Propellers

Airplane wings and propellers are both made up of airfoil sections designed to generate an aerodynamic
force. The wing force provides lift to sustain the airpléne in the air; the propeller force provides thrust to
push the airplane through the air.

W Airfoil section

Hub (or spinner)

Unlike a wing, where the chord lines of the airfoil sections are essentially all in the same direction, a
propeller is twisted so that the chord line changes from being almost parallel to Ve at the root to
almost perpendicular at the tip.

9.2 Propeller

Side view Section B-B

Figure 9.3 Illustration of propeller, showing variation of pitch along the blade

The angle between the chord line and the propeller’s plane of rotation is defined as the pitch angle 3.
The distance from the root to a given sectioniisr.

The airflow seen by a given propeller section is a combination of the airplane’s forward motion and the
rotation of the propeller itself , where the airplane’s relative wind is Vo and the speed of the blade
section due to rotation of the propeller is rw. Here w denotes the angular velocity of the propeller in
radians per second. Hence, the relative wind seen by the propeller section is the vector sum of Ve and
rw. If the chord line of the airfoil section is at an angle of attack a with respect to the local relative wind
V, then lift and drag (perpendicular and parallel to V, respectively) are generated. In turn, the
components of L and D in the direction of Ve produce a net thrust

T=Lcos¢- Dsinp

where d =B -a.
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This thrust, when summed over the entire length of the propeller blades, yields the net thrust available ,
which drives the airplane forward.

Propeller efficiency
The propeller efficiency is defined as:
n=PAP

where P is the shaft brake power (the power delivered to the propeller by the shaft of the engine) and
PA is the power available from the propeller.

PA = TAVeo
n = TA*Veo /P

TA is basically an aerodynamic phenomenon that is dependent on the angle of attack a, which is
dictated by the pitch angle B and ¢, where ¢ itself depends on the magnitudes of Ve and rw. The
angular velocity w = 2mt n, where n is the number of propeller revolutions per second. Consequently, TA
must be a function of at least 8, Vo, and n. Finally, the thrust must also depend on the size of the
propeller, characterized by the propeller diameter D. In turn, the propeller efficiency must depend on 3,
Veo, 1, and D.

For a fixed pitch angle B, n is a function of the dimensionless quantity advanced ratio

J =V /n*D
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A typical variation of n with J for a fixed {3 three curves are shown corresponding to three different
values of pitch. Note that n < 1; this is because some of the power delivered by the shaft to the propeller
is always lost, and hence PA <P

These losses occur because of several different effects:

Slipstream from the propeller; that is, the air is set into both translational and rotational motion by the
passage of the propeller. Consequently, you observe some translational and rotational kinetic energy of
the air where before there was none. This kinetic energy has come from part of the power delivered by

the shaft to the propeller; it does no useful work and hence robs the propeller of some available power.

+Frictional loss due to the skin friction and pressure drag (profile drag) on the propeller. Friction of any
sort always reduces power.

+A third source is compressibility loss. The fastest-moving part of the propeller is the tip. For many high-
performance engines, the propeller tip speeds result in a near-sonic relative wind. When this occurs, the
same type of shock wave and boundary layer separation losses that cause the drag-divergence increase
for wings now rob the propeller of available power. If the propeller tip speed is supersonic, n drops
dramatically. This is the primary reason why propellers have not been used for transonic and supersonic
airplanes.

There is also another type of propellers which are called variable pitch propellers and are more efficient
than fixed pitch propellers -

Reciprocating engines

The basic operation of these engines is a piston moving back and forth (reciprocating) inside a cylinder,
with valves that open and close appropriately to let fresh fuel—air mixture in and burned exhaust gases
out. The piston is connected to a shaft via a connecting rod that converts the reciprocating motion of
the piston to rotational motion of the shaft.

Intake:

During the intake stroke, the piston moves downward, the intake valve is open, and a fresh charge of
gasoline—air mixture is drawn into the cylinder. This process is sketched on the p—V diagram (a plot of
pressure versus volume) Here point 1 corresponds to the beginning of the stroke (where the piston is at
the top, called top dead center), and point 2 corresponds to the end of the stroke (where the piston is at
the bottom, called bottom dead center). The volume V is the total mixture volume between the top of
the cylinder and the face of the piston. The intake stroke takes place at essentially constant pressure,
and the total mass of fuel—air mixture inside the cylinder increases throughout the stroke.
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Compression :

At the bottom of the intake stroke, the intake valve closes, and the compression stroke begins. Here the
piston compresses the now-constant mass of gas from a low pressure p2 to a higher pressure p3, as
shown in the p—V diagram. If frictional effects are ignored, the compression takes place isentropically
because no heat is added or taken away.
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Combustion:

At the top of the compression stroke, the mixture is ignited, usually by an electric spark. Combustion
takes place rapidly before the piston has moved any meaningful distance. Hence, for all practical
purposes, the combustion process is one of constant volume. Because energy is released, the
temperature increases remarkedly; in turn, because the volume is constant, the equation of state,
dictates that pressure increases from p3 to p4. This high pressure exerted over the face of the piston
generates a strong force that drives the piston downward on the power stroke.
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Power:

Again, assuming that frictional and heat transfer effects are negligible, the gas inside the cylinder
expands isentropically to the pressure p5. At the bottom of the power stroke, the exhaust valve opens.
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Exhaust:

The pressure inside the cylinder instantly adjusts to the exhaust manifold pressure p6, which is usually
about the same value as p2. Then, during the exhaust stroke, the piston pushes the burned gases out of
the cylinder, returning to conditions at point 1.
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Jet propulsion-Thrust equation:

The jet engine is a device that takes in air at essentially the free-stream velocity Ve, heats it by
combustion of fuel inside the duct, and then blasts the hot mixture of air and combustion products out
the back end at a much higher velocity Ve. In contrast to a propeller, the jet engine creates a change in
momentum of the gas by taking a small mass of air and giving it a large increase in velocity (hundreds of
meters per second). The true fundamental source of the thrust of a jet engine is the net force produced
by the pressure and shear stress distributions exerted over the surface of the engine.

Inlet Exit
N 2L

This illustrates the distribution of pressure ps over the internal surface of the engine duct, and the
ambient pressure, essentially pe, over the external engine surface. Shear stress, which is generally
secondary in comparison to the magnitude of the pressures, is ignored here.

’T = (nlnir + mfm:])‘/p - n.,luir‘/W + (pr - pm)A#




Turbojet Engine (a.3)
—> Thrust Ec1:

T= 1 (Ve Vo) + (Pepo) B, (A25)
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Turbofan Engine (4.6)
— Large ducted fan mounted on +He shaft
ahead of +ne compressor

Figure 9.20 A turbofan engine.

—> Turbojets create large Hhrust, but efficiency is
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Ramjet Engire (a.7)
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Figure 9.22 Ramjet engine.
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Figure 9.24 Pressure-specific volume diagram for an ideal ramjet




Rocket Engine (a.2)
— Cavries both its fuel 4 oxidizer
—> Completely independent of +he atmosphere for its Combuistion

—> Thyust of 3 vocket enqme'-
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Exomple fobloms

and exit areas are the same, both equal to 0.45 m?. The velocity, pressure, and
temperature of the exhaust gas are 400 m/s, 1.0 atm, and 750 K, respectively.
Calculate the static thrust of the engine. (Note: Static thrust of a jet engine is the
thrust produced when the engine has no forward motion.)

] 9.3 Consider a turbojet mounted on a stationary test stand at sea level. The inlet

A;= A = D.45 W\, = oD We ,= LD dm= 10132502 T, = F50 K
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9.8 Consider a rocket engine in which the combustion chamber pressure and
q g:l temperature are 30 atm and 3756 K, respectively. The area of the rocket nozzle
exit is 15 m? and is designed so that the exit pressure exactly equals ambient
pressure at a standard altitude of 25 km. For the gas mixture, assume that y=1.18
and the molecular weight is 20. At a standard altitude of 25 km, calculate the
(a) specific impulse, (b) exit velocity, (¢) mass flow, (d) thrust, and (e) throat area.
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