The row component

Identifying transactions from financial statements is an important task for accounting experts.

$$Ay = x$$

where A is the $m \times n$ accounting matrix with (simple) journal entries in the columns and T accounts in the rows, x is an *m*-element vector of changes in account balances, and y is an n-element vector of transactions amounts. Since there is one redundant row in A and typically m < n, there are usually many solutions for the transactions amounts y. Let any consistent solution be y^p then

$$Ay^p = x$$

and dropping any redundant row leads to

$$A_0 y^p = x_0$$

where A_0 and x_0 drop the same row from their respective components A and x.

Usually, y^p has a row component (a consistent solution that is entirely comprised of linear combinations of the rows of A) and a null component (a component comprised of linear combinations of the nullspace of A, N, an $(n-m+1) \times n$ matrix).

$$y^p = y^{\text{row}} + y^{null}$$

 $Ay^{\text{row}} = x$
 $A_0 y^{\text{row}} = x_0$

and

$$AN^{T} = 0$$
$$Ay^{null} = 0$$
$$y^{null} = N^{T}k$$

where k is an (n - m + 1)-element vector of weights.

The key to decomposing y or y^p is uncovering the row component. There are many approaches. We'll pursue a few of them in this note.

Gaussian elimination with concatenated matrix

Concatenate N with A_0 , this is a full rank n matrix. On the right hand side, concatenate n - m + 1 zeroes $(Ny^{row} = 0)$ with x_0 to form an *n*-element vector. By Gaussian elimination and back-substitution solve for y^{row} . The solution is unique.

$$\left[\begin{array}{c}A_0\\N\end{array}\right]y^{\mathrm{row}} = \left[\begin{array}{c}x_0\\0\end{array}\right]$$

Row component as linear combination of rows of A

Let b be an (m-1)-element vector of weights on the rows of A_0 . Then, $b^T A_0 =$ $(y^{\text{row}})^T$ or $y^{\text{row}} = A_0^T b$ provided $A_0 A_0^T b = x_0$. These conditions allow us to identify b.

$$b = \left(A_0 A_0^T\right)^{-1} x_0$$

$$y^{\text{row}} = A_0^T \left(A_0 A_0^T \right)^{-1} x_0 = A_0^T \left(A_0 A_0^T \right)^{-1} A_0 y^p$$

Projecting into rows of A

Since $y^p = y^{\text{row}} + y^{null} = A_0^T b + N^T k$ and $A_0 N^T = 0$, we can write $y^{null} =$ $y^p - y^{\text{row}} = y^p - A_0^T b$. Now, exploit orthogonality. $A_0 y^{null} = 0$

$$A_0\left(y^p - A_0^T b\right) = 0$$

This leads to the normal equations.

$$A_0 A_0^T b = A_0 y^p$$

Solving for b

$$b = \left(A_0 A_0^T\right)^{-1} A_0 y^p$$

leads to the same result as above $(A_0 y^p = x_0; \text{ hence, } b = (A_0 A_0^T)^{-1} x_0)$. Further,

$$y^{\text{row}} = A_0^T b = A_0^T (A_0 A_0^T)^{-1} A_0 y^p = P_{R(A)} y^p$$

where $P_{R(A)}$ refers to the (symmetric and idempotent) projection matrix into the rows of A.

Projecting into nullspace of A

Following the arguments above, we can solve for $y^{\text{row}} = y^p - y^{null} = y^p - N^T k$. Again, exploit orthogonality.

$$Ny^{\rm row} = 0$$
$$N\left(y^p - N^T k\right) = 0$$

This leads to the normal equations in terms of the nullspace.

$$NN^T k = Ny^p$$

Solving for k

$$k = (NN^{T})^{-1} Ny^{p}$$
$$y^{null} = N^{T}k = N^{T} (NN^{T})^{-1} Ny^{p}$$

and

$$y^{\text{row}} = y^p - y^{null} = \left(I - N^T \left(NN^T\right)^{-1} N\right) y^p = \left(I - P_{N(A)}\right)$$

where $P_{N(A)}$ is the (symmetric and idempotent) projection matrix into the nullspace of A. Also, $P_{R(A)} + P_{N(A)} = I$.

$) y^p = P_{R(A)} y^p$

QR

QR₁: Let $A_0^T = QR$ where Q is an $n \times (m-1)$ matrix of orthonormal columns and R is a right or upper triangular, $(m-1) \times (m-1)$ full rank matrix (r =m-1). Q is formed by applying Gram-Schmidt orthonormalization to the rows of A_0 (columns of A_0^T). Then, $Q^T A_0^T = Q^T Q R = R$.

$$P_{R(A)} = A_0^T \left(A_0 A_0^T \right)^{-1} A_0 = QR \left(R^T Q^T QR \right)^{-1} R^T Q^T$$
$$= QRR^{-1} \left(R^T \right)^{-1} R^T Q^T = QQ^T$$

Therefore,

$$y^{\text{row}} = P_{R(A)}y^p = QQ^T y^p$$

T

QR₂: Also, let $N^T = QR$ where Q is an $n \times (n - r)$. matrix of orthonormal columns and R is a right triangular, $(n-r) \times (n-r)$ full rank matrix.

$$P_{N(A)} = N^T (NN^T)^{-1} N = QR (R^T Q^T QR)^{-1} R^T Q^T$$
$$= QQ^T$$

Therefore,

$$y^{null} = P_{N(A)}y^p = QQ^T y^p$$

and

$$y^{\text{row}} = y^p - y^{null} = (I - P_{N(A)}) y^p$$

$$QR_3: A_0^T b = y^{\text{row}} \text{ where } b = (A_0 A_0^T)^{-1} A_0 y^p. \text{ Therefore, } A_0^T = QR$$

$$b = (R^T Q^T QR)^{-1} R^T Q^T y^p$$

$$= R^{-1} Q^T y^p$$

$$QR_4: N^T k = y^{null} \text{ where } k = (NN^T)^{-1} N^T y^p. \text{ Therefore, } N^T$$
implies

$$k = R^{-1}Q^T y^p$$

and $y^{\text{row}} = y^p - y^{null}$.

R implies

$T^{T} = QR$

Pseudoinverse

 \dagger_1 : The (left, right) inverse of A (or A_0) doesn't exist. However, the pseudoinverse, an $n \times m$ matrix, A^{\dagger} always exists. Pseudo inverse has the following properties: $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^{T} = AA^{\dagger}$, and $(A^{\dagger}A)^{T} = A^{\dagger}A$.

$$A^{\dagger}Ay^p = A^{\dagger}x = y^{\rm row}$$

$$AA^{\dagger}Ay^{p} = Ay^{p} = AA^{\dagger}x = Ay^{\text{row}} = x$$

This implies

$$A^{\dagger}A = A_0^{\dagger}A_0 = P_{R(A)}$$

or

$$A_0^{\dagger} = A_0^T \left(A_0 A_0^T \right)^{-1}$$

Singular value decomposition supplies a systematic method of recovering the pseudoinverse.

$$A = U\Sigma V^T$$

where Σ is an $m \times n$ semi-positive definite, diagonal matrix with diagonal elements the square-root of the eigenvalues of either AA^T or A^TA , U is an orthonormal matrix comprised of the eigenvectors of AA^T (by spectral decomposition), and $V^T = \Sigma^{\dagger} U^T A$ (Σ^{\dagger} is Σ with the reciprocal of the nonzero diagonal elements).

$$A^{\dagger} = \left(U\Sigma V^{T}\right)^{\dagger} = V\Sigma^{\dagger}U^{T}$$

Hence,

$$y^{\rm row} = A^{\dagger}x = V\Sigma^{\dagger}U^Tx$$

or \dagger_2 :

$$y^{\text{row}} = A^{\dagger}Ay^{p} = V\Sigma^{\dagger}U^{T}U\Sigma V^{T}y^{P} = V\begin{bmatrix} I_{r} & 0\\ 0 & 0 \end{bmatrix} V^{T}$$

 \dagger_3 : Let $N = U\Sigma V^T$, then

$$y^{null} = P_{N(A)}y^p = N^{\dagger}Ny^p$$
$$y^{null} = V \begin{bmatrix} I_{n-r} & 0\\ 0 & 0 \end{bmatrix} V^Ty^p$$

and
$$y^{\text{row}} = y^p - y^{null}$$
.
 $\dagger_4: P_{R(A)} = A^{\dagger}A = (A^{\dagger}A)^T = A^T (A^T)^{\dagger}$ and $P_{C(A)} = AA^{\dagger}$
 $(A^T)^{\dagger} A^T.^1$
 $A^T b = y^{\text{row}}$

 ${}^{1}(A^{T})^{\dagger} = (A^{\dagger})^{T} \cdot A^{T} = V\Sigma^{T}U^{T}, A^{\dagger} = V\Sigma^{\dagger}U^{T}, (A^{T})^{\dagger} = U(\Sigma^{T})^{\dagger}V^{T}, (A^{\dagger})^{T} =$ $U(\Sigma^{\dagger})^T V^T$. Since, Σ is a diagonal matrix, $(\Sigma^T)^{\dagger} = (\Sigma^{\dagger})^T$ and the demonstration is complete.

 $^{\Gamma}y^{p}$

 $= (AA^{\dagger})^T =$

$$b = (A^{T})^{\dagger} A^{T} b = (A^{T})^{\dagger} y^{p}$$

$$y^{\text{row}} = A^{T} b = A^{T} (A^{T})^{\dagger} A^{T} b = A^{T} (A^{T})^{\dagger} y^{p} = P_{R}$$

$$^{\dagger}_{5} P_{N(A)} = N^{\dagger} N = (N^{\dagger} N)^{T} = N^{T} (N^{T})^{\dagger} \text{ and } NN$$

$$(N^{T})^{\dagger} N^{T}.$$

$$N^{T} k = y^{null}$$

$$k = (N^{T})^{\dagger} N^{T} k = (N^{T})^{\dagger} y^{p}$$

$$y^{null} = N^{T} k = N^{T} (N^{T})^{\dagger} N^{T} k = N^{T} (N^{T})^{\dagger} y^{p} = R$$
and $y^{\text{row}} = y^{p} - y^{null}.$

 $P_{R(A)}y^p$ $N^{\dagger} = (NN^{\dagger})^T =$

 $P_{N(A)}y^p$