Ralph's Holevo bound

Quantum information is enormously more powerful than classical information as is clear from results like teleportation, superdense coding, quantum factoring and quantum discrete log. The challenge involves accessing/exploiting this information. The Holevo bound provides a limit on accessible quantum information.

$$
I(X ; Y)=H(X)-H(X \mid Y) \leq S(\rho)-\sum_{x} p_{x} S\left(\rho_{x}\right) \equiv \chi
$$

where $I(X ; Y)$ is classical (Shannon) mutual information, ensemble X is the prepared message, Y is the measured outcome, $H(\cdot)$ is classical (Shannon) entropy, $S(\cdot)$ is quantum (von Neumann) entropy, ρ is a quantum density operator, p_{x} is the probability of event x, and $\rho=\sum_{x} p_{x} \rho_{x}$.

In classical terms, $I(X ; Y)=H(X)$ indicates information is fully accessible. This is intuitive as it implies $H(X \mid Y)=0$, that is, given information Y no uncertainty remains regarding X. The right hand side (RHS) χ indicates a bound on the amount of accessible classical information recoverable from quantum information. χ roughly mirrors quantum mutual information as it indicates the amount of uncertainty remaining in the system on knowing the state of preparation ρ_{x} from the ensemble of preparations $\rho_{x}, x=1,2, \ldots, n$.

Holevo information is denoted χ and represents a bound on accessible information. If the alphabet is prepared from pure states, then $\chi=S(\rho)$ as $S\left(\rho_{x}\right)=0$ for pure states ρ_{x}. If the alphabet involves orthogonal states, then $\chi=H(X)=S(\rho)$ as measurement perfectly distinguishes orthogonal states of a known ensemble. If the alphabet involves mutually orthogonal mixed states, then $\operatorname{Tr}\left(\rho_{1} \rho_{2}\right)=0$ and $\chi=H(X)$.

Suggested:

1. Suppose $\rho=0.3|0\rangle\langle 0|+0.7|1\rangle\langle 1|$. Find the Holevo bound χ.
2. Suppose $\rho=0.3|0\rangle\langle 0|+0.7|+\rangle\langle+|$ where $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Find the Holevo bound χ.
3. Suppose $\rho=0.5 \rho_{1}+0.5 \rho_{2}$ where $\rho_{1}=0.3|0\rangle\langle 0|+0.7|+\rangle\langle+|$. and $\rho_{2}=$ $0.8|1\rangle\langle 1|+0.2|-\rangle\langle-|$ where $|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$. Find the Holevo bound χ.
4. Suppose $\rho=0.5 \rho_{1}+0.5 \rho_{2}$ where $\rho_{1}=\left[\begin{array}{cccc}0.25 & -0.1 & 0.25 & -0.1 \\ -0.1 & 0.25 & -0.1 & 0.25 \\ 0.25 & -0.1 & 0.25 & -0.1 \\ -0.1 & 0.25 & -0.1 & 0.25\end{array}\right]$ and $\rho_{2}=\left[\begin{array}{cccc}0.25 & 0.15 & -0.25 & -0.15 \\ 0.15 & 0.25 & -0.15 & -0.25 \\ -0.25 & -0.15 & 0.25 & 0.15 \\ -0.15 & -0.25 & 0.15 & 0.25\end{array}\right]$. Compute $\operatorname{Tr}\left(\rho_{1} \rho_{2}\right)$ (if mixed density operators are mutually orthogonal $\left.\operatorname{Tr}\left(\rho_{1} \rho_{2}\right)=0\right)$. Find the Holevo bound χ and compare it with $H(X)$.
