Ralph’s quantum discrete log

Ralph knows elliptic curve cryptography is based on the difficulty of comput-
ing discrete logarithms. Discrete log is the inverse of modular exponentiation.
Both can be simply represented by

g" = z(mod p) (1)

Modular exponentiation involves finding = given g, r, and p which is easy. On the
other hand, the discrete log involves finding r given g, x, and p which is believed
to be difficult (otherwise elliptic curve cryptography fails — see Ralph’s elliptic
curve cryptography). Shor’s quantum factoring algorithm (see Ralph’s quantum
factoring) can be adapted to solve the discrete log problem much faster with a
quantum computer than via classical computation as is the case for factoring
and breaking RSA cryptography.

A quantum algorithm for finding the discrete log r given g, z, and p follows.!

1. Create three registers where each register is t qubits, p < g = 2¢ < 2p.
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2. Apply the function f (a,b) = x%g~° (mod p) to the third register where
the modular inverse g~° (mod p) is the value z such that zg” = 1 (mod p).
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3. Apply the quantum inverse Fourier transform to the first two registers.
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where ¢ = exp (2’”)
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4. Measure ihe first two registers (with the third register implicitly mea-
sured). As usual the measurement probability is the square of the amplitude
(since the amplitudes are complex numbers the square is the product of the am-
plitude and its complex conjugate). Most probabilities are zero so we observe
one of a few realizations.
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If c+7rd =0 (modp — 1) then the probability simplifies as ﬁ.

IThis is a shortened, composite version of Shor’s algorithm and the algorithm described
by Fang Xi Lin, “Shor’s algorithm and quantum Fourier transform.”




5. Recover 7 by computing —d~'c = r (modp — 1). The algorithm fails if
c=0ord=0orifdand p—1 are not relatively prime as the modular inverse
doesn’t exist. In this case, the algorithm is repeated.

Suggested:

Suppose g = 5,7 = 4,p = 7,q = 2! = 23 = 8 (this means the three quantum
registers are 2° = 512 element qubits).

1. Classically verify the order or discrete log is » = 2 and the period is 6.

2. Apply the quantum discrete log algorithm and verify r = 2.



Appendix.

Intuition for the recovery of the order by Shor’s discrete log algorithm is
discussed in this appendix by reference to the typical case.

Why does —d~'c = rmod (p — 1) where measurement of the first two regis-
ters produces the post-measurement state |c) |d) identify 77

Prior to measurement but following the Fourier transformation the state is
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There are (p — 1) identical component states which combine to create iden-
tical component states ﬁ(j“‘*‘bd lc) |d) |z"b=").

There are (p — 1) blocks of (p — 1)-block length nonzero component states
ley|d) [5),5 =1,...,(p—1) (for a total of (p —1)? nonzero, equally likely po-
tential post-measurement states when measuring the first two registers).

Measuring the first two registers produces post-measurement state |c) |d).

Since each nonzero component state has probability —-—, each block has

(r-1)*’
Pr(|e) |d)) = 255 = 71y
Recovery of the discrete log or order r is motivated by post-measurement
state |c) |d) |1).
Since ¢" = xmodp, xg~" = lmodp and z*¢g~* = 1modp. Hence, when
b = ar the third register is |[z%g~%") and the probability amplitudes are (4¢+t4 =
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Now, suppose ¢+ rd = n(p — 1) then
¢aletrd) — can(p=1) = exp {72”i271(f_1)} =exp|[2man] = cos 27w = 1.

Therefore, r is recoverable from c+dr = 0mod (p — 1) or —d~'c = rmod (p — 1)
when d and p — 1 are relatively prime and neither ¢ or d = 0. Both failure con-
ditions are increasingly unlikely as p becomes large and discovery of the discrete
log becomes more challenging.




