
The row component

Identifying transactions from financial statements is an important task for
accounting experts.

Ay = x

where A is the m ⇥ n accounting matrix with (simple) journal entries in the
columns and T accounts in the rows, x is an m-element vector of changes in
account balances, and y is an n-element vector of transactions amounts. Since
there is one redundant row in A and typically m < n, there are usually many
solutions for the transactions amounts y. Let any consistent solution be yp then

Ayp = x

and dropping any redundant row leads to

A0y
p = x0

where A0 and x0 drop the same row from their respective components A and x.
Usually, yp has a row component (a consistent solution that is entirely

comprised of linear combinations of the rows of A) and a null component
(a component comprised of linear combinations of the nullspace of A, N , an
(n�m+ 1)⇥ n matrix).

yp = yrow + ynull

Ayrow = x

A0y
row = x0

and
ANT = 0

Aynull = 0

ynull = NT k

where k is an (n�m+ 1)-element vector of weights.
The key to decomposing y or yp is uncovering the row component. There

are many approaches. We’ll pursue a few of them in this note.

Gaussian elimination with concatenated matrix

Concatenate N with A0, this is a full rank n matrix. On the right hand side,
concatenate n�m+1 zeroes (Nyrow = 0) with x0 to form an n-element vector.
By Gaussian elimination and back-substitution solve for yrow. The solution is
unique. 
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Row component as linear combination of rows of A

Let b be an (m� 1)-element vector of weights on the rows of A0. Then, bTA0 =

(yrow)T or yrow = AT
0 b provided A0AT

0 b = x0. These conditions allow us to
identify b.

b =
�
A0A

T
0

��1
x0

yrow = AT
0

�
A0A

T
0

��1
x0 = AT

0

�
A0A

T
0

��1
A0y

p

Projecting into rows of A

Since yp = yrow + ynull = AT
0 b + NT k and A0NT = 0, we can write ynull =

yp � yrow = yp �AT
0 b. Now, exploit orthogonality.

A0y
null = 0

A0

�
yp �AT

0 b
�
= 0

This leads to the normal equations.

A0A
T
0 b = A0y

p

Solving for b

b =
�
A0A

T
0

��1
A0y

p

leads to the same result as above (A0yp = x0; hence, b =
�
A0AT

0

��1
x0). Fur-

ther,

yrow = AT
0 b = AT

0

�
A0A

T
0

��1
A0y

p = PR(A)y
p

where PR(A) refers to the (symmetric and idempotent) projection matrix into
the rows of A.

Projecting into nullspace of A

Following the arguments above, we can solve for yrow = yp � ynull = yp �NT k.
Again, exploit orthogonality.

Nyrow = 0

N
�
yp �NT k

�
= 0

This leads to the normal equations in terms of the nullspace.

NNT k = Nyp

Solving for k

k =
�
NNT

��1
Nyp

ynull = NT k = NT
�
NNT

��1
Nyp
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and

yrow = yp � ynull =
⇣
I �NT

�
NNT

��1
N
⌘
yp =

�
I � PN(A)

�
yp = PR(A)y

p

where PN(A) is the (symmetric and idempotent) projection matrix into the
nullspace of A. Also, PR(A) + PN(A) = I.

QR

QR1: Let AT
0 = QR where Q is an n⇥ (m� 1) matrix of orthonormal columns

and R is a right or upper triangular, (m� 1) ⇥ (m� 1) full rank matrix (r =
m�1). Q is formed by applying Gram-Schmidt orthonormalization to the rows
of A0 (columns of AT

0 ). Then, Q
TAT

0 = QTQR = R.

PR(A) = AT
0

�
A0A

T
0

��1
A0 = QR

�
RTQTQR

��1
RTQT

= QRR�1
�
RT

��1
RTQT = QQT

Therefore,
yrow = PR(A)y

p = QQT yp

QR2: Also, let NT = QR where Q is an n ⇥ (n� r). matrix of orthonormal
columns and R is a right triangular, (n� r)⇥ (n� r) full rank matrix.

PN(A) = NT
�
NNT

��1
N = QR

�
RTQTQR

��1
RTQT

= QQT

Therefore,
ynull = PN(A)y

p = QQT yp

and
yrow = yp � ynull =

�
I � PN(A)

�
yp

QR3: AT
0 b = yrow where b =

�
A0AT

0

��1
A0yp. Therefore, AT

0 = QR implies

b =
�
RTQTQR

��1
RTQT yp

= R�1QT yp

QR4: NT k = ynull where k =
�
NNT

��1
NT yp. Therefore, NT = QR

implies
k = R�1QT yp

and yrow = yp � ynull.
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Pseudoinverse

†1: The (left, right) inverse of A (or A0) doesn’t exist. However, the pseudoin-
verse, an n ⇥ m matrix, A† always exists. Pseudo inverse has the following

properties: AA†A = A, A†AA† = A†,
�
AA†�T = AA†, and (A†A)T = A†A.

A†Ayp = A†x = yrow

AA†Ayp = Ayp = AA†x = Ayrow = x

This implies
A†A = A†

0A0 = PR(A)

or
A†

0 = AT
0

�
A0A

T
0

��1

Singular value decomposition supplies a systematic method of recovering the
pseudoinverse.

A = U⌃V T

where ⌃ is an m ⇥ n semi-positive definite, diagonal matrix with diagonal el-
ements the square-root of the eigenvalues of either AAT or ATA, U is an or-
thonormal matrix comprised of the eigenvectors of AAT (by spectral decompo-
sition), and V T = ⌃†UTA (⌃† is ⌃ with the reciprocal of the nonzero diagonal
elements).

A† =
�
U⌃V T

�†
= V ⌃†UT

Hence,
yrow = A†x = V ⌃†UTx

or †2:

yrow = A†Ayp = V ⌃†UTU⌃V T yP = V


Ir 0
0 0

�
V T yp

†3: Let N = U⌃V T , then

ynull = PN(A)y
p = N†Nyp

ynull = V


In�r 0
0 0

�
V T yp

and yrow = yp � ynull.

†4: PR(A) = A†A =
�
A†A

�T
= AT

�
AT

�†
and PC(A) = AA† =

�
AA†�T =

�
AT

�†
AT .1

AT b = yrow

1
�
AT

�†
=

�
A†�T . AT = V ⌃TUT , A† = V ⌃†UT ,

�
AT

�†
= U

�
⌃T

�†
V T ,

�
A†�T =

U
�
⌃†�T V T . Since, ⌃ is a diagonal matrix,

�
⌃T

�†
=

�
⌃†�T and the demonstration is com-

plete.
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b =
�
AT

�†
AT b =

�
AT

�†
yp

yrow = AT b = AT
�
AT

�†
AT b = AT

�
AT

�†
yp = PR(A)y

p

†5: PN(A) = N†N =
�
N†N

�T
= NT

�
NT

�†
and NN† =

�
NN†�T =

�
NT

�†
NT .

NT k = ynull

k =
�
NT

�†
NT k =

�
NT

�†
yp

ynull = NT k = NT
�
NT

�†
NT k = NT

�
NT

�†
yp = PN(A)y

p

and yrow = yp � ynull.
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