Reconciliation of back-door and front-door adjustments

First, consider the case comparing the back-door adjustment for a typical back-door (below left) with a classic randomized design (below right), the backdoor adjustment applies consistently to each.

G

G

The back-door adjustment is

$$
\operatorname{Pr}(y \mid d o(x))=\sum_{z} \operatorname{Pr}(y \mid x, z) \operatorname{Pr}(z) \quad \text { (back-door adj) }
$$

The DAG on the right implies action and observation of X are equivalent

$$
\operatorname{Pr}(y \mid d o(x))=\operatorname{Pr}(y \mid x)=\sum_{z} \operatorname{Pr}(y \mid x, z) \operatorname{Pr}(z \mid x)=\sum_{z} \operatorname{Pr}(y \mid x, z) \operatorname{Pr}(z)
$$

The latter follows since X and Z are independent in the DAG.
Next, consider two front-door DAGs. The one on the left is the prototype but both satisfy the definition of a front-door.

G

G
[Definition] A set of variables Z is defined a front-door for the ordered pair (X, Y) if
(i) Z intercepts all directed paths from X to Y,
(ii) there is no unblocked back-door path from X to Z, and
(iii) all back-door paths from Z to Y are blocked by X.

The front-door adjustment is

$$
\operatorname{Pr}(y \mid d o(x))=\sum_{z} \operatorname{Pr}(z \mid x) \sum_{x^{\prime}} \operatorname{Pr}\left(y \mid x^{\prime}, z\right) \operatorname{Pr}\left(x^{\prime}\right) \quad \text { (front-door adj) }
$$

As is the case with back-door adjustment, front-door adjustment reconciliation relies entirely on conditional independence rather than further appeal to do-calculus. For the front-door DAG on the right action is equivalent to observation $\operatorname{Pr}(y \mid d o(x))=\operatorname{Pr}(y \mid x)$. The key resides with the second summation and conditional independence of X and Y given Z.

$$
\sum_{x^{\prime}} \operatorname{Pr}\left(y \mid x^{\prime}, z\right) \operatorname{Pr}\left(x^{\prime}\right)=\sum_{x^{\prime}} \operatorname{Pr}(y \mid z) \operatorname{Pr}\left(x^{\prime}\right)=\operatorname{Pr}(y \mid z)
$$

Then, combine with the first term and insert X back into the conditioning and by Bayes' chain rule the reconciliation is complete.

$$
\sum_{z} \operatorname{Pr}(z \mid x) \operatorname{Pr}(y \mid z)=\sum_{z} \operatorname{Pr}(z \mid x) \operatorname{Pr}(y \mid x, z)=\operatorname{Pr}(y \mid x)
$$

The final reconciliation involves the prototypical front-door DAG on the left. Suppose U is measured. Then, the back-door adjustment identifies the causal effect of X on Y.

$$
\operatorname{Pr}(y \mid d o(x))=\sum_{u} \operatorname{Pr}(y \mid x, u) \operatorname{Pr}(u)
$$

There are two conditional independence relations to reconcile the right-hand side of the back-door adjustment with the right-hand side of the front-door adjustment (again, without further reference to do-calculus).

$$
\begin{gathered}
X \perp Y \mid Z, U \\
U \perp Z \mid X
\end{gathered}
$$

First, rewrite the back-door adjustment to include Z with Bayes chain rule.

$$
\sum_{u} \operatorname{Pr}(y \mid x, u) \operatorname{Pr}(u)=\sum_{u} \sum_{z} \operatorname{Pr}(y \mid x, u, z) \operatorname{Pr}(z \mid x, u) \operatorname{Pr}(u)
$$

Now utilize the conditional independence conditions and rearrange.

$$
\sum_{u} \sum_{z} \operatorname{Pr}(y \mid x, u, z) \operatorname{Pr}(z \mid x, u) \operatorname{Pr}(u)=\sum_{u} \sum_{z} \operatorname{Pr}(z \mid x) \operatorname{Pr}(y \mid u, z) \operatorname{Pr}(u)
$$

Then, use Bayes chain rule along with conditional independence to insert X^{\prime} in the last two terms.

$$
\begin{gathered}
\sum_{u} \sum_{z} \operatorname{Pr}(z \mid x) \operatorname{Pr}(y \mid u, z) \operatorname{Pr}(u) \\
=\sum_{u} \sum_{z} \operatorname{Pr}(z \mid x) \sum_{x^{\prime}} \operatorname{Pr}\left(y \mid x^{\prime}, u, z\right) \operatorname{Pr}\left(u \mid x^{\prime}, z\right) \operatorname{Pr}\left(x^{\prime}\right)
\end{gathered}
$$

Finally, summation over U produces the front-door adjustment.

$$
\sum_{z} \operatorname{Pr}(z \mid x) \sum_{x^{\prime}} \operatorname{Pr}\left(y \mid x^{\prime}, z\right) \operatorname{Pr}\left(x^{\prime}\right)
$$

