The row component

Identifying transactions from financial statements is an important task for
accounting experts.
Ay ==«

where A is the m x n accounting matrix with (simple) journal entries in the
columns and T accounts in the rows, x is an m-element vector of changes in
account balances, and y is an n-element vector of transactions amounts. Since
there is one redundant row in A and typically m < n, there are usually many
solutions for the transactions amounts y. Let any consistent solution be y? then

Ay ==z
and dropping any redundant row leads to
Aoy” = xg

where Ay and zg drop the same row from their respective components A and x.



Usually, y? has a row component (a consistent solution that is entirely
comprised of linear combinations of the rows of A) and a null component
(a component comprised of linear combinations of the nullspace of A, N, an
(n —m + 1) X n matrix).

yp _ yrow 4+ ynull
AyI'OW —

row
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and
ANT =0
Aynull —0
ynull _ NT]C

where k is an (n — m + 1)-element vector of weights.
The key to decomposing y or y? is uncovering the row component. There
are many approaches. We’ll pursue a few of them in this note.

Gaussian elimination with concatenated matrix

Concatenate N with A, this is a full rank n matrix. On the right hand side,
concatenate n —m+ 1 zeroes (Ny*™V = 0) with x( to form an n-element vector.
By Gaussian elimination and back-substitution solve for y"%. The solution is

unique.
AO row __ X0
N 1Y T o



Row component as linear combination of rows of A

Let b be an (m — 1)-element vector of weights on the rows of Ag. Then, b! Ag =

(y or y*°% = Al'b provided AgAlbd = xg. These conditions allow us to
identify b.

I‘OW)T

b= (AoAg)—l L0

o = AT (AgAT) ™ o = AT (AgAT) ™ Agy?



Projecting into rows of A

Since y? = y™% + y" = Agb+ N'k and AgN" = 0, we can write y"*" =
yP — yfoW = P — AL'b. Now, exploit orthogonality.

AOynull — 0
Ag (yp — Agb) =0
This leads to the normal equations.

AoAgb — Aoyp

Solving for b
b= (A AT) " Agy?

leads to the same result as above (Agy? = x¢; hence, b = (AOAOT)_l xg). Fur-
ther,

roOw —1
g = Al = AT (AoAT) " Aoy? = Preayy”

where Pp(4) refers to the (symmetric and idempotent) projection matrix into
the rows of A.



Projecting into nullspace of A

Following the arguments above, we can solve for y™% = y? — ¢y = P — N1k,
Again, exploit orthogonality.
NyI'OW — O

N (y» — N'k) =0
This leads to the normal equations in terms of the nullspace.

NNTE = NyP

Solving for k
k = (NNT)_l Nyp

ynull _ NTk‘ _ NT (NNT)_l Nyp



and

erW — yp _ynull _ (]_NT (NNT)_l N) yp — (]_PN(A)) yp _ PR(A)yp

where Pp4) is the (symmetric and idempotent) projection matrix into the
nullspace of A. Also, Pr(a) + Pn(a) = 1.



QR

QR1: Let A} = QR where Q is an n x (m — 1) matrix of orthonormal columns
and R is a right or upper triangular, (m — 1) x (m — 1) full rank matrix (r =
m —1). @Q is formed by applying Gram-Schmidt orthonormalization to the rows

of Ag (columns of AY). Then, QT A} = Q*QR = R.
—1 —1
Priay = A§ (A0Al)  Ao=QR(R"Q'"QR) R"Q"

_ QRR_l (RT)_l RTQT _ QQT

Therefore,
Yy = Prayy® = QQ Ty



QRa: Also, let NI = QR where Q is an n x (n — r). matrix of orthonormal
columns and R is a right triangular, (n — r) x (n — r) full rank matrix.

Pyiay=NT(NNT)"'N =QR(R"Q"QR) " R"Q"

= QQ"
Therefore,
y" = Pyayy? = QQTyP

and
yrow _ yp . ynull _ (I . PN(A)) yp

QR3: Al'b = y™% where b = (AOAg)_l ApyP. Therefore, Al = QR implies
b= (RTQTQR)™ RTQTy"
_ R—lQTyp

QR4: NTk = y™ where k = (NNT)_1 NTyP. Therefore, N' = QR
implies
k=RTQ"yP

null

and y™V =yP —y



Pseudoinverse

t1: The (left, right) inverse of A (or Agy) doesn’t exist. However, the pseudoin-
verse, an n X m matrix, A" always exists. Pseudo inverse has the following

properties: AATA = A, ATAAT = AT, (AAT)" = AAT, and (ATA)T = ATA.
ATAyP = Aty = y™ov

AATAYP = AyP = AATx = Ay™ =2

This implies
ATA = Al Ay = Pra

or

Al = AL (AOAOT)_l

Singular value decomposition supplies a systematic method of recovering the
pseudoinverse.

A=UxV7T

where X is an m X n semi-positive definite, diagonal matrix with diagonal el-
ements the square-root of the eigenvalues of either AAY or AT A, U is an or-
thonormal matrix comprised of the eigenvectors of AAT (by spectral decompo-
sition), and VT = XTUT A (X7 is ¥ with the reciprocal of the nonzero diagonal
elements).

At = (UsvT) = vsty?

Hence,
YoV = ATe = VXTUT 2



or TQZ

I,

Yo = ATAy? = VETUTUSV YT =V { X 8 } vy

t3: Let N = UXV?!, then
y"" = Py(ayy? = NTNyP

I 0
null __ n—r T »
Y —V{ 0 O}Vy

and y™o% = yP — ynull,
f4: Pray = ATA = (ATA)" = AT (AT)" and Po(a) = AAT = (441)" =
(AT)T AT 1
ATb _ yrow

L(AT)T = (A", AT = vsTyuT At = vsiuT, (A7) = U (=T)'vT, (AN =
U (ET)T V7T Since, ¥ is a diagonal matrix, (ZT)Jr — (ET)T and the demonstration is com-
plete.



b= (A7) ATh= (A7) g
erW:ATb:AT (AT)TATb:AT (AT)Typ:PR(A)yp
fs: Pn(ay = NN = (NTN)T = N (NT)T and NNT = (NNT)T -
(NT)TNT
NTk:y’n,ull
k= (NT) N7k = (NT)'y?
gl — NTE = NT (NT)TNTk _ NT (NT)Typ = Pn(ayy”?

row null

and y™°% =y —y



