
A simple nullspace version
of the matrix tree theorem

1 Overview

The matrix tree theorem states that the number of spanning trees in an m
nodes, n arcs graph of an incidence matrix, A, equals the determinant of A0AT0
where A0 is the (m− 1) × n matrix formed by dropping any row from A. An
incidence matrix is a matrix in which the elements are zeros except each column
has one 1 and one −1. A proof follows from the Binet-Cauchy theorem (stated
below) and unimodularity of submatrices of A0 (defined below).
The simple nullspace version of the matrix tree theorem says the number of

spanning trees equals
∣∣NNT

∣∣ where N is the r×n simple nullspace of A, simple
refers to composing the nullspace entirely of 0’s and ±1, r = n−m+1 ≥ 1 is the
dimension of the nullspace, and |·| is the determinant of the matrix. Our proof
follows the reasoning outlined above for the standard version of the matrix tree
theorem. That is, we utilize the Binet-Cauchy theorem and unimodularity of
submatrices of N . Since spanning trees are formed by eliminating loops in the
graph it’s natural to focus on the nullspace (the nullspace is the loops in the
graph).

1.1 Non-overlapping arcs

If there are no arcs in multiple loops (no overlaps), then the nullspace version is
immediately demonstrated. That is, the number of spanning trees is the product
of the number of arcs in each (linearly independent) loop; this is precisely what∣∣NNT

∣∣ gives. Hence, the challenge involves addressing overlapping arcs (arcs

1



in multiple loops). A simple non-overlapping graph is depicted below.

Non-overlapping arcs graph

A simple nullspace for the above graph isN =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 −1 −1

]
and

∣∣NNT
∣∣ = ∣∣∣∣ 4 0

0 4

∣∣∣∣ = 42 = 16. Also,

A =



−1 0 0 1 0 0 0 0
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 1 −1
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such that ANT = 0. Drop any row (say, the last row) and we have

∣∣A0AT0 ∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0 −1 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
−1 0 −1 4 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 2

∣∣∣∣∣∣∣∣∣∣∣∣
= 16

This not only illustrates the equivalence between the standard and nullspace
versions of the theorem but also the relative computational simplicity of the
nullspace version.

1.2 Overlapping arcs

A simple illustration of three loops with overlapping arcs is instructive.

Overlapping arcs graph
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The incidence matrix associated with this graph is 8 × 10 and the nullspace is
3× 10 such that ANT = 0. Arcs 5 and 7 are not in loops and a simple basis for
the nullspace is

N =

 1 0 1 −1 0 0 0 1 0 0
0 1 −1 0 0 0 0 0 −1 1
0 0 0 0 0 1 0 −1 1 −1


where

∣∣A0AT0 ∣∣ = ∣∣NNT
∣∣ = 36. Notice, if each of the three loop involving four

arcs did not involve any overlapping arcs there would be 43 = 64 spanning trees.
Therefore, the key is to count the reduction in spanning trees due to overlaps
(in this example, the reduction is 64− 36 = 28).

1.3 Unimodularity and the Binet-Cauchy theorem

To address overlaps, we next define unimodularity and state the Binet-Cauchy
theorem.

Definition 1 Total unimodularity (TU): An r×s matrixM is totally unimodu-
lar if the determinant of every k×k submatrix S is 0 or ±1 (1 ≤ k ≤ min {r, s}).

Theorem 1 Binet-Cauchy theorem: Let R be a p× q matrix and S be a q × p
matrix where p ≤ q. Also, let Rk denote the kth column of R and Sk denote the
kth column of S. Then,

|RS| =
∑

1≤k1<k2<···kp≤q

∣∣[Rk1 , Rk2 , . . . , Rkp]∣∣ ∣∣∣[STk1 , STk2 , . . . , STkp]∣∣∣
Proof. The row i, column j element of RS is

∑q
k=1 rikskj and the jth column

is (RS)j =
∑q

k=1Rkskj .

|RS| = |[RS1, RS2, . . . , RSp]|

=

∣∣∣∣∣∣
 q∑
k1=1

Rk1sk11,

q∑
k2=1

Rk2sk22, . . . ,

q∑
kp=1

Rkpskpp

∣∣∣∣∣∣
=

q∑
k1=1

sk11

∣∣∣∣∣∣
Rk1 , q∑

k2=1

Rk2sk22, . . . ,

q∑
kp=1

Rkpskpp

∣∣∣∣∣∣
=

q∑
k1=1

sk11

q∑
k2=1

sk22 · · ·
q∑

kp=1

skpp
∣∣[Rk1 , Rk2 , . . . , Rkp]∣∣

Since
∣∣[Rk1 , Rk2 , . . . , Rkp]∣∣ = 0 for ki = kj when i 6= j (linearly dependent

rows), we only sum over the cases in which ki 6= kj for i 6= j. Hence,

|RS| =
∑

1≤k1<k2<···kp≤q

∣∣[Rk1 , Rk2 , . . . , Rkp]∣∣ ∣∣∣[STk1 , STk2 , . . . , STkp]∣∣∣
This completes the proof.
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2 A simple nullspace version of the matrix tree
theorem

Unimodularity and the Binet-Cauchy theorem set the main stage for the simple
nullspace version of the matrix tree theorem but first we define a simple basis
for the nullspace of an incidence matrix then state and prove unimodularity for
the simple nullspace.

Definition 2 Simple basis for the nullspace of an incidence matrix: A simple
basis for the nullspace of an incidence matrix is one in which each loop is rep-
resented by ±1 associated with the arcs contained in the loop and zeros for arcs
not in the loop.

Since an incidence matrix contains only 0 and ±1 this is always possible and
the sign only provides relative direction. For instance, in the 8× 10 graph with
overlapping arcs, arc 4 is in the opposite direction to the other arcs (arcs 1,
3, and 8) in the first loop identified. It is a matter of indifference whether we
define this loop as [

1 0 1 −1 0 0 0 1 0 0
]

or [
−1 0 −1 1 0 0 0 −1 0 0

]
Lemma 1 Unimodularity of the simple nullspace: A simple basis for the nullspace
of an incidence matrix is totally unimodular.

Proof. The statement is trivially true for single element submatrices. All
2 × 2 submatrices, S, are either singular or |S| = |L| |U | = 1 (±1) = ±1 where
S = LU by lower, upper factorization (utilizing the facts that the determinant
of a triangular matrix is the product of the diagonals and the determinant of
the product of square matrices equals the product of the determinants). This
follows as relative direction of the arcs must be maintained for each loop with
overlapping arcs. By the same reasoning, all larger submatrices with multiple
overlapping arcs in the same two loops are singular and submatrices without
multiple overlapping arcs in the same two loops are either singular or have
determinant equal to ±1 since their elements are all 0 or ±1.
The intuition for this is no submatrix from any basis for the nullspace in-

cludes overlapping arcs in the same two loops in which relative direction is not

preserved such as in
[
1 −1
1 1

]
(which has determinant equal to 2), rather

we could observe multiple overlapping arcs such as
[
1 −1
1 −1

]
,
[
1 −1
−1 1

]
,

or
[
1 1
1 1

]
(all of which are singular). For submatrices without multiple

overlapping arcs in the same two loops we could have a singular submatrix
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such as

 1 0 −1
0 1 0
0 0 0

, or nonsingular submatrices such as
 1 0 0
0 1 0
0 0 −1

 or 1 0 1
1 1 0
0 0 −1

. But multiple overlapping arcs such as
 1 −1 1
1 1 1
0 1 −1

 is not
a submatrix from a basis for the nullspace (loops 1 and 3 are consistent but
loops 1 and 2 are not part of any basis for the nullspace of an incidence matrix
as relative direction of the first and second arcs, columns, is not maintained).
For the 7× 8, 2 loops incidence matrix with non-overlapping arcs identified

earlier, there are
(
8
2

)
= 28 – 2 × 2 submatrices, of which 12 are singular.

While for the 8 × 10, 3 loops incidence matrix with multiple overlapping arcs
identified earlier, there are

(
10
3

)
= 120 – 3× 3 submatrices, of which 84 are

singular. The counting of these singular submatrices is the key for connecting∣∣NNT
∣∣ to the number of spanning trees so long as the nullspace is not empty

(in the case of a zero dimension nullspace, there is only one spanning tree).

Lemma 2 The number of r×r nonsingular submatrices of N equals the number
of spanning trees in the graph based on incidence matrix A.

Proof. Submatrices involving no pairs of loops with overlapping arcs are either
singular (and either disconnect the graph or leave loops in the graph) or are
nonsingular and identify spanning trees. Hence, once again the challenge resides
with loops involving overlapping arcs. Submatrices involving pairs of loops
with multiple overlapping arcs are singular by preservation of relative direction
(lemma 1) and fail to identify spanning trees. Submatrices involving pairs of
loops with one overlapping arc are either singular (identify disconnected graphs
or leave loops in the graph) or nonsingular (identify a spanning tree).
We now have the pieces in place and the proof of the simple nullspace version

of the matrix tree theorem is almost immediate.

Theorem 2 Simple nullspace version of the matrix tree theorem: For an m×n
(m ≤ n implies r ≥ 1) incidence matrix, A, with simple (nonempty) nullspace
basis r × n, N , the number of spanning trees equals

∣∣NNT
∣∣.
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Proof. Let Sk be an r×r submatrix of N for k = 1, . . . , nr where nr =
(
n
r

)
.

∣∣NNT
∣∣ =

nr∑
k=1

|Sk|
∣∣STk ∣∣ (Binet-Cauchy)

=

nr∑
k=1

|Sk|2

=
∑

Sk∈singular
|Sk|2 +

∑
Sk∈nonsingular

|Sk|2

=
∑

Sk∈nonsingular
|Sk|2

= number of r × r nonsingular (lemma 1)

submatrices of N

= number of spanning trees of A (lemma 2)

This completes the proof.

3 Discussion

A proof of the standard version of the matrix tree theorem says that submatrices
of A0 are unimodular and only the nonsingular submatrices are included in the
count of spanning trees. In other words, the (m− 1) × (m− 1) nonsingular
submatrices identify the arcs of spanning trees. The simple nullspace version
of the matrix tree theorem says look to the complement of the above strategy.
Instead of identifying arcs in the spanning tree, identify arcs to remove from the
graph to form spanning trees. Since they are complementary actions they must
produce the same results. Further, if m − 1 > r (as is often the case), looking
to the nullspace or loops in the graph is computationally simpler.
One final point. If we augment A0 with N to form an n × n matrix, its

determinant equals the number of spanning trees.∣∣∣∣[ A0N
]∣∣∣∣ = # spanning trees

Given this result and the standard version of the matrix tree theorem, it’s
straightforward to connect with the simple nullspace version.∣∣∣∣[ A0N

]∣∣∣∣2 = (# spanning trees)2

=

∣∣∣∣∣
[
A0
N

] [
A0
N

]T ∣∣∣∣∣
=

∣∣∣∣[ A0AT0 0
0 NNT

]∣∣∣∣
=

∣∣A0AT0 ∣∣ · ∣∣NNT
∣∣
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which implies

∣∣NNT
∣∣ =

(# spanning trees)2

(# spanning trees)
= (# spanning trees)

Of course, this can be reversed so that the results for the simple nullspace
version of the matrix tree theorem in combination with the standard version of

the matrix tree theory imply

∣∣∣∣[ A0N
]∣∣∣∣ = # spanning trees.
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