The row component

Identifying transactions from financial statements is an important task for accounting experts.

$$
A y=x
$$

where A is the $m \times n$ accounting matrix with (simple) journal entries in the columns and T accounts in the rows, x is an m-element vector of changes in account balances, and y is an n-element vector of transactions amounts. Since there is one redundant row in A and typically $m<n$, there are usually many solutions for the transactions amounts y. Let any consistent solution be y^{p} then

$$
A y^{p}=x
$$

and dropping any redundant row leads to

$$
A_{0} y^{p}=x_{0}
$$

where A_{0} and x_{0} drop the same row from their respective components A and x.

Usually, y^{p} has a row component (a consistent solution that is entirely comprised of linear combinations of the rows of A) and a null component (a component comprised of linear combinations of the nullspace of A, N, an $(n-m+1) \times n$ matrix).

$$
\begin{gathered}
y^{p}=y^{\text {row }}+y^{\text {null }} \\
A y^{\text {row }}=x \\
A_{0} y^{\text {row }}=x_{0}
\end{gathered}
$$

and

$$
\begin{gathered}
A N^{T}=0 \\
A y^{\text {null }}=0 \\
y^{\text {null }}=N^{T} k
\end{gathered}
$$

where k is an $(n-m+1)$-element vector of weights.
The key to decomposing y or y^{p} is uncovering the row component. There are many approaches. We'll pursue a few of them in this note.

Gaussian elimination with concatenated matrix

Concatenate N with A_{0}, this is a full rank n matrix. On the right hand side, concatenate $n-m+1$ zeroes ($N y^{\text {row }}=0$) with x_{0} to form an n-element vector. By Gaussian elimination and back-substitution solve for $y^{\text {row }}$. The solution is unique.

$$
\left[\begin{array}{c}
A_{0} \\
N
\end{array}\right] y^{\text {row }}=\left[\begin{array}{c}
x_{0} \\
0
\end{array}\right]
$$

Row component as linear combination of rows of A

Let b be an $(m-1)$-element vector of weights on the rows of A_{0}. Then, $b^{T} A_{0}=$ $\left(y^{\text {row }}\right)^{T}$ or $y^{\text {row }}=A_{0}^{T} b$ provided $A_{0} A_{0}^{T} b=x_{0}$. These conditions allow us to identify b.

$$
\begin{gathered}
b=\left(A_{0} A_{0}^{T}\right)^{-1} x_{0} \\
y^{\mathrm{row}}=A_{0}^{T}\left(A_{0} A_{0}^{T}\right)^{-1} x_{0}=A_{0}^{T}\left(A_{0} A_{0}^{T}\right)^{-1} A_{0} y^{p}
\end{gathered}
$$

Projecting into rows of A

Since $y^{p}=y^{\text {row }}+y^{\text {null }}=A_{0}^{T} b+N^{T} k$ and $A_{0} N^{T}=0$, we can write $y^{\text {null }}=$ $y^{p}-y^{\text {row }}=y^{p}-A_{0}^{T} b$. Now, exploit orthogonality.

$$
\begin{gathered}
A_{0} y^{n u l l}=0 \\
A_{0}\left(y^{p}-A_{0}^{T} b\right)=0
\end{gathered}
$$

This leads to the normal equations.

$$
A_{0} A_{0}^{T} b=A_{0} y^{p}
$$

Solving for b

$$
b=\left(A_{0} A_{0}^{T}\right)^{-1} A_{0} y^{p}
$$

leads to the same result as above $\left(A_{0} y^{p}=x_{0}\right.$; hence, $\left.b=\left(A_{0} A_{0}^{T}\right)^{-1} x_{0}\right)$. Further,

$$
y^{\text {row }}=A_{0}^{T} b=A_{0}^{T}\left(A_{0} A_{0}^{T}\right)^{-1} A_{0} y^{p}=P_{R(A)} y^{p}
$$

where $P_{R(A)}$ refers to the (symmetric and idempotent) projection matrix into the rows of A.

Projecting into nullspace of A

Following the arguments above, we can solve for $y^{\mathrm{row}}=y^{p}-y^{\text {null }}=y^{p}-N^{T} k$. Again, exploit orthogonality.

$$
\begin{gathered}
N y^{\text {row }}=0 \\
N\left(y^{p}-N^{T} k\right)=0
\end{gathered}
$$

This leads to the normal equations in terms of the nullspace.

$$
N N^{T} k=N y^{p}
$$

Solving for k

$$
\begin{gathered}
k=\left(N N^{T}\right)^{-1} N y^{p} \\
y^{\text {null }}=N^{T} k=N^{T}\left(N N^{T}\right)^{-1} N y^{p}
\end{gathered}
$$

and

$$
y^{\mathrm{row}}=y^{p}-y^{n u l l}=\left(I-N^{T}\left(N N^{T}\right)^{-1} N\right) y^{p}=\left(I-P_{N(A)}\right) y^{p}=P_{R(A)} y^{p}
$$

where $P_{N(A)}$ is the (symmetric and idempotent) projection matrix into the nullspace of A. Also, $P_{R(A)}+P_{N(A)}=I$.

QR

QR_{1} : Let $A_{0}^{T}=Q R$ where Q is an $n \times(m-1)$ matrix of orthonormal columns and R is a right or upper triangular, $(m-1) \times(m-1)$ full rank matrix $(r=$ $m-1)$. Q is formed by applying Gram-Schmidt orthonormalization to the rows of A_{0} (columns of A_{0}^{T}). Then, $Q^{T} A_{0}^{T}=Q^{T} Q R=R$.

$$
\begin{gathered}
P_{R(A)}=A_{0}^{T}\left(A_{0} A_{0}^{T}\right)^{-1} A_{0}=Q R\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} \\
=Q R R^{-1}\left(R^{T}\right)^{-1} R^{T} Q^{T}=Q Q^{T}
\end{gathered}
$$

Therefore,

$$
y^{\mathrm{row}}=P_{R(A)} y^{p}=Q Q^{T} y^{p}
$$

QR_{2} : Also, let $N^{T}=Q R$ where Q is an $n \times(n-r)$. matrix of orthonormal columns and R is a right triangular, $(n-r) \times(n-r)$ full rank matrix.

$$
\begin{array}{rl}
P_{N(A)}=N^{T}\left(N N^{T}\right)^{-1} & N=Q R\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} \\
= & Q Q^{T}
\end{array}
$$

Therefore,

$$
y^{n u l l}=P_{N(A)} y^{p}=Q Q^{T} y^{p}
$$

and

$$
y^{\mathrm{row}}=y^{p}-y^{\text {null }}=\left(I-P_{N(A)}\right) y^{p}
$$

$\mathrm{QR}_{3}: A_{0}^{T} b=y^{\text {row }}$ where $b=\left(A_{0} A_{0}^{T}\right)^{-1} A_{0} y^{p}$. Therefore, $A_{0}^{T}=Q R$ implies

$$
\begin{gathered}
b=\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} y^{p} \\
=R^{-1} Q^{T} y^{p}
\end{gathered}
$$

$\mathrm{QR}_{4}: N^{T} k=y^{\text {null }}$ where $k=\left(N N^{T}\right)^{-1} N^{T} y^{p}$. Therefore, $N^{T}=Q R$ implies

$$
k=R^{-1} Q^{T} y^{p}
$$

and $y^{\text {row }}=y^{p}-y^{\text {null }}$.

Pseudoinverse

\dagger_{1} : The (left, right) inverse of A (or A_{0}) doesn't exist. However, the pseudoinverse, an $n \times m$ matrix, A^{\dagger} always exists. Pseudo inverse has the following properties: $A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{T}=A A^{\dagger}$, and $\left(A^{\dagger} A\right)^{T}=A^{\dagger} A$.

$$
\begin{gathered}
A^{\dagger} A y^{p}=A^{\dagger} x=y^{\mathrm{row}} \\
A A^{\dagger} A y^{p}=A y^{p}=A A^{\dagger} x=A y^{\mathrm{row}}=x
\end{gathered}
$$

This implies

$$
A^{\dagger} A=A_{0}^{\dagger} A_{0}=P_{R(A)}
$$

or

$$
A_{0}^{\dagger}=A_{0}^{T}\left(A_{0} A_{0}^{T}\right)^{-1}
$$

Singular value decomposition supplies a systematic method of recovering the pseudoinverse.

$$
A=U \Sigma V^{T}
$$

where Σ is an $m \times n$ semi-positive definite, diagonal matrix with diagonal elements the square-root of the eigenvalues of either $A A^{T}$ or $A^{T} A, U$ is an orthonormal matrix comprised of the eigenvectors of $A A^{T}$ (by spectral decomposition), and $V^{T}=\Sigma^{\dagger} U^{T} A$ (Σ^{\dagger} is Σ with the reciprocal of the nonzero diagonal elements).

$$
A^{\dagger}=\left(U \Sigma V^{T}\right)^{\dagger}=V \Sigma^{\dagger} U^{T}
$$

Hence,

$$
y^{\mathrm{row}}=A^{\dagger} x=V \Sigma^{\dagger} U^{T} x
$$

or \dagger_{2} :

$$
y^{\mathrm{row}}=A^{\dagger} A y^{p}=V \Sigma^{\dagger} U^{T} U \Sigma V^{T} y^{P}=V\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] V^{T} y^{p}
$$

\dagger_{3} : Let $N=U \Sigma V^{T}$, then

$$
\begin{aligned}
y^{n u l l} & =P_{N(A)} y^{p}=N^{\dagger} N y^{p} \\
y^{\text {null }} & =V\left[\begin{array}{cc}
I_{n-r} & 0 \\
0 & 0
\end{array}\right] V^{T} y^{p}
\end{aligned}
$$

and $y^{\text {row }}=y^{p}-y^{\text {null }}$.
$\dagger_{4}: P_{R(A)}=A^{\dagger} A=\left(A^{\dagger} A\right)^{T}=A^{T}\left(A^{T}\right)^{\dagger}$ and $P_{C(A)}=A A^{\dagger}=\left(A A^{\dagger}\right)^{T}=$ $\left(A^{T}\right)^{\dagger} A^{T} .{ }^{1}$

$$
A^{T} b=y^{\mathrm{row}}
$$

${ }^{1}\left(A^{T}\right)^{\dagger}=\left(A^{\dagger}\right)^{T} . A^{T}=V \Sigma^{T} U^{T}, A^{\dagger}=V \Sigma^{\dagger} U^{T},\left(A^{T}\right)^{\dagger}=U\left(\Sigma^{T}\right)^{\dagger} V^{T},\left(A^{\dagger}\right)^{T}=$ $U\left(\Sigma^{\dagger}\right)^{T} V^{T}$. Since, Σ is a diagonal matrix, $\left(\Sigma^{T}\right)^{\dagger}=\left(\Sigma^{\dagger}\right)^{T}$ and the demonstration is complate.

$$
\begin{gathered}
b=\left(A^{T}\right)^{\dagger} A^{T} b=\left(A^{T}\right)^{\dagger} y^{p} \\
y^{\text {row }}=A^{T} b=A^{T}\left(A^{T}\right)^{\dagger} A^{T} b=A^{T}\left(A^{T}\right)^{\dagger} y^{p}=P_{R(A)} y^{p} \\
\dagger_{5}: P_{N(A)}=N^{\dagger} N=\left(N^{\dagger} N\right)^{T}=N^{T}\left(N^{T}\right)^{\dagger} \text { and } N N^{\dagger}=\left(N N^{\dagger}\right)^{T}= \\
\left(N^{T}\right)^{\dagger} N^{T} . \\
N^{T} k=y^{\text {null }} \\
k=\left(N^{T}\right)^{\dagger} N^{T} k=\left(N^{T}\right)^{\dagger} y^{p} \\
y^{\text {null }}=N^{T} k=N^{T}\left(N^{T}\right)^{\dagger} N^{T} k=N^{T}\left(N^{T}\right)^{\dagger} y^{p}=P_{N(A)} y^{p}
\end{gathered}
$$

and $y^{\text {row }}=y^{p}-y^{\text {null }}$.

