The pseudoinverse or Moore-Penrose inverse is an operator X with the following properties.

$$
\begin{gather*}
A X A=A \tag{1}\\
X A X=X \tag{2}\\
A X=(A X)^{T}=X^{T} A^{T} \tag{3}\\
X A=(X A)^{T}=A^{T} X^{T} \tag{4}
\end{gather*}
$$

Combining (2) and (3) yields

$$
\begin{equation*}
X A X=X X^{T} A^{T}=X \tag{5}
\end{equation*}
$$

Combining (1) and (4) along with transposition produces

$$
\begin{equation*}
(A X A)^{T}=A^{T} X^{T} A^{T}=X A A^{T}=A^{T} \tag{6}
\end{equation*}
$$

Uniqueness

There is exactly one operator with properties (1) - (4) for any matrix A. Uniqueness can be demonstrated by considering another operator Y with the following properties.

$$
\begin{align*}
& Y=A^{T} Y^{T} Y \tag{7}\\
& A^{T}=A^{T} A Y \tag{8}
\end{align*}
$$

(7) is derived by substituting (4) into (2) after replacing X with Y and (8) substitutes (3) into (1). Utilizing the equations above demonstrates X and Y are the same operators.

$$
\begin{equation*}
X=X X^{T} A^{T}=X X^{T} A^{T} A Y=X A Y=X A A^{T} Y^{T} Y=A^{T} Y^{T} Y=Y \tag{9}
\end{equation*}
$$

The pseudoinverse of A is usually denoted A^{\dagger}. Of course, the left-, right- inverse of A, A^{-1}, is a special case of A^{\dagger} when A is nonsingular.

SVD construction of \mathbf{A}^{\dagger}

Singular value decomposition (SVD) applies to any matrix $A=U \Sigma V^{T}$ where U and V have orthonormal columns and Σ is a diagonal matrix. Since the columns of U and V are orthonormal, $U^{\dagger}=U^{T}$ and $V^{\dagger}=V^{T}$. Hence,

$$
\begin{equation*}
A^{\dagger}=\left(U \Sigma V^{T}\right)^{\dagger}=V \Sigma^{\dagger} U^{T} \tag{10}
\end{equation*}
$$

Properties (1) - (4) along with uniqueness of A^{\dagger} assures $\left(A^{\dagger}\right)^{\dagger}=A$.

LU construction of \mathbf{A}^{\dagger}

First, factor A as $P L U$ where U is fully row reduced to produce rows of zero if A is less than full row rank. Next, construct \bar{U} by dropping the rows of zero from U so that \bar{U} has full row rank. Similarly, construct \bar{L} by dropping columns from the right of L so that the remaining, L_{r}, is full column rank. Multiply the result by P to form $\bar{L}=P L_{r}$. Now,

$$
\begin{equation*}
A^{\dagger}=\bar{U}^{T}\left(\overline{U U}^{T}\right)^{-1}\left(\bar{L}^{T} \bar{L}\right)^{-1} \bar{L}^{T} \tag{11}
\end{equation*}
$$

