
SCM with diff-in-diff design1

Difference-in-difference designs (d-i-d) are frequently employed to assess causal
effects when there is an exogenous event that causes a potential change in out-
come due to a change in perceived causal variable(s). Hence, the hypothesized
causal effect occurs in the post intervention period. A simple case is represented
by the DAG (directed acyclic graph) below where other than any interaction
terms the structural causal model (SCM) is linear (functionally, rather than
linear in the parameters) and the numbers on the arcs are the path coefficients.
Y is outcome, X is the causal intervention (typically binary), and T is the ex-
ogenous intervention (binary).

There is a back-door path into X that connects with Y via T . Accordingly,
identification of the causal effect of X on Y requires conditioning on T . The
SCM for this DAG is typically (functionally) nonlinear due to the interaction
term designed to account for occurrence of the causal effect only in the post
intervention period.

M :

T = UT

X = aT + UX

Y = cT + bX + dX ∗ T + UY

On the other hand, the intervention model where X = x is

MX :

T = UT

X = x

Y = cT + bx + dx ∗ T + UY

1SCM and ETT are adapted from Pearl, Glymour, and Jewell, 2016, Causal Inference in
Statistics: A Primer, Wiley.
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ETT for d-i-d

The quantity of interest is the causal effect of X on Y in the post-intervention
period where the pre-intervention period serves as a control sample. Difference-
in-difference is the expected treatment effect on the treated during the post-
intervention period less the expected treatment effect on the treated during the
pre-intervention period.

d− i− d = ETT (T = 1)− ETT (T = 0) = d

where

ETT (T = 1) = E [YX=1 − YX=0 | X = 1, T = 1]
= E [cT + b (1) + d (1) ∗ T + UY | X = 1, T = 1]
−E [cT + b (0) + d (0) ∗ T + UY | X = 1, T = 1]

ETT (T = 1) = {c + b + d} − {c} = b + d

and
ETT (T = 0) = E [YX=1 − YX=0 | X = 1, T = 0]
= E [cT + b (1) + d (1) ∗ T + UY | X = 1, T = 0]
−E [cT + b (0) + d (0) ∗ T + UY | X = 1, T = 0]

ETT (T = 0) = {b} = b

Example
Consider a simple binary example to illustrate the above case. The joint

probability distribution is

Pr (y, t, x) X = 0 X = 1
T = 0, Y = 0 0.125 0.1
T = 0, Y = 1 0.125 0.1
T = 1, Y = 0 0.125 0.125
T = 1, Y = 1 0.125 0.175

Marginal and conditional probabilities are

Pr (Y = 1) = 0.525
Pr (T = 1) = 0.55
Pr (X = 1) = 0.5

Pr (X = 1 | T = 1) = 0.545
Pr (Y = 1 | T = 1) = 0.545

Conditional expectations are

E [Y | X = 1, T = 1] = 0.5833
E [Y | X = 0, T = 1] = 0.5

The structural causal model is

Y = 0.5 + 0X + 0T + 0.0833X ∗ T + UY
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and counterfactual, causal analysis leading to the expected treatment effect on
the treated agrees with observation.

ETT (T = 1) = 0.0833

E [Y | X = 1, T = 1]− [Y | X = 0, T = 1] = 0.0833

ETT (T = 0) = 0.0

E [Y | X = 1, T = 0]− [Y | X = 0, T = 0] = 0.0

d− i− d = ETT (T = 1)− ETT (T = 0) = 0.0833

ETT for d-i-d with confounders

Frequently, the setting is not so clean but plagued with potential confounders
denoted Z. One variation is a simple extension of the above where the causal
effect of X on Y has a back-door through Z as well as T .

Below is one SCM for this setting.

M :

T = UT

Z = UZ

X = aT + eZ + UX

Y = cT + fZ + bX + gX ∗ T + hZ ∗ T + kX ∗ Z + dX ∗ Z ∗ T + UY

The causal effect involves intervention to set X = x.

MX :

T = UT

Z = UZ
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X = x

Y = cT + fZ + bx + gx ∗ T + hZ ∗ T + kx ∗ Z + d ∗ x ∗ Z ∗ T + UY

For this SCM, the d-i-d (post intervention) expected treatment effect on the
treated involves the same estimand as above.

ETT (T = 1) = E [Y1 | X = 1, T = 1]− E [Y0 | X = 1, T = 1]{
+fE [Z | X = 1, T = 1] + b + g + kE [Z | X = 1, T = 1]

+dE [Z | X = 1, T = 1] + E [UY | X = 1, T = 1]

}
−{c + fE [Z | X = 1, T = 1] + E [UY | X = 1, T = 1]}

= b + g + kE [Z | X = 1, T = 1] + dE [Z | X = 1, T = 1]

ETT (T = 0) = E [Y1 | X = 1, T = 0]− E [Y0 | X = 1, T = 0]

{fE [Z | X = 1, T = 0] + b + E [UY | X = 1, T = 0] + kE [Z | X = 1, T = 0]}
−{fE [Z | X = 1, T = 0] + E [UY | X = 1, T = 0]} = b + kE [Z | X = 1, T = 0]

d− i− d = ETT (T = 1)− ETT (T = 0)

= g + k {E [Z | X = 1, T = 1]− E [Z | X = 1, T = 0]}+ dE [Z | X = 1, T = 1]

Example
A binary example illustrates the impact of the confounder Z where the

treatment effect is homogeneous. The joint distribution is

Pr (y, t, x, z) X = 0, Z = 0 X = 0, Z = 1 X = 1, Z = 0 X = 1, Z = 1
T = 0, Y = 0 0. 15025 0. 0798 0. 00075 0. 0005

T = 0, Y = 1 0. 15025 0. 1197 0. 00175 0. 002
T = 1, Y = 0 0. 031125 0. 075 0. 117375 0. 0042

T = 1, Y = 1 0. 031125 0. 1125 0. 117375 0. 0063

Marginal and conditional probabilities are

Pr (Y = 1) = 0. 541
Pr(T = 1) = 0.495

Pr (X = 1) = 0.25025
Pr (X = 1 | T = 1) = 0. 495454545

Pr (X = 1 | Z = 1) = 0. 0325
Pr (Y = 1 | T = 1) = 0. 54

Pr (Y = 1 | Z = 1) = 0. 60125
Pr (Z = 1) = Pr (Z = 1 | T ) = 0.4

Pr (Z = 1 | X = 1, T = 1) = 0. 042813456
Pr (Z = 1 | Y = 1, T = 1) = 0. 827154047

Conditional expectations are

E [Y | X = 1, T = 1] = 0. 504281346
E [Y | X = 0, T = 1] = 0. 575075075

E [Y | X = 1, T = 0] = 0.75
E [Y | X = 0, T = 0] = 0. 5399
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The structural causal model is

Y = 0.5 + 0.2X + 0.1Z − 0.2X ∗ T + UY

and the expected treatment effect on the treated is

ETT (T = 1)− ETT (T = 0) = 0.0− 0.2 = −0.2

while the observed differences are (0. 504281346− 0. 575075075)−(0.75− 0.5399) =
-0. 07079373− 0. 2101 = -0. 28089373.

Observable heterogeneity

The above SCM accommodates observable heterogeneity and is illustrated
in the following example.

Example Heterogeneity as a function of the confounder Z is illustrated via the

following binary example. The joint distribution is

Pr (y, t, x, z) X = 0, Z = 0 X = 0, Z = 1 X = 1, Z = 0 X = 1, Z = 1
T = 0, Y = 0 0. 15025 0. 0798 0. 00075 0. 001

T = 0, Y = 1 0. 15025 0. 1197 0. 00175 0. 0015

T = 1, Y = 0 0. 031 0. 075 0. 0705 0. 0021

T = 1, Y = 1 0. 031 0. 1125 0. 1645 0. 0084

Marginal and conditional probabilities are

Pr (Y = 1) = 0. 5896
Pr(T = 1) = 0.495

Pr (X = 1) = 0.2505
Pr (X = 1 | T = 1) = 0. 495959596

Pr (X = 1 | Z = 1) = 0. 0325
Pr (Y = 1 | T = 1) = 0. 639191919

Pr (Y = 1 | Z = 1) = 0. 60525
Pr (Z = 1) = Pr (Z = 1 | T ) = 0.4

Pr (Z = 1 | X = 1, T = 1) = 0. 042769857
Pr (Z = 1 | Y = 1, T = 1) = 0. 842508711

Conditional expectations are

E [Y | X = 1, T = 1] = 0. 704276986
E [Y | X = 0, T = 1] = 0. 575150301

E [Y | X = 1, T = 0] = 0.65
E [Y | X = 0, T = 0] = 0.5399
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The structural causal model is

Y = 0.5 + 0.2x + 0.1Z − 0.2x ∗ Z + 0.2x ∗ Z ∗ T + UY

and the expected treatment effect on the treated is (the first line is d − i − d
from the data generating process while d− i−d is recovered from the structural
model in the second line)

d− i− d = ETT (T = 1)− ETT. (T = 0) = 0.2− 0.1 = 0.1

d− i− d = −0.2 ∗ (0. 042769857−0.5) + 0.2 ∗ 0. 042769857 = 0.1

The observed differences are (0. 704276986− 0. 575150301) − (0.65− 0.5399) =
0. 129126685− 0. 1101 = 0. 019026685.
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Collider

Rather than the above confounding back-door, suppose Z is a collider.

Adjusting by Z is confounding while omitting the collider identifies the causal
effect of X on Y . The causal model is the same as the first (unconfounded)
example.

Y = bx + cT + dx ∗ T + UY

and
d− i− d = ETT (T = 1)− ETT (T = 0) = d

Example

The above case is illustrated with the following binary example. The joint
distribution is

Pr (y, t, x, z) X = 0, Y = 0 X = 0, Y = 1 X = 1, Y = 0 X = 1, Y = 1
T = 0, Z = 0 0. 0432 0. 1512 0. 0432 0. 0672

T = 0, Z = 1 0. 0192 0. 0432 0. 0168 0. 1568

T = 1, Z = 0 0. 0648 0. 1008 0. 1008 0. 0288

T = 1, Z = 1 0. 0288 0. 0288 0. 0392 0. 0672

d− i−d = ETT (T = 1)−ETT (T = 0) = −0.1739− 0. 03172305 = -0. 2055885

The unconfounded model above estimates

Y = 0. 7570 + 0. 0317x− 0.1764 T − 0.2056x ∗ T

while the collider-confounded model accommodating heterogeneity estimates

Y = 0.7778− 0.1681x− 0.1691T + 0.0855Z

−0.2174x ∗ T − 0.0232Z ∗ T + 0.3800X ∗ Z + 0.1381x ∗ Z ∗ T
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and incorrectly estimates the effect to be −0.2174+0.3800∗ (0.4508− 0.6113)+
0.1381∗0.4508 = −0.2174 which is equivalent to the bias induced from erroneous
adjustment by the collider.

Nonconfounders

Now, we consider some DAGs in which at least some of the potential confounders
are nonconfounding. Such variables may play a role in diagnosing the DAG via
conditional independence tests of the data but play no direct role in identifying
the causal effect and therefore no role in the experimental design. Importantly,
colliders (Z1 in DAG (c)) are not only nonconfounding but conditioning on them
confounds the causal effect via Berkson’s paradox.

In DAGs (a) and (b) back-door paths (into X connecting Y ) are blocked by
T and Z2. Z1 is conditionally independent of both X and Y given T and Z2.
Hence, Z1 plays no direct role in identifying the causal effect of X on Y but it
may play an indirect role in developing and diagnosing the DAG via conditional
independence tests.

In DAG (c), the back-door path (into X connecting Y ) is blocked by T ,
Z2 is a nonconfounder, and importantly, Z1 is a collider.2 The causal effect of
X on Y is identified by conditioning on T alone but conditioning on Z1 opens
a back-door path into X connecting Y confounding identification of the causal
effect. In fact, conditioning on a collider like Z1 typically biases every parameter
in the model.

Conditional independence tests
Discovery and diagnostic testing of the DAGs is facilitated by conditional

independence tests. In DAG (a) conditional independence tests include the
following.

X,Y ⊥ Z1 | T,Z2

T ⊥ Z2 | Z1

T ∼⊥ Z2 | ∅
2The two-headed dashed arcs represent dependence between two observables through a set

of unobservables.
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where ⊥ refers to independence and ∼⊥ refers to not independent. The first
condition simply indicates paths from either X or Y to Z1 are blocked by T
and Z2. The second condition reflects the idea that the direct path between
T and Z2 is blocked by Z1 while back-door paths are blocked by X and Y
which are colliders with respect to T and Z2. If the direction of causality is
reversed between Z1 and Z2, the latter two conditional independence conditions
are reversed as Z1 becomes a collider with the reversal and conditioning on a
collider opens an otherwise blocked path.

DAG (b) is similar to DAG (a) except that T is a parent to both Z1 and Z2

with the same base conditional independence test.

X,Y ⊥ Z1 | T,Z2

If there were a direct path from Z1 to Y the above test would fail for Y but the
back-door path into X connecting Y is still blocked by T and Z2.

As discussed above, DAG (c) is more problematic as Z1 is a collider. An
analyst might be tempted to inappropriately treat it as a confounder by condi-
tioning on it. Conditional independence tests include

Y ⊥ Z2 | T,X

Y ∼⊥ Z2 | T,X,Z1

The two conditions indicate that Z1 is a collider with respect to Y and Z2 —
the key concern.

Suppose there is a direct path from Z2 to Y , then the above tests fail (see
DAG (c’) below). However, if the analyst is able to measure a variable, say W ,
pointing into Z1, then W ⊥ X,Y, T, Z2 | ∅ but W ∼⊥ X,Y, T, Z2 | Z1. This
would be strong confirmation of Z1 as a collider. While W is not employed
directly in the empirical design to infer the causal effect of X on Y , W would
nevertheless provide a useful diagnostic role in the DAG construction or, in
other words, discovery of the causal structure supporting the empirical design.
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Appendix
Counterfactual analysis leads to expected treatment effect on treated (ETT).

ETT = E [Y1 | D = 1]− E [Y0 | D = 1]

Iterated expectations/law of total probability implies

E [Yx] = E [Yx | D = 1] Pr (D = 1) + E [Yx | D = 0] Pr (D = 0)

Consistency axiom says if desired action is observed then action is simply
the observational probability

E [Y1 | D = 1] = E [Y | D = 1]

Hence,

E [Y1] = E [Y | D = 1] Pr (D = 1) + E [Y1 | D = 0] Pr (D = 0)

or
E [Y0] = E [Y0 | D = 1] Pr (D = 1) + E [Y | D = 0] Pr (D = 0)

Rewriting the latter gives

E [Y0 | D = 1] =
E [Y0]− E [Y | D = 0] Pr (D = 0)

Pr (D = 1)

All but E [Y0] is observed but this can be identified experimentally, or perhaps,
by back-door adjustment from observational data.

E [Y0] = E [Y | do (D = 0)]

=
∑
z

E [Y | D = 0, Z = z] Pr (Z = z)

or the propensity score frame of the back-door adjustment

Pr (Y = y | do (D = 0)) =
∑
z

Pr (Y = y | D = 0, Z = z) Pr (Z = z)

=
∑
z

Pr (Y = y,D = 0, Z = z)

Pr (D = 0, Z = z)
Pr (Z = z)

=
∑
z

Pr (Y = y,D = 0, Z = z)

Pr (D = 0, Z = z) /Pr (Z = z)

=
∑
z

Pr (Y = y,D = 0, Z = z)

Pr (D = 0 | Z = z)

Putting everything together we have

ETT = E [Y | D = 1]− E [Y0]− E [Y | D = 0] Pr (D = 0)

Pr (D = 1)
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