out }}=\Delta E_{\text {system }} \\
Q_{\text {net }, \text { in }}=Q_{\text {in }}-Q_{\text {out }} \\
W_{\text {net }, \text { out }}=W_{\text {out }}-W_{\text {in }}
\end{gathered}
$$

- Heat is assumed to be transferred into the system and work is assumed to be done by the system traditionally.

4.3: Specific Heats

- Specific Heat - The energy required to raise the temperature of a unit mass of a substance by one degree.
- Two kinds of specific heats:
- Specific Heat at Constant Volume

$$
c_{v}=\left(\frac{\vartheta u}{\vartheta T}\right)_{V}
$$

- Specific Heat at Constant Pressure

$$
c_{p}=\left(\frac{\vartheta h}{\vartheta T}\right)_{P}
$$

- These equations are property relations and are independent of the type of process.

4.4: Internal Energy Enthalpy, and Specific Heats of Ideal Gases

- The change in internal energy for an ideal gas from state 1 to 2 :

$$
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c_{v}(T) d T
$$

- The change in iatermangy for an ideal gas from state 1 to 2:

$$
\Delta h=h_{2}-h_{1}=\int_{1}^{2} c_{P}(T) d T
$$

- With the assumption that the variation of specific heat function is small over a temperature interval, the above equations become:

$$
\begin{aligned}
& u_{2}-u_{1}=C_{v, \text { avg }}\left(T_{2}-T_{1}\right) \\
& h_{2}-h_{1}=c_{p, \text { avg }}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

- Gas Constant Relation:

$$
c_{p}=c_{v}+R
$$

- Specific Heat Ratio:

$$
\gamma=\frac{C_{P}}{C_{v}}
$$

4.5: Internal Energy Enthalpy, and Specific Heats of Solids and Liquids

- For incompressible substances (liquids and solids):

$$
\begin{gathered}
c_{p}=c_{v}=c \\
\Delta u=\int_{1}^{2} c(T) d T \simeq c_{a v g}\left(T_{2}-T_{1}\right) \\
\Delta h=\Delta u+V \Delta P
\end{gathered}
$$

Practice Problem 3
Boundary Work for a Constant-Volume Process

A rigid tank contains air at 500 kPa and 1508 C . As a result of heat transfer to the surroundings, the temperature and pressure inside the tank drop to 658 C and 400 kPa , respectively. Determine the boundary work done during this process.

Heat

Practice Problem 4
Boundary Work for a Constant-Pressure Process
A frictionless piston-cylinder device contain 10 lbm of steam 60 psia and 320 F . Heat is now transferred to the steam until the temperature reaches 400 F . If the piston is not attached to a shaft and its mass is constant, determine the work done by the steam during this process.

A-6
superneated raparn

$$
\omega=P\left(\underline{v_{2}-v_{1}}\right)
$$

$$
\omega_{b}=m P\left(v_{-\omega} \ldots\right) \quad V=m r
$$

$$
(10)(60)(8.3548-7.4863)\left(\frac{1 \text { Btw }}{5.404 p s i a \cdot f r^{3}}\right)
$$

$$
w_{s}=96.4 \mathrm{Bte}
$$

isothermal \rightarrow No change in temperature

$$
\omega_{b}=\operatorname{Pr} \ln \left(\frac{v_{2}}{v_{1}}\right)
$$

Work/Energy

SGT Review
2/14/2024

First Law of Thermodynamics (4.2)
From energy balance,

$$
\begin{aligned}
& E_{\text {in }}-E_{\text {ont }}=\Delta E_{s / 5} \\
& \dot{E}_{\text {in }}-\dot{E}_{\text {out }}=\Delta \dot{E}_{\text {sss }} \\
& E_{\text {in }}=E_{\text {out }}+\Delta E_{\text {ops }}
\end{aligned}
$$

Consider the components of each energy:

$$
\begin{aligned}
& \angle E s y s=K E+P E^{\circ}+I E=\Delta U \\
& E_{\text {in }}=Q \\
& E_{\text {out }}=w
\end{aligned}
$$

Comments on the First Law

$$
\begin{array}{ll}
Q=x u+w & q=\Delta u+w \\
\delta q=d u+\delta w &
\end{array}
$$

Reference Kinetic Theory of Gases if necessary
du \rightarrow internal energy $\propto E[$ males

$u \propto T_{\operatorname{emp}} \Leftrightarrow u(T)$

$$
\Delta u=\frac{3}{2} k_{B} \angle T
$$

$$
\begin{array}{ll}
T_{i}=T_{f} & \Delta u=0 \\
& Q=\Delta u^{2}+w
\end{array}
$$

FIGURE 4-11
For a cycle $\Delta E=0$, thus $Q=W$.

Definition of Work (4.1)
From physics, the definition of work is

$$
\begin{aligned}
& \quad W=F x \\
& \stackrel{F}{\longleftrightarrow} \quad W=\mathbb{F} \cdot x
\end{aligned}
$$

Definition of Work in Thermo

Consider a following piston with constant pressure expansion, ΞP

$$
w=F_{\Delta x}=P \underbrace{P \Delta x}=P \Delta V=P\left(v_{2}^{\Delta x}-v_{1}\right)
$$

Definition of Work in Thermo

Consider a following piston with constant pressure expansion, ΞP

Definition of Work in Thermo

Consider the following piston varying P, V

Definition of Work in Thermo

Definition of Work in Thermo

Looking back at a constant pressure piston,

$$
W=\int_{v_{2}}^{v_{2}} P d V=P \int_{v_{1}}^{v_{2}} d v=P\left(v_{2}-v_{1}\right)
$$

For a constant volume process

$$
x=0
$$

$$
W=0
$$

Definition of Work in Thermo
Constant Temperature process?

$$
\begin{aligned}
w= & \int_{v_{1}}^{u_{2}} P d v \quad \frac{P=\frac{R T}{v}}{=} \begin{aligned}
& \int_{v_{1}}^{v_{2}} R T \frac{d v}{v}=R T \int_{v_{1}}^{v_{2}} \frac{d v}{v} \\
&=R T\left(\ln \left(v_{2}\right)-\ln \left(v_{1}\right)\right) \\
& R T \ln \left(v_{2} / v_{1}\right)
\end{aligned}
\end{aligned}
$$

Definition of Work in Thermo

$$
y=\frac{1}{x}
$$

Polytropic process:

$$
\begin{aligned}
& P \cdot v^{n}=c \\
& P=\int \frac{c}{V^{n}} d v \quad n=-1
\end{aligned}
$$

Definition of Work in Thermo

Path dependency and independency (state quantity)

$$
Q, w, \quad \Delta u
$$

Specific Heats (4.3)
Define C (J/kgK)
req. energy (s) to inc $k, 1 \mathrm{~kg}$

For Constant Volume Process

$$
\begin{aligned}
q_{v} & =c_{v} \Delta T \\
q_{v} & =10^{0}+\Delta u \\
q_{v} & =\Delta u \\
\Delta u & =c_{v} \Delta T
\end{aligned}
$$

Specific Heats (4.3)
Define enthalpy, $H\left(\mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{-2}\right)$

$$
\begin{aligned}
& H=u+P v \\
& h=u+P v
\end{aligned}
$$

$$
q_{p}=c_{p}<T
$$

For Constant Pressure Process

$$
\Delta h=C_{p} \Delta T
$$

$$
\begin{aligned}
& n_{1}=u_{1}+p v_{1} \quad h_{2}=u_{2}+p v_{2} \\
& \Delta h=\Delta u+p\left(v_{2}-v_{1}\right) \\
&=\Delta u+\underbrace{\rho \Delta v}_{w}=\Delta u+w=q
\end{aligned}
$$

Specific Heats (4.3)

Cv Relationship
$\Delta u=C_{v} \leqslant T$
$c_{v}=\frac{\Delta u}{\Delta T} \underset{\lim _{\sigma \rightarrow 0}}{ } \frac{\partial u}{\partial T}$
Cp Relationship

$$
\begin{gathered}
\Delta h=C_{p} \Delta T \\
c_{p}=\frac{\partial h}{\partial T}
\end{gathered}
$$

Note on the path independency;

Comments on Specific Heats (4.4)

Finding Δu and Δh using specific heat

Mayer's relation:

Cv (720 J/kgK) vs Cp (1008 J/kgK). Why is cp larger?

