Midterm 2 review
-All previous knowledge is assumed
Lift equation

$$
\begin{aligned}
& \text { ge is assumed } \\
& c=\frac{1}{2}\left(\rho v^{2} C L^{\prime}\right.
\end{aligned}
$$

Ideal gas law $\quad P=R T \rho$
Hydrostatic equation (manometer)

$$
\Delta P=-p s(\Delta n)
$$

Continuity $\quad \dot{m}_{1}=\dot{m}_{2}$ $\dot{m}=\rho A V$

$$
P_{1} A_{1} V_{1}=\rho_{2} A_{2} V_{2}
$$

If density is constant:

$$
A_{1} V_{1}=A_{2} V_{2}
$$

Bernoulli. (Remember to check your incompressible assumption, $M \leq 0.3 . \mathrm{V}<100 \mathrm{~m} / \mathrm{s}$ or $300 \mathrm{ft} / \mathrm{s}$)

$$
P_{1}+\frac{1}{2}=w_{1} v_{1}^{2}=P_{2}+\frac{1}{\partial} 6_{0} v_{2}
$$

(If incompressible flow is assumed always say why, don't just write density.)
Elementary thermodynamics
First law of thermodynamics:
States that the change of internal energy equals the heat added to and the work done to the system

$$
\delta e=\delta q+\delta w
$$

Assumes constant pressure
$S \omega=-P d V$
Assumes constant volume $S q=d h-v d P$
$h-$ enthalpy $h=e+P V$
for a constant volume process $s q=\operatorname{cvd} T$
for a constant pressure process $\delta q=C p d T$
since $d V=0$ then

$$
\delta e=\delta q \quad S_{e}=c v d T
$$

since $\mathrm{dP}=0$ then

$$
\delta q=d h
$$

$$
a h=e_{p} d T
$$

and
*Even though these equations were derived based on constant P and V, they hold true for any process if the gas is a perfect gas. The arguments that prove this are beyond the scope of this course
(p. 158 book)

For any process

-Energy equation (relates temperature and velocity)

$$
C_{p} T_{1}+\frac{1}{\partial} V_{1}^{2}=C_{p} T_{2}+\frac{1}{\partial} V_{2}^{2}
$$

-Isentropic flow

Assumptions:

Adiabatic: No heat transfer
Reversible: No friction

We cannot assume incompressible; density must be allowed to change (Can't use Bernoulli)

Flight regimes:

$\mathrm{M}<1$ subsonic
$\mathrm{M}=1$ sonic
M>1 supersonic

Subsonic wind tunnels

Most of the times can assume incompressible because we are dealing with low speeds

- Velocity increases as the area decreases through the convergent nozzle, and the opposite occurs for the divergent part

Different types of pressures
-Static pressure is the pressure we would feel if we were moving along with the flow (Standard atmosphere table) $\quad h \rightarrow P_{S}, T_{S}, \rho_{S}$
Total pressure or stagnation pressure: The pressure obtained at a point where the flow velocity has been decreased to zero. $V=0$
-It is a property of the flow.

$$
M=\frac{v}{a}
$$

-Constant throughout. (We can use it to find the pressure at other points)

- Since the velocity is zero, Mach number is zero.
-It is measured by a pitot tube
- If we assume incompressible the Bernoulli's equation can be used which relates dynamic

An equation that relates true airspeed and equivalent airspeed:

$$
V_{\text {true }}=v e q / \frac{p_{\text {sc }}}{}
$$

If the incompressible assumption cannot be made, then one way to find the true velocity is solve for it using Mach number = v/a (Be careful not to use T0 when finding Mach number, remember velocity is zero at the stagnation point, therefore $M=0$!)
-For the velocity to increase the area must increase

Reservoir: P0, T0,rho0 (flow going into the wind tunnel)
Test section: P_exit, T_exit, rho_exit (flow going out).
Area Mach relations

$$
\left(\frac{A}{A^{*}}\right)^{2}=\frac{1}{M^{2}}\left[\frac{\partial}{\gamma+1}\left(1+\frac{\gamma-1}{\gamma} M^{2}\right)\right]^{\gamma+1 / \gamma-1}
$$

IWe are given a Mach number or an area ratio, we can get either of those from the table

- Be careful when using the table, since your result will depend on if the flow is subsonic or supersonic
- Its important to know that a throat is the point where the smallest area of a wind tunnel or rocket nozzle can be found, but having a throat does not necessarily mean that you have a choke point where $\mathrm{M}=1$.
- $\quad A^{*}$ which is the area where $\mathrm{M}=1$ can be thought as a property of the flow like P0,T0 and rho0. Even if we do not physically have it, we can still solve for it, and use this value to find other variables.

- You will see indic\&tions that winelunhel has a physical chokepoint (e.g. \&oure told that the flow goes from subsonic to supersonic)
- Even if there is throat, if the M is not 1 at this point, the flow can stay subsonic or supersonic.
4.11 p. 280..Anderson book

The mass flow of air through a supersonic nozzle is $1.5 \mathrm{lbm} / \mathrm{s}$. The exit velocity is $1500 \mathrm{ft} / \mathrm{s}$, and the reservoir temperature and pressure are $1000^{\circ} \mathrm{R}$ and 7 atm , respectively. Calculate the area of the nozzle exit. For air, $\mathrm{cp}=6000 \mathrm{ft} \cdot \mathrm{lb} /($ slug $)\left({ }^{\circ} \mathrm{R}\right)$.
4.14.Calculate the Mach number at the exit of the nozzle in Prob. 4.11

$$
\begin{aligned}
& m=1.51 \mathrm{bm} / \mathrm{s}=0.0466214 \text { dugs } / \mathrm{s} \\
& V_{e}=1500 \mathrm{ftls} \\
& \angle T_{0}=1000^{\circ} \mathrm{R} \\
& \left\langle P_{0}=7 \mathrm{~atm}-2116.216 / \mathrm{ft}^{2}=14,813.4 \mathrm{lb} / \mathrm{ft}^{2}\right. \\
& \left.C_{p}=6000 \mathrm{ft} \cdot \mathrm{~B} / \mathrm{s}^{2} \operatorname{lag}{ }^{\circ} R\right) \\
& \begin{array}{cc}
A_{e}=\text { ? } \\
m=\rho_{e x} \text { Ae }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P_{0}=R T_{0} \rho_{0} \\
& \frac{P_{0}}{R T_{0}}=\rho_{0} \\
& \frac{14,813.4}{1716 \cdot 1000^{\circ}}=0.0086 \text { senge } / \mathrm{ft}^{3} \\
& C_{p} \tau_{0}+\frac{1}{2} V_{0}^{2}=C_{p} T_{e}+\frac{1}{2} V_{e}{ }^{2} \\
& T_{e}=\frac{C_{p} T o-\frac{1}{\partial} V_{e}{ }^{2}}{c_{p}} \\
& T_{e}=\frac{6000 \cdot c_{p} \cdot 1800-\frac{1}{2} \cdot 1500^{2}}{6000} \\
& T_{e}=812.5^{\circ} \mathrm{R} \\
& \rho_{e}=\left[\left(\frac{T_{e}}{T_{0}}\right)^{\gamma / \sigma-1]^{\gamma} \cdot \rho_{0}}\right. \\
& \rho_{e}=0.0051 \text { slugs } 18 t^{3} \\
& m=P e A V_{e} \\
& \frac{0.0466214}{0.0051 .1500}=A C \\
& A e=0.0061 \mathrm{fF}^{2} \\
& M_{e}=\frac{v_{e}}{a_{e}} \\
& M_{e}=1500 \\
& H_{e}=\frac{v_{e}}{\sqrt{\sigma R T e}} \quad \frac{\sqrt{1.4 .7716}}{M_{e}}=1.07
\end{aligned}
$$

4.21. Given: low-speed $h=8,000 \mathrm{ft} P_{0}=1650 \mathrm{lb} / \mathrm{ft}^{2}$

From SAT.: $P_{\infty}=1.5721 \cdot 10^{3} \mathrm{lb} / \mathrm{H}^{2} \quad T_{\infty}=500^{\circ} \mathrm{R} \quad \gamma=1.4$ $R=1716 \frac{\mathrm{ft} \cdot 1 \mathrm{log}}{\mathrm{slog} \cdot{ }^{\circ R}}$
Determive if incompressible:

$$
\begin{aligned}
& \frac{P_{\infty}}{P_{0}}=\left[1+\frac{\gamma-1}{2} M^{2}\right]^{\frac{\gamma}{\gamma-1}} \Rightarrow M=\left\{\frac{2}{\gamma-1}\left[\left(\frac{P_{\infty}}{P_{0}}\right)^{\frac{1-\gamma}{\gamma}}-1\right]\right\}^{1 / 2} \\
& M=\left\{\frac{2}{1.4-1}\left[\left(\frac{1572.1}{1650}\right)^{\frac{1-1.4}{1.4}}-1\right]\right\}^{1 / 2}=0.2638
\end{aligned}
$$

$M<0.3$; incompressible assumptron is OKAY \checkmark

$$
\begin{aligned}
& \text { Using Bernouli: } \\
& P_{0}+\frac{1}{2} \rho V_{0}^{2}=P_{\infty}+\frac{1}{2} \rho_{\infty} V_{\infty}^{2} \Rightarrow V_{\infty}=\left[\frac{2\left(P_{0}-P_{\infty}\right)}{\rho_{\infty}}\right]^{1 / 2} \\
& \left.P_{\infty}=\rho_{\infty} R T_{\infty} \Rightarrow \rho_{\infty}=\frac{P_{\infty}}{R T_{\infty}} \Rightarrow \rho_{\infty}=\frac{1572.1}{(1716)(500)}=0.001832 \frac{\mathrm{shy}}{P_{1+3}}\right\} \text { frecestremen } \\
& U_{\infty}=\left[\frac{2(1650-1572.1)}{0.001832}\right]^{1 / 2}=291.600 \mathrm{pt} / \mathrm{s}=U_{\text {tme }}
\end{aligned}
$$

OR Ussyy Mach Nmber

$$
\begin{aligned}
& M=\frac{V_{\infty}}{a} \Rightarrow V_{\infty}=M a ; a=\sqrt{\gamma R T} ; \Rightarrow V_{\infty}=M \sqrt{\gamma R T} \\
& V_{\infty}=(0.2638) \sqrt{(1.4)(176)(500)}=289.079 \mathrm{ft} / \mathrm{s}=V_{\text {rme }}
\end{aligned}
$$

incomprissible flow
REGARDLESS, $V_{E A S}=V_{\text {TAS }}\left(f_{s L}\right)^{1 / 2} ; \rho_{s L}=2.3769 \cdot 10^{-3} \frac{\operatorname{shag}}{f_{t+}}$
Bernali:

$$
\begin{aligned}
& V_{E A S}=(291.600)\left(\frac{1.832 \cdot 10^{-3}}{2.3769 \cdot 10^{-3}}\right)^{1 / 2}=256.02^{91 / 5} \\
& V_{E N}=256.02 \mathrm{ft} / \mathrm{s} \\
& \text { Mach: } \\
& V_{E A S}=(289.079)\left(\frac{1.832 \cdot 10^{-3}}{2.376 \cdot 10^{-3}}\right)^{1 / 2}=253.81 \mathrm{f1/5} \\
& v_{\text {EAS }}=253.81^{\mathrm{ft} / \mathrm{s}}
\end{aligned}
$$

Question: A nozzle needs to be designed for a supersonic wind tunnel with air as the primary fluid. The test section specifications are provided below:

1) Mach \# $=4.92$
2) Diameter $=13 \mathrm{~cm}$
3) Static pressure $=54.05 \mathrm{kPa}$
4) Static temperature $=255.7 \mathrm{~K}$

Determine the following wind tunnel characteristics to achieve the specified test section flow properties:
a) Mass flow provided
b) Nozzle throat area
c) Reservoir temperature $\left(T_{r}\right)$
d) Reservoir pressure (p_{r})

Assume isentropic flow in the nozzle and neglect frictional effects. Assume that propane behaves as a perfect gas with $\gamma=1.4$ and $R=0.2870 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$.
air
At test section:

$$
\begin{array}{ll}
M=4.92 & T=255.7 \mathrm{~K} \\
D=0.13 \mathrm{~m} & R=287 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} \\
P=54050 \mathrm{~Pa} & \gamma=1.4
\end{array}
$$

a) Mass flow @ Test Section

$$
\dot{m}=\rho A V
$$

$$
\begin{aligned}
& \rho: \rho=\rho R T \longrightarrow \rho=\frac{\rho}{R T} \\
& A: A=\pi r^{2}, r=1 / 2 D \rightarrow A=1 / 4 \pi D^{2} \\
& V: m=\frac{V}{a}, a=\sqrt{\gamma R T} \rightarrow V=m \sqrt{\gamma R T} \\
& \dot{m}=\frac{\rho}{R T} \cdot 1 / 4 \pi D^{2} \cdot m \sqrt{\gamma R T} \\
& \sqrt{\text { Evaluate }} \\
& \dot{m}=15.417 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

b) Nozzle throat area A^{*}

$$
\begin{aligned}
& \left(\frac{A}{A^{*}}\right)^{2}=\frac{1}{m^{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2} m^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}} \\
& A^{*}=A \cdot\left\{\frac{1}{m^{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2} m^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}}\right\}^{-1 / 2}
\end{aligned}
$$

\downarrow Evaluate

$$
A^{*}=5.662 \times 10^{-4} \mathrm{~m}^{2}
$$

C) Reservoir Temperature \rightarrow Stagnation Temperature

$$
\begin{aligned}
\frac{T_{0}}{T}=1 & +\frac{\gamma-1}{2} m^{2} \\
T_{0}= & T\left(1+\frac{\gamma-1}{2} m^{2}\right) \\
& \downarrow \text { Evaluate } \\
T_{r}=T_{0}= & 1493.615 \mathrm{~K}
\end{aligned}
$$

d) Reservoir Pressure \rightarrow Stagnation Pressure

$$
\begin{gathered}
\frac{\rho_{0}}{\rho}=\left(1+\frac{\gamma-1}{2} m^{2}\right)^{\frac{\gamma}{\gamma-1}} \\
\rho_{0}=P \cdot\left(1+\frac{\gamma-1}{2} m^{2}\right)^{\frac{\gamma}{\gamma-1}} \\
\\
\downarrow \text { Evaluate } \\
\rho_{r}=\rho_{0}=26035971.3 \mathrm{~Pa} \\
26035.9713 \mathrm{kPa}
\end{gathered}
$$

The rocket motor shown above is designed to operate most efficiently at an altitude of 55,000 feet, producing approximately 87,000 pounds of thrust at this condition. From the conditions given, determine the following:
a) The exit mach number
b) The exit pressure
c) The exit temperature
d) The exit velocity

You may assume that gamma is constant, and the flow is isentropic.

a. Find Exit Mach Number

$$
\begin{aligned}
& \left(\frac{A_{e}^{*}}{A^{*}}\right)^{2}=\frac{1}{M_{e}^{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{r-1}{2} M_{e}^{2}\right)\right]^{\frac{r+1}{\gamma-1}} \\
& \frac{A_{e}}{A^{k}}=\frac{2 m^{2}}{0.25 m^{2}}=8
\end{aligned}
$$

M $A / A^{*} T / T_{0} p / p_{0} \rho / \rho_{\circ} T / T^{*} p / p^{*} \rho / \rho^{*} u / u^{*}$

1.9	1.55526	0.5807	0.1492	0.257	0.6969	0.2825	0.4054	1.5861
1.95	1.61931	0.568	0.1381	0.2432	0.6816	0.2615	0.3836	1.6099
2	1.6875	0.5556	0.1278	0.23	0.6667	0.2419	0.3629	1.633
2.05	1.75999	0.5433	0.1182	0.2176	0.652	0.2238	0.3433	1.6553
2.1	1.83694	0.5313	0.1094	0.2058	0.6376	0.207	0.3246	1.6769
2.15	1.91854	0.5196	0.1011	0.1946	0.6235	0.1914	0.307	1.6977
2.2	2.00497	0.5081	0.0935	0.1841	0.6098	0.177	0.2903	1.7179
2.25	2.09644	0.4969	0.0565	0.174	0.5963	0.1637	0.2745	1.7374
2.3	2.19313	0.4859	0.08	0.1646	0.5831	0.1514	0.2596	1.7563
2.35	2.29528	0.4752	0.074	0.1556	0.5702	0.14	0.2455	1.7745
2.4	2.4031	0.4647	0.0684	0.1472	0.5576	0.1295	0.2322	1.7922
2.45	2.51683	0.4544	0.0633	0.1392	0.5453	0.1198	0.2196	1.8092
2.5	2.63672	0.4444	0.0585	0.1317	0.5333	0.1108	0.2077	1.8257
2.55	2.76301	0.4347	0.0542	0.1246	0.5216	0.1025	0.1965	1.8417
2.6	2.89598	0.4252	0.0501	0.1179	0.5102	0.0949	0.1859	1.8571
2.65	3.03588	0.4159	0.0464	0.1115	0.4991	0.0878	0.176	1.8721
2.7	3.18301	0.4068	0.043	0.1056	0.4882	0.0813	0.1665	1.8865
2.75	3.33766	0.398	0.0398	0.0999	0.4776	0.0753	0.1576	1.9005
2.8	3.50012	0.3894	0.0368	0.0946	0.4673	0.0698	0.1493	1.914
2.85	3.67072	0.381	0.0341	0.0896	0.4572	0.0646	0.1414	1.9271
2.9	3.84977	0.3729	0.0317	0.0849	0.4474	0.0599	0.1339	1.9398
2.95	4.0376	0.3649	0.0293	0.0804	0.4379	0.0556	0.1269	1.9521
3	4.23457	0.3571	0.0272	0.0762	0.4286	0.0515	0.1202	1.964
3.5	6.78962	0.2899	0.0131	0.0452	0.3478	0.0248	0.0714	2.0642
4	10.7188	0.2381	0.0066	0.0277	0.2857	0.0125	0.0436	2.1381
4.5	16.5622	0.198	0.0035	0.0174	0.2376	0.0065	0.0275	2.1936
5	25	0.1667	0.0019	0.0113	0.2	0.0036	0.0179	2.2361
5.5	36.869	0.1418	0.0011	0.0076	0.1702	0.002	0.012	2.2691
6	53.1798	0.122	0.0006	0.0052	0.1463	0.0012	0.0082	2.2953
6.5	75.1343	0.1058	0.0004	0.0036	0.127	0.0007	0.0057	2.3163
7	104.143	0.0926	0.0002	0.0026	0.1111	0.0005	0.0041	2.3333
7.5	141.841	0.0816	0.0002	0.0019	0.098	0.0003	0.003	2.3474
8	190.109	0.0725	0.0001	0.0014	0.087	0.0002	0.0022	2.3591
8.5	251.086	0.0647	$7 \mathrm{E}-05$	0.0011	0.0777	0.0001	0.0017	2.3689
9	327.189	0.0581	$5 \mathrm{E}-05$	0.0008	0.0698	$9 \mathrm{E}-05$	0.0013	2.3772
9.5	421.131	0.0525	$3 \mathrm{E}-05$	0.0006	0.063	$6 \mathrm{E}-05$	0.001	2.3843
10	535.938	0.0476	$2 \mathrm{E}-05$	0.0005	0.0571	$4 \mathrm{E}-05$	0.0008	2.3905
1	4							

$$
\begin{aligned}
& \frac{M_{e}-3.5}{4-3.5}=\frac{8-6.78}{10.71-6.78} \\
& M_{e}=\left(\frac{8-6.78}{10.71-6.78}\right)(4-3.5)+3.5=3.65=M_{e}
\end{aligned}
$$

b. Find Exit Pressure.

$$
\begin{aligned}
& \frac{P_{e}}{P_{0}}=\left(1+\frac{r-1}{2} m_{e}^{2}\right)^{\frac{-r}{r-1}} \\
& P_{e}=\frac{1000 \mathrm{kPas}}{4 P_{0}}\left(1+\frac{.4}{2}\left(\frac{3.65)^{2}}{4 M_{e}}\right)^{\frac{-1.4}{4}}\right. \\
& P_{e}=10.62 \mathrm{kPa}
\end{aligned}
$$

c. Find Temperature at exit

$$
\begin{aligned}
& \frac{T_{e}}{T_{0}}=\left(1+\frac{r-1}{2} M_{e}^{2}\right)^{-1} \\
& T_{e}=600 \mathrm{~K}\left(1+\frac{.4}{2}(3.65)^{2}\right)^{-1} \\
& T_{e}=163.7 \mathrm{~K}
\end{aligned}
$$

Could also use tables.
Could also relate $\frac{T_{e}}{T_{0}}$ and $\frac{P_{e}}{P_{0}}$
d. Find exit velocity.

Definition of exit Mach number

$$
\begin{aligned}
& M_{e}=\frac{v_{e}}{a_{e}} \\
& \begin{aligned}
v_{e} & =M_{e} a_{e} \\
& =M_{e} \sqrt{\gamma R T_{e}} \\
& =3.65 \sqrt{(1.4)\left(287 \frac{\mathrm{vm}}{\mathrm{~m} \cdot \mathrm{k}}\right)(163.7 \mathrm{k})} \\
& =3.65 \sqrt{65775\left[\frac{\mathrm{~N} \mathrm{\cdot m}}{\mathrm{k}_{\mathrm{g}}}\right]} \\
v_{e} & =936 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{k}}=\frac{17 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \mathrm{~m}}{\frac{\mathrm{~s}}{\mathrm{~s}}}=\frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
\end{aligned}
$$

Solution:

*Note that the thrust data is irrelevant to the problem at hand, but accurately matches the performance of the design for the data given.

(a)

We begin by solving the area relation formula for the exit mach number:

$$
\left(\frac{A_{e}}{A^{*}}\right)^{2}=\frac{1}{M_{e}^{2}}\left[\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)\right]^{\frac{\gamma+1}{\gamma-1}} \rightarrow M_{e}=3.677
$$

(b)

Use the isentropic relation to find the exit pressure:

$$
\frac{P_{e}}{P_{0}}=\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{\frac{-\gamma}{\gamma-1}} \rightarrow \quad P_{e}=10.22 \mathrm{kPa}
$$

(c)

Again, use an isentropic relation to determine the exit temperature:

$$
\frac{T_{e}}{T_{0}}=\left(1+\frac{\gamma-1}{2} M_{e}^{2}\right)^{-1} \rightarrow T_{e}=161.98 \mathrm{~K}
$$

(d)

Finally, use the speed of sound formula to determine the exit velocity:

$$
V_{e}=M_{e} \sqrt{\gamma R T_{e}} \rightarrow V_{e}=938.06 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

