

SGT AERO 2200 MIDTERM 1 REVIEW

## Question 1 content to review:

- Steady Level Flight: When an aircraft is not accelerating and there is no net forces acting upon it
$\mathrm{L}=\mathrm{W}, \mathrm{T}=\mathrm{D}$
- Lift equation: $L=\frac{1}{2} \rho V^{2} S C_{L}$
- Ambient density ( $\rho$ )
- Flight velocity ( $V$ )
- Wing area (S)
- Lift coefficient $\left(C_{L}\right)$
- Drag equation: $D=\frac{1}{2} \rho V^{2} S C_{D}$
- Ambient density ( $\rho$ )
- Flight velocity ( $V$ )
- Wing area ( $S$ )
- Drag coefficient $\left(C_{D}\right)$
- Aspect ratio: $A R=\frac{b^{2}}{s}$
- Wing span (b)
- Wing area ( $S$ )
- Wing loading: $W L=\frac{W}{S}$
- Weight: $W=m g$
- Wing area (S)
- Linear Interpolation: $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}$

|  | English | SI |
| :---: | :---: | :---: |
| Time | S | S |
| Pressure | $\frac{l b}{f t^{2}}=p s f$ | $\frac{N}{m^{2}}$ |
| Temperature | $\mathbf{R}$ | K |
| Density | $\frac{s l u g}{f t^{3}}$ | $\frac{\mathrm{kg}}{\mathrm{m}^{3}}$ |
| Velocity | $\frac{f t}{s}$ | $\frac{m}{s}$ |
| Force | $l b=l b_{f}$ | $N$ |
| Mass | $s l u g$ | $k g$ |
| Energy | $f t * l b$ | $N m=J$ |
| Power | $\frac{f t^{*} l b}{s}$ | $\frac{N m}{s}=\frac{J}{s}=W$ |
| Area | $f t^{2}$ | $m^{2}$ |
| Gas Constant | $\frac{f t^{*} l b}{s l u g^{*} R}$ | $\frac{J}{k g^{*} K}$ |


|  | Metric (SI) | English (lb) |
| :--- | :--- | :--- |
| Weight | Newton (N) | Pounds (lb) |
| Mass | Kilogram $(\mathrm{kg})$ | Slug |

- English units can also express mass as pound mass (lbm)
- On earth's surface a mass of 1 lbm will weigh 1 lbf
- 1 slug $=32.2 \mathrm{lbm}$


## Altitude Definitions

- Absolute Altitude $\left(h_{a}\right)$ : Distance from center of Earth to object
- Geometric Altitude $\left(h_{g}\right)$ : Distance from sea-level to object
- Geopotential Altitude (h): Mainly used in derivation (assumes g is constant)
- Density Altitude: Corresponding altitude with a given ambient density or vice versa
- Pressure Altitude: Corresponding altitude with a given ambient pressure or vice versa
- Temperature Altitude: Corresponding altitude with a given ambient temperature or vice versa
- Use Appendix A and B (the Tables) to determine the altitudes corresponding to the respective pressure, density, and temperatures at a certain altitude.


## Gravity Variation with Altitude:

$g=g_{o} \cdot \frac{\left(r_{e}\right)^{2}}{\left(r_{e}+h_{g}\right)^{2}}$, where $g_{o}$ is the gravitational acceleration at sea level
Temperature Distribution in the Standard Atmosphere


Figure 3.4 Temperature distribution in the standard atmosphere.

- Note: Finding "temperature altitude" is potentially troublesome because unlike pressure and density, which have an exponential relationship with altitude. Temperature in certain ranges of altitude is linear OR constant (isothermal). It's these isothermal sections that makes it difficult to find "temperature altitude", since an altitude of $11,000 \mathrm{~m}$ and 25,000 , have the same temperature.


## Isothermal Regions

- Temperature $\rightarrow T=$ Constant
- Pressure $\rightarrow \frac{P}{P_{1}}=e^{\left(-\frac{g_{0}}{R T}\left(h-h_{1}\right)\right)}$
- Density $\rightarrow \frac{\rho}{\rho_{1}}=e^{\left(-\frac{g_{0}}{R T}\left(h-h_{1}\right)\right)}$


## Gradient Regions

- Temperature $\rightarrow T=T_{1}+a\left(h-h_{1}\right)$
- Pressure $\rightarrow \frac{P}{P_{1}}=\left(\frac{T}{T_{1}}\right)^{\left(-\frac{g_{0}}{a T}\right)}$
- Density $\rightarrow \frac{\rho}{\rho_{1}}=\left(\frac{T}{T_{1}}\right)^{-\left(1+\frac{g_{0}}{a T}\right)}$

The planform area of the Vought F4U Corsair (Fig. 2) is $29.1 \sqrt{\mathrm{~m}^{2}}$ nd a takeoff weight of 6,592 kg. What is the wing loading in SI and English units?

Given

- Take off weight $=6,592[\mathrm{~kg}]$
- wing area $=29.17\left[\mathrm{~m}^{2}\right]$

Find
wing Loading
a) in $S I$
b) Eng

Equation

$$
\text { wing Loading }=\frac{w}{s}
$$

Solution
a) $\omega L=\frac{\omega}{s}=\frac{6592[\mathrm{~kg}]-9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right]}{29.17\left[\mathrm{~m}^{2}\right]}=2216.9[\mathrm{~Pa}]$

$$
\begin{aligned}
& 6592[\mathrm{~kg}] \cdot \frac{2.205\left[1 \mathrm{Lb}_{f}\right]}{1[\mathrm{~kg}]}=14532.63\left[11_{\mathrm{f}}\right] \\
& 29.17\left[\mathrm{~m}^{2}\right] \cdot\left(\frac{1[\mathrm{ft}]}{0.3048[\mathrm{~m}]}\right)^{2}=313.98\left[\mathrm{ft}^{2}\right] \\
& \omega_{2}=\frac{14532.63\left[1 v_{f}\right]}{313.98\left[f_{1}\right]}=\frac{46.19\left[\frac{b}{f_{i^{2}}}\right]}{\text { Eng. units. }}
\end{aligned}
$$

Consider an airplane flying at some real, geometric altitude. The outside (ambient) pressure and temperature are $5.3 \times 10^{4}$ $\mathrm{N} / \mathrm{m}^{2}$ and 253 K , respectively. Calculate the pressure and density altitudes at which this airplane is flying.

$$
\begin{aligned}
& \text { Press are }=5.3 \times 10^{4}\left[\mathrm{\omega} / \mathrm{m}^{2}\right] \\
& \text { Ambient Temp }=253[\mathrm{k}] .
\end{aligned}
$$

Find :
pressure altitude :
density altitude:

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$



$$
\begin{aligned}
& P=5.3 \times 10^{4} \\
& h_{P}=h_{G 1}+\left(\frac{h_{G 1}-h_{G_{2}}}{P_{2}-P,}\right)\left(P-P_{1}\right) \\
&=5100+\left(\frac{5200-5100}{(5.2621-5.3331) \times 10^{4}}\right)(5.3-5.3331) \times 10^{4} \\
& h_{P}=5146.6[\mathrm{~m}]
\end{aligned}
$$

Density Altitude

$$
\begin{gathered}
P=\rho R T \\
\rho=\frac{P}{R T}=\frac{\left(5.3 \times 10^{4}\right)}{(287)(253)}=\frac{0.72992}{}\left[\mathrm{ks} / \mathrm{m}^{3}\right] \\
h_{\rho}=h_{G_{1}}+\left(\frac{h_{02}-h_{\sigma_{1}}}{\rho_{2}-\rho_{1}}\right)\left(\rho^{0}-\rho_{1}\right) \\
h_{p}=5000+\left(\frac{5100-5000}{(7.2851-7.3643) \times 10^{-1}}\right)(7.2992-7.3643) \times 10^{-1} \\
h_{\rho}=5082.2[\mathrm{~m}]
\end{gathered}
$$

A Boeing 747-8 is flying 600 mph at steady level flight at an altitude where the ambient temperature and pressure are $391^{\circ} \mathrm{R}$ and $4.80 \times 10^{2}$ psf, respectively. The lift generated is $900,000 \mathrm{lb}$, and the wing area is $554 \mathrm{~m}^{2}$.
(a) What is the coefficient of lift?
(b) If the lift to drag ratio is 18 , how much thrust is produced by each engine?

Given: $T=391^{\circ} R, L=900,000 \mathrm{lb}$

$$
\begin{aligned}
& P=4.8 \times 10^{Q} \text { P ff }_{\text {ff }}, V=600 \mathrm{mph}, 5=554 \mathrm{~m}^{2} \\
& \frac{L}{D}=18 \text {, * steady level flight* }
\end{aligned}
$$

Find: $c_{2}=$ ? $T_{\text {each }}=$ ?
Equations; $P=D R T, C=W, T=D$

$$
\begin{aligned}
& L=\frac{1}{2} \rho r^{2} S L_{L} \\
& v=600 \frac{\mathrm{nd}}{4 \mathrm{~s}} \frac{5280 \mathrm{ft}}{1 \mathrm{hr}} \frac{\mathrm{Lhr}}{3600 \mathrm{r}}=880 \mathrm{ft} / \mathrm{s} \\
& 5=554 \mathrm{~m}^{2}\left(\frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}}\right)^{2}=5963.21 \mathrm{ft}^{2} \\
& (\alpha)=\frac{1}{2} \operatorname{PD} \cos ^{2}(5) C_{L} \quad \rho=\frac{P}{R T}=\frac{4.8 \times 10^{2} P_{5} \epsilon}{(1716)(391} \\
& \rho=2.154 \times 10^{-4} \mathrm{~s} / \mathrm{vg} / \mathrm{ft}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& L_{L}=\frac{L}{\frac{1}{Q} \rho r^{2} S}=\frac{1}{\left.\frac{1}{2}(4,154) \times 10^{-4}\right)(850)^{2}(5963,21)} \\
& C_{L}=0.545 \\
& \frac{L}{D}=18=D=\frac{L}{18}=\frac{900000}{18}=5000016 \\
& T=D=500001 \mathrm{~h}=T_{\text {total }} \\
& T_{\text {each }}=\frac{T_{\text {+octal }}}{4}=\frac{50000}{4}=1250016 \\
& \tau_{\text {each }}=1250016
\end{aligned}
$$

AERON 1200 General Advice
$\rightarrow$ Remember the assumptions for each equation and use them only if these criteria are met.

- Note the flight regime for each problem.
$\rightarrow M<03:$ Incompressible
$\rightarrow 0.3<M<1:$ Compressible
$\rightarrow M>1$ : Supersonic
4 Clearly mark your givens at the start of each problem.

Basic Theory of Fluid Flow
4.) Continuity Equation
-Conservation of Mass: Mass cannot be created or destroyed.
$L_{C}$ Continuity Equation: $m=p V_{n} A$
$L_{\text {Assumptions: }}$ (I )Steady State
4.2 Incompressible Flow $\quad$ Note: No flow is truly incompressible-it's just a simplifying assumption for this regime. - Incompressible Flow: The density is (assumed) to be constant throughout the flow field.

- For an incompressible flow only, the continuity equation simplifies to: $A_{1} V_{1}=A_{2} V_{2}$
$\rightarrow$ The simplifying assumption can be used when $M<0.3 \approx 100 \frac{\mathrm{~m}}{\mathrm{~s}} \approx 300 \frac{\mathrm{f}}{\mathrm{s}}$ for $V_{\text {max }}$ useful for low-speed wind tunnels, etc.

$$
{ }_{P_{1}}=p_{2} \text { for } \underbrace{p_{1} V_{1} A_{1}}_{\tilde{m}_{1}}=\underbrace{\rho_{2} V_{2} A_{2}}_{\tilde{m}_{2}} \rightarrow A_{1} V_{1}=A_{2} V_{2}
$$

4.3 Momentum Equation
-Conservation of Momentum: The force acting on a body is equal to the time rate of change of momentum.
$\rightarrow$ Newton's 2 $^{\text {nd }}$ Law: $\Sigma F=\frac{\partial}{\partial t}(m V)=m a$
$\rightarrow$ Bernoulli's Equation: $p_{1}^{+} \frac{1}{2} p\left\|_{1}^{2}=p_{2}+\frac{1}{2} \nu\right\|_{2}^{2}$
Assumptions: (1 )Steady State (2) Inviscid (3) Frons: 0 (4) Incompressible Flow (5) Flow is along a streamline
-From Bernoulli's Equation, $P_{0}=P^{+} q=P \cdot \frac{1}{2} p v^{2}$
LTotal (Stagnation) Pressure Static Pressure *) Dynamic Pressure
4.4 Summary I

- Ideal Gas Law: $\equiv=p R T$

LNeeds one point in the flow.

- Continuity Equation: $: m=\rho V_{n} A$

Leeds two points in the flow.

- Bernoulli's Equation: $1_{1}{ }^{+} \frac{1}{2} p \|_{1}^{2}=p_{2}+\frac{1}{2} p V_{2}^{2}$

Leeds two points in the flow.
4.67 entropic Flow

- Isentropic Flow: No change in entropy (disorder) of the flow.
- There are two necessary conditions:
$\mid$ (I )Adiabatic: No heat transfer through system boundaries $\left(\delta_{q}=0\right)$.
( (2) Reversible: Inviscid (no friction), no flow across shocks.
L"Properties going out are the same coming in" "
-Isentropic Flow Relations: $: \frac{p_{2}}{P_{1}}\left(\frac{\rho_{1}}{\rho_{1}}\right)^{\gamma}=\left[\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}}$
-Assumptions: (I )Steady State (2) Isentropic Flow (Adiabatic avo Reversible) (3) Ideal Gas Behavior
The relations are derived with the ideal gas law.
4.7 Energy Equation
- Energy Equation $C_{p} T_{1}+\frac{1}{2} V_{1}^{2}=C_{p} T_{2}+\frac{1}{2} V_{2}^{2}$

Useful for finding changes in temperature and/or velocity of the flow.
4.8 Summary II

4.9 Speed of Sound, Mach Number
-The speed of sound (a) is the speed at which a pressure wave can propogate through a fluid. $L_{a}=\sqrt{Y R T}$
- Mach Number: $M=\frac{V}{a}=\frac{V}{\sqrt{\text { VRT }}}$
-Assumptions: (|| Isentropic Flow (2 )Ideal Gas Behavior
4M I at higher altitudes as TV and pl for a given true velocity (Vire).

Question 2 Problems:


Figure 1: Wind tunnel sketch

- A low-speed subsonic wind tunnel is operating with a mass flow rate of $15.4 \mathrm{~kg} / \mathrm{s}, \mathrm{a}$ density of $1.32 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$, and a temperature of 20 degrees C at its settling chamber. Determine the velocities $(\mathrm{m} / \mathrm{s})$ and (static) pressures ( Pa ) in the wind tunnel at (a) location 1 and (b) location 2 and location 3.

$$
\begin{aligned}
& \dot{m}=\rho A V \\
& V_{1}=\frac{\dot{m}}{\rho A_{1}}=\frac{15.4}{1.32(4.2)}=2.778 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& P_{1}=\rho R T=(1.32)(287)(20+273)=111000.12 \mathrm{~Pa} \\
& \rightarrow(4.2)(2.778)=(0.62) V_{2} \\
& A_{1} V_{1}=A_{2} V_{2} \\
& \dot{m}_{1}=\dot{m}_{2}=\dot{m}_{3}=\rho A V \\
& A_{1} V_{1}=A_{3} V_{3} \\
& V_{3}=8.334 \mathrm{~m} / \mathrm{s} \\
& P_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\frac{1}{2} \rho V_{2}^{2} \\
& 111000.12+\frac{1}{2}(1.32)(2.778)^{2}=P_{2}+\frac{1}{2}(1.32)(18.819)^{2} \\
& P_{2}=110771.47 P_{2}
\end{aligned}
$$

- A Pitt tube is mounting in the test section of a low-speed subsonic wind tunnel. The flow in the test section has a velocity, static pressure, and temperature of $150 \mathrm{mph}, 1 \mathrm{~atm}$, and 70 degrees F, respectively. Calculate the pressure measured by the Pitot tube

$$
\begin{aligned}
& 150 \mathrm{mph} \rightarrow 220 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& 1 \mathrm{~atm} \rightarrow 2116.22 \mathrm{psf} \\
& 70^{\circ} \mathrm{F} \rightarrow 529.67 \mathrm{R} \\
& \rho=\frac{P}{R_{T}}=\frac{2116.22}{(1716)(529.67)}=0.00233 \frac{\text { slugs }}{\mathrm{ft}^{3}} \\
& P_{\text {total }}=P+q=p+\frac{1}{2} \rho \mathrm{~V}^{2}=2116.22+\frac{1}{2}(0.00233)(220)^{2}=2172.6 \mathrm{psf}
\end{aligned}
$$

- A high-speed aircraft is flying at Mach 0.95 in a standard atmosphere at $30,000 \mathrm{ft}$. Determine true airspeed

$$
\begin{aligned}
& M=\frac{V_{\infty}}{a_{\infty}} \\
& a_{\infty}=\sqrt{\gamma R T}=\sqrt{(1.4)(1716)(411.77)}=994.75 \mathrm{ft} / \mathrm{s} \\
& T=411.77 R \\
& V_{\infty}=M a_{\infty}=0.95(994.75)=945.01 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

## Question 3 content to review:

- Dynamic pressure equation: $q=\frac{1}{2} \rho V^{2}$
- Anything over a mach number of 0.3 is considered compressible
- Compressible flow equations work for ALL cases
- Isentropic means that the flow is adiabatic and reversible
- Energy equation: $C_{p} T_{1}+\frac{1}{2} V_{1}^{2}=$ constant $=C_{p} T_{2}+\frac{1}{2} V_{2}^{2}$
- Assumes: steady - isentropic flow, along a streamline, no body forces, constant specific heat $C_{p}$.
- Isentropic flow relations: $\frac{P_{2}}{P_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\gamma}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma}{\gamma-1}}$
- Assumes: adiabatic, reversible, steady, ideal gas
- Isentropic Mach relations:

$$
\begin{aligned}
\frac{T_{0}}{T} & =1+\frac{\gamma-1}{2} M^{2} \\
\circ \frac{P_{0}}{P} & =\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}} \\
\circ \frac{\rho_{0}}{\rho} & =\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \\
& ■ \text { Sub } 0 \text { denotes stagnation values } \\
& ■ \text { Pitot tubes measure stagnation pressure }
\end{aligned}
$$

- Helpful compressible flow equations:
- Continuity: $\rho_{1} V_{1} A_{1}=$ mass flow $=\rho_{2} V_{2} A_{2}$
- Isentropic flow relations
- Isentropic Mach relations
- Energy equation
- Relations using ideal gas at different points in the flow $(P=\rho R T)$
- Mach number: $M=\frac{V}{a}$

$$
\text { - } \mathrm{a}=\text { speed of sound }=\sqrt{\gamma R T}
$$

- Gamma is 1.4 for air, and R is 287 (SI) or 1716 (English)

$$
\circ \mathrm{R}=C_{p}-C_{v}
$$

Problems:
1): Imagine a flow over an airfoil with freestream values of: $V_{\infty}=500 \mathrm{mph}, P_{\infty}=2116 \mathrm{psf}, T_{\infty}=$ 519 R. (a) Determine if the flow is compressible or incompressible. There is a point A on the airfoil where $P_{A}=1500 \mathrm{psf}$, (b) determine the local mach number at point A .

$$
\begin{aligned}
& m_{s}=\frac{v_{\alpha}}{a_{\infty}}, a_{\infty}=\sqrt{\gamma R T} \\
& V_{\infty}=733.33 \mathrm{ft} / \mathrm{s} \\
& a_{\infty}=\sqrt{1.4(1716)(519)}=116.622 \mathrm{rt} / \mathrm{s} \\
& m_{\infty}=\frac{733.33}{1116.622} \\
& M_{\infty}=0.6567 \\
& \frac{P_{0}}{a_{116}}=\left(1+\frac{1.4-1}{2}\left(0.65 \cdot 57^{2}\right)^{1.19 / 1 / 41}\right. \\
& P_{0}=\text { a8a6.64 } 6 \text { PSf } \\
& \frac{2826.645}{1500}=\left(1+\frac{0.4}{2} M_{A}^{2}\right)^{1.40 .4} \\
& M_{A}=0.496
\end{aligned}
$$

2): A venturi tube is attached to a plane that is in steady, level flight. The plane is flying at an altitude of 5000 ft and at a speed of 122 knots. If the venturi tube has an inlet area of $0.2 \mathrm{ft}^{\wedge} 2$, a throat area of $0.1 \mathrm{ft}^{\wedge} 2$, and a throat temperature of 15 degrees Fahrenheit, what is the Mach number at the throat? Can the air at the throat be considered incompressible? What is the total temperature at the throat?

Givers:

$$
\begin{aligned}
& h=5000 \mathrm{ft} \\
& T_{\infty}=500.85^{\circ} \mathrm{R}=41.19^{\circ} \mathrm{F} \\
& P_{\infty}=1.7607 \times 00^{3} 1 \mathrm{lb} / \mathrm{ft}^{2} \\
& \rho_{0}=2.0482 \times 10^{-3} \mathrm{~s} / y / \mathrm{ft}^{3} \\
& V_{\infty}=122 \frac{\mathrm{~nm}}{\mathrm{hr}} \cdot \frac{6076.1 \mathrm{ft}}{1 \mathrm{~nm}} \cdot \frac{3600 \mathrm{~s}}{\mathrm{~h}_{r}}=205.71 \mathrm{fts} \\
& A_{\text {in }}=0.2 \mathrm{ft}^{2} \\
& A_{\text {th }}=0.16 \mathrm{~s}^{2} \\
& T_{t h}=15^{\circ} \mathrm{F}+459.67=474.67{ }^{\circ} \mathrm{R} \\
& \gamma=1.4 \\
& R_{\text {air }}=1716 \frac{\mathrm{fflb}}{\mathrm{sin} \lg \cdot \mathrm{R}} \\
& C_{P_{\text {ar }}}=6000 \frac{\mathrm{ftl} / \mathrm{b}}{\mathrm{stg}^{\circ} \mathrm{R}}
\end{aligned}
$$

Sketch:


$$
\begin{aligned}
& C_{p} T_{\text {in }}+\frac{1}{2} V_{\text {in }}^{2}=C_{p} T_{\text {th }}+\frac{1}{2} U_{\text {th }}^{2} \\
& V_{t h}=\sqrt{2 C_{p}\left(T_{\text {in }}-T_{t h}\right)+V_{i n}^{2}} \\
& =\sqrt{2(6000)(500.86-474.67)+(205.91)^{2}} \\
& v_{4 h}=597.23 \mathrm{ft} / \mathrm{s} \\
& M_{+n}=\frac{V_{t h}}{a_{+n}}=\frac{U_{+h}}{\sqrt{\gamma R T_{t h}}}=\frac{597.23}{\sqrt{1.4(1) 16)(1274.67}}=0.56 \\
& M_{4 n}=0.56 \\
& M_{t h}>0.3 \int N_{0 t} \\
& \frac{T_{\text {oph }}}{T_{t h}}=1+\frac{\gamma-1}{2} M_{t h}^{2} \rightarrow T_{\text {oth }}=T_{t h}\left(1+\frac{\gamma-1}{2} M_{t h}^{2}\right) \\
& =(474.67)\left(1+\frac{1.4-1}{2}\left(0.066^{2}\right)\right. \\
& T_{\text {oth }}=504.3^{\circ} \mathrm{R}
\end{aligned}
$$

3): You are helping BSLI launch a rocket! They've asked you to do some calculations with a theoretical rocket nozzle. Assume isentropic, compressible flow. The mass flow rate of air is found to be ${ }^{2} \mathrm{~kg} / \mathrm{s}$. The reservoir experiences a temperature of $225^{\circ} \mathrm{C}$ \& a pressure of $\frac{\mathrm{atm}}{}$. The exit temperature is $150^{\circ} \mathrm{C}$. Assume $\gamma=1.4$
(a) Find the exit velocity
(b) Find the exit area

$$
C_{p}=1008 \frac{\mathrm{~J}}{\mathrm{kgk}} \quad R=287 \frac{\mathrm{~J}}{\mathrm{kgk}}
$$

Given: $\dot{m}, T_{R}, T_{E}, P_{R}, R, \gamma, C_{P}$
a. $C_{P} T_{R}+\frac{1}{2} V_{R}{ }^{2}=C_{P} T_{E}+\frac{1}{2} V_{E}{ }^{2}$
$V_{E}=\sqrt{2 C_{p}\left(T_{R}-T_{E}\right)}$

$$
\begin{aligned}
& T_{R}=498.15 \mathrm{k} \\
& T_{\epsilon}=423.15 \mathrm{k}
\end{aligned}
$$

$$
V_{E}=\sqrt{2(1008)(498.15-423.15)}=388.844 \mathrm{~m} / \mathrm{s}
$$

b. $A_{E}$

$$
\begin{aligned}
& \frac{\dot{m}}{\rho_{E} V_{E}}=A_{E} \\
& \rho_{R}=\frac{P_{R}}{R T_{R}} \\
& \rho_{R}=151987.5 P_{a} \\
& \rho_{R}=\frac{(151987.5)}{(287)(498.15)}=1.0631 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
&\left(\frac{\rho_{E}}{\rho_{R}}\right)^{\gamma}=\left(\frac{T_{E}}{T_{R}}\right)^{\frac{\gamma}{\gamma-1}} \\
& \rho_{E}=\rho_{R} \sqrt[\gamma]{\left(\frac{T_{E}}{T_{R}}\right) \frac{\gamma}{\gamma-1}} \\
&=(1.0631) \frac{1.4}{\left(\frac{423.15}{498.15}\right)^{\frac{1.45}{0.4}}} \\
&=0.707 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
A_{\epsilon} & =\frac{\dot{m}}{\rho \in V_{\epsilon}} \\
& =\frac{(2.5)}{(0.707)(388.844)} \\
& =0.00909 \mathrm{~m}^{2} \\
& =9.094 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

