
Ralph’s quantum discrete log
Ralph knows elliptic curve cryptography is based on the difficulty of comput-

ing discrete logarithms. Discrete log is the inverse of modular exponentiation.
Both can be simply represented by

gr ≡ x(mod p) (1)

Modular exponentiation involves finding x given g, r, and p which is easy. On the
other hand, the discrete log involves finding r given g, x, and p which is believed
to be difficult (otherwise elliptic curve cryptography fails — see Ralph’s elliptic
curve cryptography). Shor’s quantum factoring algorithm (see Ralph’s quantum
factoring) can be adapted to solve the discrete log problem much faster with a
quantum computer than via classical computation as is the case for factoring
and breaking RSA cryptography.

A quantum algorithm for finding the discrete log r given g, x, and p follows.1

1. Create three registers where each register is t qubits, p < q = 2t < 2p.

1

(p− 1)

p−2∑
a,b=0

|a〉 |b〉 |0〉 (2)

2. Apply the function f (a, b) = xag−b (mod p) to the third register where
the modular inverse g−b (mod p) is the value z such that zgb ≡ 1 (mod p).

1

(p− 1)

p−2∑
a,b=0

|a〉 |b〉|xag−b〉 (3)

3. Apply the quantum inverse Fourier transform to the first two registers.

1

(p− 1)
2

p−2∑
a,b,c,d=0

ζacζbd |c〉 |d〉|xag−b〉 (4)

where ζ = exp
(
2πi
p−1

)
.

4. Measure the first two registers (with the third register implicitly mea-
sured). As usual the measurement probability is the square of the amplitude
(since the amplitudes are complex numbers the square is the product of the am-
plitude and its complex conjugate). Most probabilities are zero so we observe
one of a few realizations.[

1

(p− 1)
2

p−2∑
a=0

ζ ac+ard

][
1

(p− 1)
2

p−2∑
a=0

ζ −(ac+ard)

]
(5)

If c+ rd ≡ 0 (mod p− 1) then the probability simplifies as 1
(p−1)2

.

1This is a shortened, composite version of Shor’s algorithm and the algorithm described
by Fang Xi Lin, “Shor’s algorithm and quantum Fourier transform.”
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5. Recover r by computing −d−1c ≡ r (mod p− 1). The algorithm fails if
c = 0 or d = 0 or if d and p− 1 are not relatively prime as the modular inverse
doesn’t exist. In this case, the algorithm is repeated.

Suggested:

Suppose g = 5, x = 4, p = 7, q = 2t = 23 = 8 (this means the three quantum
registers are 29 = 512 element qubits).

1. Classically verify the order or discrete log is r = 2 and the period is 6.

2. Apply the quantum discrete log algorithm and verify r = 2.
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Appendix.

Intuition for the recovery of the order by Shor’s discrete log algorithm is
discussed in this appendix by reference to the typical case.

Why does −d−1c ≡ rmod (p− 1) where measurement of the first two regis-
ters produces the post-measurement state |c〉 |d〉 identify r?

Prior to measurement but following the Fourier transformation the state is

1

(p− 1)
2

p−2∑
a,b,c,d=0

ζacζbd |c〉 |d〉|xag−b〉

There are (p− 1) identical component states which combine to create iden-
tical component states p−1

(p−1)2
ζac+bd |c〉 |d〉

∣∣xab−b〉.
There are (p− 1) blocks of (p− 1)-block length nonzero component states

|c〉 |d〉 |j〉 , j = 1, . . . , (p− 1) (for a total of (p− 1)
2

nonzero, equally likely po-
tential post-measurement states when measuring the first two registers).

Measuring the first two registers produces post-measurement state |c〉 |d〉.
Since each nonzero component state has probability 1

(p−1)2
, each block has

Pr (|c〉 |d〉) = p−1
(p−1)2

= 1
p−1 .

Recovery of the discrete log or order r is motivated by post-measurement
state |c〉 |d〉 |1〉.

Since gr ≡ xmod p, xg−r ≡ 1 mod p and xag−ar ≡ 1 mod p. Hence, when
b = ar the third register is |xag−ar〉 and the probability amplitudes are ζac+bd =

ζac+ard = ζa(c+rd) where ζ = exp
[

2πi
p−1

]
.

Now, suppose c+ rd = n (p− 1) then

ζa(c+rd) = ζan(p−1) = exp
[
2πian(p−1)

p−1

]
=exp[2πan] = cos 2π = 1.

Therefore, r is recoverable from c+dr ≡ 0 mod (p− 1) or−d−1c ≡ rmod (p− 1)
when d and p− 1 are relatively prime and neither c or d = 0. Both failure con-
ditions are increasingly unlikely as p becomes large and discovery of the discrete
log becomes more challenging.
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