
Method of moments
Method of moments estimation is widely applicable and particularly attrac-

tive for addressing instrumental variable estimation in nonlinear models and
as an alternative to maximum likelihood estimation where the likelihood func-
tion presents analytic challenges. The idea is simple: equate the sample mo-
ments with the theoretical moments. The method requires at least as many
moment conditions as parameters to be estimated (when we have more moment
conditions than parameters the method is described as generalized method of
moments or GMM; discussed below).

Consider some simple examples.

Example 1. Suppose we have a random sample of size n from a normal
distribution f (X;µ, σ). The moment conditions are

µ = E [X] =
1

n

∑
i

xi = X

and

σ2 = V ar [X] = E
[
(X − µ)

2
]

=
1

n

∑
i

(
xi −X

)2
In this simple case, the sample moments are the moment estimators for the
parameters.

µMM = X

σ2
MM =

1

n

∑
i

(
xi −X

)2
Example 2. Suppose we have a random sample of size n from a gamma

distribution g (X;α, θ). The density function for the gamma distribution is
g (X;α, θ) = 1

Γ(α)θαx
α−1e−

x
θ . The moment conditions are

µ = E [X] = αθ =
1

n

∑
i

xi = X

and

σ2 = V ar [X] = E
[
(X − µ)

2
]

= αθ2 =
1

n

∑
i

(
xi −X

)2
Solve the moment conditions to recover the parameter estimators. Let

α =
X

θ

then

σ2 =
X

θ
θ2 = Xθ =

1

n

∑
i

(
xi −X

)2
1



θMM =
1
n

∑
i

(
xi −X

)2
X

=
1

Xn

∑
i

(
xi −X

)2
and

αMM =
X

1
Xn

∑
i

(
xi −X

)2 =
nX

2∑
i

(
xi −X

)2
Example 3. Suppose the data generating process (DGP) follows a linear

regression model yi = xTi β+εi where xi is a k element vector, E [εi | xi] = 0,
and we have a sample of size n. The moment (or orthogonality) condition is

E
[
xi
(
yi − xTi β

)]
= 0

and corresponding sample moment condition is

1

n

∑
i

xi
(
yi − xTi β

)
= 0

Then, the method of moments estimator for β is

βMM =

(∑
i

xix
T
i

)−1∑
i

xiyi

or, in matrix form,

βMM =
(
XTX

)−1
XTY

Example 4. Continue with example 3 except that the error condition E [εi | xi] =
0 is violated but we have k exogenous or instrumental variables Z related to
X that satisfy E [εi | zi] = 0. The exactly-identified moment condition is

E
[
zi
(
yi − xTi β

)]
= 0

and corresponding sample moment condition is

1

n

∑
i

zi
(
yi − xTi β

)
= 0

Then, the method of moments estimator for β is

βMM =

(∑
i

zix
T
i

)−1∑
i

ziyi

or, in matrix form,

βMM =
(
ZTX

)−1
ZTY
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Example 5. Suppose the DGP follows a nonlinear regression model
ui = g (yi, xi, θ) with non-additive error where E [ui | xi] = 0 and we have a
random sample of size n. The moment condition is

E [h (xi) g (yi, xi, θ)] = 0

and the sample moment condition is

1

n

∑
i

h (xi) g (yi, xi, θ) = 0

where h (xi) = ∂g(yi,xi,θ)
∂θ and θMM is determined by numerical methods.

Generalized method of moments (GMM).

Example 6. Continue with example 4 except we have j > k instruments Z
so that the moment condition is over-identified. In this case we attempt to
minimize the quadratic loss.

Q (β) =

[
1

n
(Y −Xβ)

T
Z

]
W
[
ZT (Y −Xβ)

]
whereW is a weight matrix (discussed below). The first order condition provides
the moment condition

−2

[
1

n
XTZ

]
W
[
ZT (Y −Xβ)

]
= 0

and the GMM estimator.

βGMM =
[
XTZWZTX

]−1
XTZWZTY

Example 7. Suppose we have j > k general (possibly, nonlinear) mo-
ment functions hi (θ) where E [h (w, θ0)] = 0 for θ0 the true parameters and
the average hi evaluated at θ0 converges in distribution to a mean zero normal
random vector with variance So = p lim 1

n

∑
i

∑
j

[
hih

T
j |θ0

]
. GMM quadratic

to be minimized is

1

2

[
1

n

∑
i

h (wi, θ)

]T
W

[
1

n

∑
i

h (wi, θ)

]

where hi (θ) = hi (wi, θ). First order conditions are 1

n

∑
i

∂hi

(
θ̂
)T

∂θ
|θ̂

W [
1

n

∑
i

hi

(
θ̂
)]

= 0
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Example 8. GMM nonlinear IV estimation takes various forms. Suppose we
have j ≥ k instruments Z, E [ui | zi] = 0, where ui = yi − g (xi) for additive
errors or ui = r (xi, yi, θ) for non-additive errors. The GMM estimator for the
exactly-identified case solves ZTu = 0 for θGMM .

The general case minimizes

uTZWZTu

where the optimal GMM estimator employs W = S−1 (discussed below) and

NL2SLS-IV employs W =
(
ZTZ

)−1
. In other words, NL2SLS-IV minimizes

uTPzu where Pz is the projection matrix into the columns of Z, Pz = Z
(
ZTZ

)−1
ZT .

Optimal weighting matrix.

If S0 is known, the optimal weighting matrix is W = S−1
0 . In practice,

S0 is typically unknown and estimated via some variant of the Newey-West
estimator.1

Ŝ = Ω0 +

j∑
l=1

(
1− l

j + 1

)(
Ωl + ΩTl

)
where Ωl = 1

T

∑T
t=l+1 hth

T
t−l.

Method of simulated moments (MSM).

GMM may be infeasible if the moment conditions are intractable. For ex-
ample, the conditions may involve latent variables (variables unobserved by the
analyst). In such instances, simulated moments can be substituted in place of
theoretical moments where the expected value of the simulated moment equals
the theoretical moment. This is the method of simulated moments (MSM).

Example 9.2 Suppose we have a random sample from a log-normal distri-
bution g

(
y;µ, σ2

)
. Then, z = log y has a normal distribution f

(
z;µ, σ2

)
. This

setting is amenable to GMM so that MSM is not necessitated but rather allows
for comparison of the relative efficacy of MSM. The elementary zero functions
are

h1i

(
µ, σ2

)
= zi − µ

and

h2i

(
µ, σ2

)
= yi − exp

[
µ+

1

2
σ2

]
1The Newey-West estimator is designed to assure positive semi-definiteness. In this in-

stance, we require positive definiteness.
2This example is adapted from Davidson and MacKinnon, 2004, Econometric Theory and

Methods. They provide a more detailed discussion of the properties of GMM and MSM
estimators.
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Derivatives of these functions with respect to the parameters are

∂h1i

∂µ
= −1;

∂h2i

∂µ
= − exp

[
µ+

1

2
σ2

]
∂h1i

∂σ2
= 0;

∂h2i

∂σ2
= −1

2
exp

[
µ+

1

2
σ2

]
The weight matrix follows from

S0 = E

([
h10

h20

] [
hT10 hT20

])
=

[
σ2
zI σzyI

σyzI σ2
yI

]
where hj0, j = 1, 2, is hj evaluated at the true values µ0 and σ2

0 . Then, the
efficient moment functions (in matrix form) are

HT
(
µ, σ2

)
Wh

(
µ, σ2

)
= 0

where H
(
µ, σ2

)
= −

[
ι 0

exp
[
µ+ 1

2σ
2
]
ι 1

2 exp
[
µ+ 1

2σ
2
]
ι

]
, ι is a vector of

ones, W = S−1
0 , and h

(
µ, σ2

)
=

[
h1(µ, σ2)
h2(µ, σ2)

]
. While H

(
µ, σ2

)
and W affect

the variance or efficiency of the over-identified (GMM) estimator, they don’t
appear in the simplified (exactly-identified) estimating equations.

ιTh1

(
µ, σ2

)
= 0; ιTh2

(
µ, σ2

)
= 0

These two equations yield µGMM = z and σ2
GMM = 2 (log y − z).3

MSM

Next, we re-evaluate this setting via simulation, that is, employing MSM.
Let u∗ represent random draws from a standard normal distribution. The key to
simulated moments is to generate simulated expected values of y = exp [µ+ σu∗]
and z = log [y]. Then, simulated moments of z and y, respectively, involve
averaging

m∗
1

(
u∗, µ, σ2

)
= µ+ σu∗

and
m∗

2

(
u∗, µ, σ2

)
= exp [µ+ σu∗]

If we employ R simulations, the zero functions for MSM are

h∗t1
(
zt, µ, σ

2
)

= zt −
1

R

R∑
r=1

m∗
1

(
u∗tr, µ, σ

2
)

3Of course, we could add over-identifying moments such as E
[
y2

]
but we’ll continue along

this notationally simpler path with simulated moments.
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and

h∗t2
(
yt, µ, σ

2
)

= yt −
1

R

R∑
r=1

m∗
2

(
u∗tr, µ, σ

2
)

where u∗tr are drawn once (a vector of length nR) from a standard normal
distribution.

The simulated moment conditions average over the zero functions equating
the sample average with the simulated sample average.

1

n

n∑
t=1

h∗t1
(
zt, µ, σ

2
)

= z − 1

n

n∑
t=1

1

R

R∑
r=1

m∗
1(u∗tr, µ, σ

2) = 0

and

1

n

n∑
t=1

h∗t2
(
yt, µ, σ

2
)

= y − 1

n

n∑
t=1

1

R

R∑
r=1

m∗
2(u∗tr, µ, σ

2) = 0

MSM estimation minimizes the quadratic form solving for the parameters.

[
1
n

∑n
t=1 h

∗
t1

(
zt, µ, σ

2
)

1
n

∑n
t=1 h

∗
t2

(
yt, µ, σ

2
) ] [ 1

n

∑n
t=1 h

∗
t1

(
zt, µ, σ

2
)

1
n

∑n
t=1 h

∗
t2

(
yt, µ, σ

2
) ]

Based on the moment conditions we know the MSM estimator is asymptotically
consistent, we next explore MSM efficiency relative to GMM via simulation.

Simulation.

Let n = R = 1, 000, then we ran 100 simulations of GMM and MSM estima-
tion of µ and σ for the lognormal distribution (µ = 10, σ = 5) discussed above.
Results are tabulated below.

µ µ σ σ
GMM MSM GMM MSM

mean 10.01450 10.319229 4.46997 4.453509
std. dev. 0.1380157 0.4346337 0.2930238 0.3678285

1% quantile 9.714255 9.482923 4.038108 3.850237
5% quantile 9.807114 9.651765 4.072466 3.885505
10% quantile 9.839347 9.771796 4.110955 3.948107
25% quantile 9.921804 9.980254 4.266044 4.209186
50% quantile 10.010791 10.320465 4.448000 4.451024
75% quantile 10.104375 10.558103 4.631000 4.723155
90% quantile 10.197654 10.924584 4.800516 4.900083
95% quantile 10.240818 11.087159 4.961245 5.021340
99% quantile 10.301261 11.254266 5.373312 5.331810

As expected, GMM is somewhat less variable than MSM, nonetheless, in this
instance MSM performs quite satisfactorily.
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