
Statistical and causal inference with sampling
selection

Confounding and selection bias are among the greatest challenges to em-
pirical science. These notes focus on alleviation of sampling selection bias in
statistical (observation) studies as well as causal (intervention/policy) studies.1

The approach is graphical and draws upon Pearl’s do-calculus to establish
causality. A binary node S is added to the graph (typically a DAG, directed
acyclic graph) denoting inclusion in the sample when S = 1 and exclusion is
denoted S = 0. Selective sampling implies that observable variables lead to
inclusion. Hence, arcs are included in the graph from these nodes to S. Then,
the graph can be used to assess whether selection bias can be alleviated.

Graphical identification is completely general, in other words, nonparamet-
ric. In contrast, say, to Hechman’s inverse-Mills strategy which is parametric (in
particular, normally distributed unobservables in the selection mechanism). The
objective of statistical inference then is to identify p (y | x) from p (y | x, S = 1).

Similarly, the objective of causal inference is to identify p (y | do (x)) from
p (y | do (x) , S = 1) where do (x) refers to intervention that sets the value of
X to x.. Further, causal inference strives to alleviate confounding such that
p (y | do (x)) is identified from observables such as via the back-door adjustment
where some components may come from external data.

p (y | do (x)) =
∑
z

p (y | x, z) p (z)

Statistical inference
Statistical inference, p (y | x), is recoverable without external data if and

only if
(Y ⊥ S | X)

where ⊥ refers to stochastic independence or d-separation in the graph. The
corollary to the above is Y cannot be ancestor to S. Then, p (y | x) is identifed
by p (y | x, S = 1) where S = 1 refers to the selective (potentially contaminated)
sample.

Statistical inference is recoverable with external data if there exists a set of
observables C such that

(Y ⊥ S | X,C)

Consider the DAG below.

1These notes are a synthesis of several papers by Bareinboim, Tian, and Pearl including
“Recovering from selection bias in causal and statistical inference,” Proceedings of the twenty-
eighth AAAI conference on artificial intelligence, 2014.
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The set C ∈ {W1,W2} satisfies conditional independence of Y and S. Then,

p (y | x, S = 1) =
∑

w1,w2

p (y | x,w1, w2) p (w1, w2 | x, S = 1)

Since C cannot be d-separated from S, p (w1, w2 | x) will need to come from
external data when inferring the statistical quantity of interest and identification
is

p (y | x) =
∑

w1,w2

p (y | x,w1, w2, S = 1) p (w1, w2 | x)

where the first term can utilize the selective sample.
Causal inference
Causal inference is ultimately settled by the rules of do-calculus where in

addition to selection we must address confoundedness.

Rule 1 (insertion/deletion of observations):

Pr (y | do (x) , z, w) = Pr (y | do (x) , w) if (Y ⊥ Z | X,W )GX

Rule 2 (action/observation exchange):

Pr (y | do (x) , do (z) , w) = Pr (y | do (x) , z, w) if (Y ⊥ Z | X,W )GXZ

Rule 3 (insertion/deletion of actions/interventions):

Pr (y | do (x) , do (z) , w) = Pr (y | do (x) , w) if (Y ⊥ Z | X,W )G
X,Z(W )

2



where Z (W ) is the set of Z-nodes that are not ancestors of any W -nodes in
GX . Similar to statistical inference, if there are no confounding variables and
X makes Y and S conditionally independent then the causal effect can be iden-
tified without external sources. Otherwise, causal inference involves employing
adjustment variables to address selection and/or confoundedness. Further, ad-
justment variables cannot be descendants of outcome as conditioning on them
results in reverse causality bias.

The three graphs below are illustrative.

The causal effect p (y | do (x)) is not recoverable from selection bias in DAG (a)
even though W block S from Y . Conditioning on W , a collider, confounds the
effect of X on Y .

The causal effect in DAG (b) is recoverable. Conditioning on W2 separates
S from Y and blocks the confounding back-door into X connecting Y .

p (y | do (x) , S = 1) =
∑
w2

p (y | x,w2) p (w2 | S = 1)

Rule 2 of do-calculus allows substitution of observation for action to give the
first term on the right hand side. Rule 3 of do-calculus allows deletion of do (x)
as the arc from W1 to X is deleted in the subgraph and Y is a collider blocking
the other path between W2 and X. Again, p (w2) requires external data as W2

is not separable from selection and identification is

p (y | do (x)) =
∑
w2

p (y | x,w2, S = 1) p (w2)

Notice, the conditional causal effect does not require external data.

p (y | do (x) , w2) = p (y | x,w2) = p (y | x,w2, S = 1)

The causal effect in DAG (c) is also recoverable albeit with a bit more
creativity. First, W2 blocks the back-door into X leading to the back-door
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adjustment within the selective sample.

p (y | do (x) , S = 1) =
∑
w2

p (y | x,w2, S = 1) p (w2 | S = 1)

Selection can be dealt with in each term on the right hand side as W1 blocks all
paths connecting S and Y .

p (y | x,w2, S = 1) =
∑
w1

p (y | x,w2, w1) p (w1 | w2, S = 1)

p (w2 | S = 1) =
∑
w1

p (w2 | w1) p (w1 | S = 1)

This implies two quantities come from external sources: p (w1 | w2) and p (w1)
and identification is

p (y | do (x)) =
∑

w1,w2

p (y | x,w2, w1, S = 1) p (w1 | w2)
∑
w1

p (w2 | w1, S = 1) p (w1)

DAG (c) merits a few more observations. If the arc between W1 and W2

is reversed, identification of the causal effect is analogous to DAG (b) — W2

adjusts for both confounding and selection.
Further, statistical inference in DAG (c) requires adjustment by W1 as is the

case for causal inference (however, causal inference also requires adjustment by
W2 for confounding). It might be tempting to adjust for selection by X alone
as W2 is a collider with respect to W1 and U . However, X is a descendant
of the collider W2 and conditioning on X opens the collider path S ← W1 →
W2 ← U → Y . Therefore, Y is not independent of S conditional on X but is
conditional on W1. Again, p (w1) comes from external sources.2

2Conditional independence tests distinguish between DAG (c) and other DAGs in which
W2 is not a collider with respect to U and W1. In DAG (c) X ⊥ W1, S | W2 but when W2 is
not a collider Y,X ⊥ W1, S | W2.
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