
SCM and meta-analysis

Combining evidence from heterogeneous observational and experimental en-
vironments is a hallmark of science — external validity. Drawing causal infer-
ence from such evidence is referred to as SCM meta-analysis or SCM data-fusion.
In this note, we illustrate a formal approach to this exercise.1

Combining evidence from heterogeneous studies is nonparametrically achiev-
able whenever permitted by the rules of do-calculus (Pearl, 1995) and where
only passive observation (no do-operator) of the target domain is employed.
The rules of do-calculus are below.

do-calculus

Let G be the DAG associated with a causal model and let Pr ( ) be the
probability distribution induced by the model. For any dis-joint set of variables
X,Y, Z , and W the following rules apply.

Rule 1 (insertion/deletion of observations):
Pr (y | do (x) , z, w) = Pr (y | do (x) , w) if (Y ⊥ Z | X,W )GX

where ⊥ refers to

stochastic independence or d-separation in the graph.

Rule 2 (action/observation exchange):
Pr (y | do (x) , z, w) = Pr (y | do (x) , do (z) , w) if (Y ⊥ Z | X,W ) GXZ

.

Rule 3 (insertion/deletion of actions):
Pr (y | do (x) , w) = Pr (y | do (x) , do (z) , w) if (Y ⊥ Z | X,W )G

XZ(W )

where Z (W ) is the set of Z -nodes that are not ancestors of any W -nodes in
GX .

Direct transportability

Evidence can be transported from one domain to another provider there
exists a common causal structure and the rules of do-calculus permit rescaling
for differences in populations between the experimental and target domains.
Graphically, this means the DAGs are similar except they contain S -nodes
pointing towards variables whose mechanisms or distributions are suspected to
differ between the domains. That is, for S = 0 no differences are suspected
but for S = 1 differences between the domains are suspected regarding the
variable(s) pointed to by the S -nodes.

Figure 1 illustrates two settings. The first in which direct transportability
is satisfied and the second in which transportability is infeasible.

1This note draws on Bareinboim and Pearl, 2013, “Meta-transportability of causal ef-
fects: A formal approach,” Proceedings of the 16th International Conference on Artificial
Intelligence and Statistics, Bareinboim and Pearl, 2012, “Transportability of causal effects:
Completeness results,” Proceedings of the 26th AAAI Conference on Artificial Intelligence,
and Bareinboim and Pearl, 2016, “Causal inference and the data-fusion problem,” Proceedings
of the National Academy of Science.
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A graphical test for direct transportability is (Y ⊥ S | X,Z)GX
. That is, do-

calculus transportability is satisfied if the transport formula can be written such
that no do-operators are present in terms involving selection, S = 1 . In figure
1(a), the subgraph GX leaves the only path from S to Y the path through Z ;
hence, direct transportability is satisfied. The transport formula is

P ∗ (y | do (x)) =
∑
z

P ∗ (y | do (x) , z)P ∗ (z | do (x))

=
∑
z

P ∗ (y | do (x) , z)P ∗ (z)

=
∑
z

P (y | do (x) , z, S = 1)P (z | S = 1)

P ∗ (y | do (x)) =
∑
z

P (y | do (x) , z)P ∗ (z)

The first line indicates the target domain causal effect can be expanded to in-
clude Z by Bayes chain rule. The second line employs do-calculus rule 3 to delete
do (x) from the second term. The third line expresses the same quantity for the
experimental domain where S = 1 indicates selection variables identifying dif-
ferences between the domains. The last line is the transport formula. Since S
is independent of Y conditional on do (x) and z , the first term is transported
from the experimental domain and the second term (drawn from the target do-
main) rescales or recalibrates. For instance, suppose we have two settings which
differ only by firm size, say Z , the transport formula indicates manipulation
to recover P (y | do (x) , z) in one experiment can be used infer the causal effect
in the target setting by simply reweighting by P ∗ (z) , the target probability
distribution for size.

2



Figure 1(b) illustrates a setting in which direct transportability is infeasible,
in fact, the smallest selection diagram exhibiting non-transportability. The
example below is based on BP12’s proof.

Suppose X,U and Y in figure 1(b) are binary variables and there are two
models representing the two domains, M1 and M2 . M1 is defined by X1 =
U + Ux1 and P1 (U) = 1/2 while M2 is defined similarly, X2 = U + Ux2 and
P2 (U) = 1/2 except outcome, Y1 and Y2 , is generated by different mechanisms
in the two models (as indicated below). The selection DAG implies

P1 (X | S) = P2 (X | S) , S = {0, 1}

P1 (Y | X,S) = P2 (Y | X,S) , S = {0, 1}

P1 (Y | do (X) , S = 0) = P2 (Y | do (X) , S = 0)

Outcome is generated as follows.

X S U Y1 Y2 P1 (Y,X, S, U) P2 (Y,X, S, U)
0 0 0 0 0 1/8 1/8
0 0 1 1 1 1/8 1/8
0 1 0 1 1 1/4 1/8
0 1 1 0 1 0 1/8
1 0 0 1 1 1/8 1/8
1 0 1 0 0 1/8 1/8
1 1 0 0 1 0 1/8
1 1 1 1 1 1/4 1/8

This data generating process (DGP) is consistent with the DAG (satisfies
the conditions above including if there are no differences in the two domains,
S = 0 , the causal effects are the same) and demonstrates there exist values of
X and Y such that

P1 (Y | do (X) , S = 1) 6= P2 (Y | do (X) , S = 1)

As U is a back-door into X

Pi (Y | do (X) , S = 1) =
∑
u

Pi (Y | X = x, U = u)Pi (u)

In particular,
P1 (Y = 1 | do (X = 0) , S = 1) = 1/2

while
P2 (Y = 1 | do (X = 0) , S = 1) = 1

and
P1 (Y = 1 | do (X = 1) , S = 1) = 1/2

while
P2 (Y = 1 | do (X = 1) , S = 1) = 1
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Hence, figure 1(b) is not transportable.2

Meta-transportability

Meta-transportability from multiple heterogeneous experiments extends trans-
portability of causal effects from a single experiment to the target population.
A formal, expanded foray into external validity. Figure 2 illustrates meta-
transportability or µ -transportability.

Neither πa or πb are individually transportable to π∗ , however, collectively
they can be transported to the target domain.

P ∗ (y | do (x)) =
∑
z

P ∗ (y | do (x) , z)P ∗ (z | do (x))

=
∑
z

P ∗ (y | do (x) , do (z))P ∗ (z | do (x))

=
∑
z

P ∗ (y | do (z))P ∗ (z | do (x))

The first line is Bayes chain rule to insert observation of Z . The second line
utilizes do-calulus rule 2 interchanging observation with action on Z . The third
line employs rule 3 to delete do (x) . Since (S ⊥ Y | Z)

G
(b)

Z

, the first term in

the last expression can be transported from πb . Also, since (S ⊥ Z | X)
G

(a)

X

,

2Suppose there is no bow in 1(b). Then, P ∗ (y | do (x)) = P ∗ (y | x) so the distribution
with S = 1 is free of do-operators. To see that this allows transportability suppose we only
observe P ∗ (y | x, z) (where there may or may not exist a path Z → Y ) and (X,Z ⊥ S), plus
(X ⊥ Z). Then, P (z | x) or P (z) are transportable from the source domain yielding

P ∗ (y | do (x)) =
∑
z

P ∗ (y | x, z)P (z)
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the second term can be transported from πa . Hence, the causal effect in the
target domain can be µ -transported.

P ∗ (y | do (x)) =
∑
z

P (b) (y | do (z))P (a) (z | do (x))

Figure 3 represents are more ambitious setting for µ -transportability.

A combination of passive observation from the target domain and active ma-
nipulation from πa and πb produces the µ - transport formula (1).

P ∗ (y | do (x)) =
∑

w1,w2,w3,z

P ∗ (y | z)P (a) (w1, z | do (x) , do (w2) , do (w3))×

(1)
P ∗ (w2 | w1)P (b) (w3 | do (x) , do (w1) , do (w2))

Equation (1) follows from do-calculus. First, apply Bayes chain rule.

P ∗ (y | do (x)) =
∑

w1,w2,w3,z

P ∗ (y | do (x) , w1, w2, w3, z)P
∗ (z | do (x) , w1, w2, w3)×

(2)
P ∗ (w3 | do (x) , w1, w2)P ∗ (w2 | do (x) , w1)P ∗ (w1 | do (x))
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Since Z d-separates the other variables from Y , the first term simplifies imme-
diately to the first term in (1).

P ∗ (y | do (x) , w1, w2, w3, z) = P ∗ (y | z) (3)

Rule 2 exchanges action with observation of W2 and W3 in the next term fo-
cused on Z . Further, πa transports to replace π∗ since all the S -nodes are
detached in the subgraph GXW2W3

except for the one into Y , a collider, and
(S ⊥ Z | X,W1,W2,W3)

G
(a)

XW2W3

.

P ∗ (z | do (x) , w1, w2, w3) = P (a) (z | do (x) , w1, do (w2) , do (w3))

In addition, rule 3 inserts action for W2 and W3 on W1 in either the target or
source (a) domain.

P ∗ (w1 | do (x)) = P (a) (w1 | do (x) , do (w2) , do (w3))

Collectively, this yields the second term in (1)

P ∗ (z | do (x) , w1, w2, w3)P ∗ (w1 | do (x)) = P (a) (w1, z | do (x) , do (w2) , do (w3))
(4)

Rule 3 deletes do (x) from W2 leading to the third term in (1).

P ∗ (w2 | do (x) , w1) = P ∗ (w2 | w1) (5)

Rule 2 replaces observation with action on W1 and W2 in W3. Further, as
(S ⊥W3 | X,W1,W2)

G
(b)

XW1W2

the last term of the µ-transport formula is de-

rived.

P ∗ (w3 | do (x) , w1, w2) = P (b) (w3 | do (x) , do (w1) , do (w2)) (6)

The demonstration is completed by substituting the equations (3), (4), (5), and
(6) into equation (2) to produce equation (1).

µ-transport infeasibility

Lest we believe µ-transportability is always feasible we explore one more
example to illustrate µ-transportability failure in figure 4.
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The rules of do-calculus do not allow expressing the causal effect, P ∗ (y | do (x))
without manipulation (do-operators) in the target domain. do-calculus rules 1
and 3 do not allow insertion of observation or action on Z. However, a common
identification strategies employs Bayes chain rule to insert Z.

P ∗ (y | do (x)) =
∑
z

P ∗ (y | do (x) , z)P ∗ (z | do (x))

First, the second term can be drawn from source (b) as Y is a collider and
(S ⊥ Z | X)

G
(b)

X

.

P ∗ (z | do (x)) = P (b) (z | do (x))

Second, although (S ⊥ Y | X,Z)
G

(a)

Z

this doesn’t apply since do-calculus doesn’t

permit insertion or exchange of do (Z) in the first term. Consequently, we cannot
eliminate action, do (x), in the target domain and µ-transportation fails.
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