
Entropy balanced causal effects
A central result for balanced covariate strategies to identify causal effects

involves determining the conditional expectation of observed outcomes Y =
DY1 + (1−D)Y0 (with binary treatment D = 0, 1) given the covariates X via
iterated expectations.

1 Propensity-score weighting

Below we describe this evaluation where the propensity score p (X) ≡ Pr (D = 1 | X)
is the basis for balancing covariates then connect to entropy balancing.
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Ignorability (conditional mean independence of potential outcomes, Y1 and
Y0, with treatment, D) implies

E [Y0 | X] = E [Y0 | X,D = 1] = E [Y0 | X,D = 0]

and
E [Y1 | X] = E [Y1 | X,D = 1] = E [Y1 | X,D = 0]

Thus, average treatment effects conditional on X can be identified via

ATE (X) = E

[
DY

p (X)
| X
]
− E

[
(1−D)Y
1− p (X) | X

]
= E

[
(D − p (X))Y
p (X) (1− p (X)) | X

]

ATT (X) =
E
[
DY
p(X) | X,D = 1

]
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[
(1−D)Y
1−p(X) | X,D = 1

]
Pr (D = 1 | X)

= E

[
(D − p (X))Y
(1− p (X)) | X

]
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and

ATUT (X) =
E
[
DY
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]
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[
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1−p(X) | X,D = 0

]
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= E

[
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p (X)
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]
/Pr (D = 0 | X)

Iterated expectations combined with full common support and ignorability
implies

EX [E [Y0 | X]] = E [Y0]

= E [Y0 | D = 1] = E [Y0 | D = 0]

and

EX [E [Y1 | X]] = E [Y1]

= E [Y1 | D = 1] = E [Y1 | D = 0]

Hence, unconditional average treatment effects can be identified as

ATE = EX [ATE (X)]

= EX

[
E

[
(D − p (X))Y
p (X) (1− p (X)) | X

]]
= E

[
(D − p (X))Y
p (X) (1− p (X))

]
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ATT = EX [ATT (X)]
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E
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]
/Pr (D = 1 | X)

]
= E

[
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]
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[
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[
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| X
]
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]
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p (X)

]
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Hahn [1998] demonstrates that knowledge of the propensity score does not
improve effi ciency for estimating ATE but it does for estimating subpopulation
averages, ATT or ATUT . Much of the attention to weighting strategies for
identifying causal effects has consequently focused on ATT . Hirano, Imbens,
and Ritter [2003] propose a weighted average treatment effect

E

[
g (X)

(
DY

p (X)
− (1−D)Y
1− p (X)

)]
/E [g (X)]

If the weight, g (X), is the propensity score, p (X), then the weighted average
treatment effect equals the average treatment effect on the treated, ATT .

E

[
p (X)

(
DY

p (X)
− (1−D)Y
1− p (X)

)]
/E [p (X)] = E

[
(D − p (X))Y
(1− p (X))

]
/Pr (D = 1)

Surprisingly, Hirano, Imbens, and Ritter [2003] show weighting by their non-
parametric estimator of the propensity score is more effi cient than weighting by
the true propensity score.

2 Entropy balancing

In practice, it can be diffi cult to achieve covariate balance with propensity score
weighting. Several studies show that including the propensity score can in-
crease selection bias when covariate balance is poor (Drake [1993], Smith and
Todd [2001], and Diamond and Sekhon [2006]). Entropy balancing attempts
to address the concern from another angle. Weights on the control sample are
entropy balanced to the treatment sample.
Hainmueller’s [2012] entropy balanced ATT estimator is similar Hirano,

Imbens, and Ritter’s [2003] weighted average treatment effect estimator for
ATT where entropy weighting is employed rather than the propensity score.
E [Y1 | D = 1] can be estimated as ∑

i

DiYi∑
i

Di

3



while the counterfactual E [Y0 | D = 1] can be estimated by∑
i

(1−Di)wiYi∑
i

(1−Di)wi

where wi is a weight for each untreated (control) individual chosen to minimize
a distance metric, h (·), as discussed below. Hence, the ATT estimator is

ATT =

∑
i

DiYi∑
i

Di
−

∑
i

(1−Di)wiYi∑
i

(1−Di)wi

2.1 Optimization

The program to balance the covariates of the untreated to the treated is

min
wi≥0

H (w) =
∑
i

(1−Di)h (wi)

s.t.
∑
i

(1−Di)wicri (Xi) = mr∑
i

(1−Di)wi = 1

where h (wi) is typically wi log wiqi with base measure qi (often set to
1
n0
, n0 is

the control subsample size), and mr refers to r = 1, . . . , R moment restrictions
drawn from the treatment group while cri (Xi) = Xr

i or cri (Xi) = (Xi − µ)r
for the control group.
Formulating the Lagrangian

L =
∑
i

(1−Di)wi log
wi
qi
+

R∑
r=1

λr

(∑
i

(1−Di)wicri (Xi)−mr

)
+(λ0 − 1)

(∑
i

(1−Di)wi − 1
)

and solving the first order condition yields the solution for the weights

w∗i =
qi exp

[
−
∑R
r=1 λrcri (Xi)

]
∑
i (1−Di) qi exp

[
−
∑R
r=1 λrcri (Xi)

]
where the denominator is a normalizing constant

Z ≡
∑
i

(1−Di) qi exp

[
−

R∑
r=1

λrcri (Xi)

]

The multipliers solve the moment constraints (provided there is a solution).
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Additionally, substitution of w∗i into the Lagrangian produces

L (w∗i ) = − log
∑
i

(1−Di) qi exp

[
−

R∑
r=1

λrcri (Xi)

]
−

R∑
r=1

λrmr

= − logZ −
R∑
r=1

λrmr

In other words, if a solution exists the above primal program can be translated
as a simpler, unconstrained dual program1

max
λ
− logZ −

R∑
r=1

λrmr

or

min
λ
logZ +

R∑
r=1

λrmr

As with other balancing (weighting) approaches, trimming may be advised.
Further, trimming may be needed to satisfy the moment constraints.
This approach is similar to Jaynes’[2003] maximum entropy probability as-

signment in which moment conditions quantify one’s background knowledge and
lead to probability assignment. For instance, knowledge of the mean with con-
tinuous support bounded below leads to assigning an exponential probability
distribution (possibly, with displaced support). Also, knowledge of the first and
second moments with continuous support yields a normal probability distribu-
tion assignment.
However, irrespective of the extent of covariate balance, identification rests

on ignorability as well as common support (balanced covariates). Conditional
mean independence or strong ignorability (conditional stochastic independence)
of potential outcomes, Y0 and Y1, and treatment, D, is a thought experiment
that the observable data cannot support or refute due to the counterfactual
nature of the question posed.

3 Examples

Next, we explore some simple examples where the focus is identification of ATT .
We consider entropy balanced weighting (EBW ), propensity score weighting
(PSW ), propensity score matching (PSM), and exogenous dummy variable
regression, E [Y1 | D = 1]−E [Y0 | D = 0] (DV R). DV R is analogous to entropy
balancing where equal weights are applied to the untreated subsample. Entropy
balancing is based on the first moment (the mean) of X (the set of covariates)
unless otherwise indicated.

1 If the primal program is infeasible then the dual program is unbounded.
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Example 1 (homogeneous outcome, balanced covariates) Suppose the data
generating process (DGP) is as follows.

Y1 Y0 TE Y X1 X2 X3 D p (X) w
26 25 1 26 1 5 2 1 0.5
25 24 1 25 2 4 2 1 0.5
22 21 1 22 3 1 3 1 0.5
19 18 1 19 4 2 1 1 0.5
26 25 1 25 1 5 2 0 0.5 0.25
25 24 1 24 2 4 2 0 0.5 0.25
22 21 1 21 3 1 3 0 0.5 0.25
19 18 1 18 4 2 1 0 0.5 0.25

where w refers to the weights identified by entropy balancing for the D = 0
(untreated or control) subpopulation.

ATT 1
ATUT 1
ATE 1

This DGP exhibits ignorable treatment, homogeneous outcome, balanced covari-
ates, and full support. Therefore, all methods identify ATT .

estimator for ATT quantity identified
EBW 1
PSW 1
PSM 1
DV R 1
EW 1

Example 2 (homogeneous outcome, unbalanced coveriates) Suppose the
data generating process (DGP) is as follows.

Y1 Y0 TE Y X1 X2 X3 D p (X) w
22 21 1 22 3 1 3 1 0.667
25 24 1 25 2 4 2 1 0.5
22 21 1 22 3 1 3 1 0.667
19 18 1 19 4 2 1 1 0.5
26 25 1 25 1 5 2 0 0 0
25 24 1 24 2 4 2 0 0.5 0.25
22 21 1 21 3 1 3 0 0.667 0.5
19 18 1 17 4 2 1 0 0.5 0.25

where w refers to the weights identified by entropy balancing for the D = 0
(untreated or control) subpopulation.

ATT 1
ATUT 1
ATE 1
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This DGP exhibits homogeneous outcome but endogenous treatment, unbalanced
covariates, and limited common support. All methods except DV R identify
ATT .

estimator for ATT quantity identified
EBW 1
PSW 1
PSM 1
DV R 0

Example 3 (homogeneous outcome, no common support) Suppose the data
generating process (DGP) is as follows.

Y1 Y0 TE Y X1 X2 X3 D p (X) w
26 25 1 26 1 5 2 1 1
25 24 1 25 2 4 2 1 1
22 21 1 22 3 1 3 1 1
19 18 1 19 4 2 1 1 1
14 13 1 25 1 1 2 0 0 0.25
19 18 1 24 2 2 2 0 0 0.25
34 33 1 21 3 5 3 0 0 0.25
25 24 1 18 4 4 1 0 0 0.25

where w refers to the weights identified by entropy balancing for the D = 0
(untreated or control) subpopulation.

ATT 1
ATUT 1
ATE 1

This DGP exhibits homogeneous outcome but unbalanced covariates and no com-
mon support. Therefore, the data suggest no reason for any method to identify
ATT . However, in this knife-edge case entropy balancing (as well as DV R) is
effective.2

estimator for ATT quantity identified
EBW 1
PSW NA
PSM NA
DV R 1

Since the propensity score is not bounded away from zero and one, both PSW
and PSM are inapplicable in this setting.

Example 4 (heterogeneous outcome, balanced covariates) Suppose the

2Typically, in a case lacking support like this there is no feasible solution to the entropy-
balancing primal (and the dual program is unbounded).
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data generating process (DGP) is as follows.

Y1 Y0 TE Y X1 X2 X3 D p (X) w
25.50 22 3.50 25.50 1 5 2 1 0.5
25.84 21 4.84 25.84 2 4 2 1 0.5
21.96 15 6.96 21.96 3 1 3 1 0.5
18.82 13 5.82 18.82 4 2 1 1 0.5
26.50 22 4.50 22 1 5 2 0 0.5 0.25
24.16 21 3.16 21 2 4 2 0 0.5 0.25
22.04 15 7.04 15 3 1 3 0 0.5 0.25
19.18 13 6.18 13 4 2 1 0 0.5 0.25

where w refers to the weights identified by entropy balancing for the D = 0
(untreated or control) subpopulation.

ATT 5.28
ATUT 5.22
ATE 5.25

Although outcome is heterogeneous, this DGP exhibits ignorable treatment, bal-
anced covariates, and full support. Therefore, all methods identify ATT .3

estimator for ATT quantity identified
EBW 5.28
PSW 5.28
PSM 5.28
DV R 5.28

Example 5 (heterogeneous outcome, unbalanced covariates) Suppose the
data generating process (DGP) is as follows.

Y1 Y0 TE Y X1 X2 X3 D p (X) w
21.58 14.16 7.42 21.58 3 1 3 1 0.667
24.06 20 4.06 24.06 2 4 2 1 0.333
21.78 15.84 5.94 21.78 3 1 3 1 0.667
18.34 16 2.34 18.34 4 2 1 1 0.5
25.52 19.98 5.54 19.98 2 4 2 0 0.333 0.125
25.41 20.02 5.40 20.02 2 4 2 0 0.333 0.125
22.63 15 7.63 15 3 1 3 0 0.667 0.5
19.66 16 3.66 16 4 2 1 0 0.5 0.25

where w refers to the weights identified by entropy balancing for the D = 0
(untreated or control) subpopulation.

ATT 4.94
ATUT 5.56
ATE 5.25

3The results from dummy variable regression are often interpreted as ATE, which is erro-
neous in this case.
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This DGP exhibits ignorable treatment (conditional mean independence for out-
come without treatment is satisfied), heterogeneous outcome, unbalanced covari-
ates, and complete support. Since treatment is not exogenous, DV R fails but
the other estimators identify ATT .

estimator for ATT quantity identified
EBW 4.94
PSW 4.94
PSM 4.94
DV R 3.69

Example 6 (heterogeneous nonignorable outcome, balanced covariates)
Suppose the data generating process (DGP) is as follows.

Y1 Y0 TE Y X1 X2 X3 D p (X) w
25.50 22.50 3 25.50 1 5 2 1 0.5
25.84 19.16 6.68 25.84 2 4 2 1 0.5
21.96 15.04 6.92 21.96 3 1 3 1 0.5
18.82 13.18 5.64 18.82 4 2 1 1 0.5
26.50 21.50 5 21.50 1 5 2 0 0.5 0.25
24.16 20.84 3.32 20.84 2 4 2 0 0.5 0.25
22.04 14.96 7.08 14.96 3 1 3 0 0.5 0.25
19.18 12.82 6.34 12.82 4 2 1 0 0.5 0.25

where w refers to the weights identified by entropy balancing for the D = 0
(untreated or control) subpopulation.

ATT 5.56
ATUT 5.44
ATE 5.5

This DGP exhibits balanced covariates, and full support. Outcome is nonig-
norable (as conditional mean independence fails for both potential outcome with
treatment and potential outcome without treatment) and heterogeneous. Sur-
prisingly, the bias offsets such that ATT estimators identify ATE.

estimator for ATT quantity identified
EBW 5.5
PSW 5.5
PSM 5.5
DV R 5.5

In the next example, we expand entropy balancing to include the first mo-
ments, the second moments (including cross terms) along with first moments,
and the fourth moments along with the second (including cross terms) and first
moments. Entropy weights associated with the first moment balancing are de-
noted w1, while weights based on the second moment balancing are denoted w2,
and weights for the fourth moment balancing are denoted w4.

9



Example 7 (heterogeneous outcome, expanded entropy balancing) Suppose
the data generating process (DGP) is as follows.

Y1 Y0 TE Y X1 X2 X3 D p (X) w1 w2 w4
10.43 4.43 6 10.43 1 1.134 0.293 1 0.5
11.21 7.21 4 11.21 2 1.567 0.646 1 0.4
12 8 4 12 3 2 1 1 0.667
13.79 3.79 10 13.79 4 2.433 1.354 1 0.4
16.57 7..57 9 16.57 5 2.866 1.707 1 0.5
14 9 5 14 3 2 1 1 0.667
14 5 9 14 3 2 1 1 0.667
9.43 −0.57 10 9.43 1 1.134 0.293 1 0.5
10.21 5.21 5 10.21 2 1.567 0.646 1 0.4
12 6 6 12 3 2 1 1 0.667
14.79 7.79 7 14.79 4 2.433 1.354 1 0.4
17.57 9.57 8 17.57 5 2.866 1.707 1 0.5
7.43 4.43 3 4.43 1 1.134 0.293 0 0.5 0.0833 0.0712 0.0833
9.21 7.21 2 7.21 2 1.567 0.646 0 0.4 0.0833 0.0878 0.0556
11 8 3 8 3 2 1 0 0.667 0.0833 0.0942 0.1667
12.79 4.79 8 4.79 4 2.433 1.354 0 0.4 0.0833 0.0878 0.0556
14.57 7.57 7 7.57 5 2.866 1.707 0 0.5 0.0833 0.0712 0.0833
9.21 7.21 2 7.21 2 1.567 0.646 0 0.4 0.0833 0.0878 0.0556
12.79 4.79 8 4.79 4 2.433 1.354 0 0.4 0.0833 0.0878 0.0556
7.43 −0.57 8 −0.57 1 1.134 0.293 0 0.5 0.0833 0.0712 0.0833
9.21 4.21 5 4.21 2 1.567 0.646 0 0.4 0.0833 0.0878 0.0556
11 6 5 6 3 2 1 0 0.667 0.0833 0.0942 0.1667
12.79 7.79 5 7.79 4 2.433 1.354 0 0.4 0.0833 0.0878 0.0556
14.57 9.57 5 9.57 5 2.866 1.707 0 0.5 0.0833 0.0712 0.0833

where w1, w2, w4 refers to the weights identified by entropy balancing for the
D = 0 (untreated or control) subpopulation based on the first moment, second
moment, and fourth moment, respectively.

ATT 6.9167
ATUT 5.0833
ATE 6

This DGP exhibits unbalanced covariates, and full support. Outcome is ignor-
able (as conditional mean independence is satisfied for potential outcome without
treatment) and heterogeneous. Only entropy balancing with first, second (includ-
ing cross terms), and fourth moment identifies ATT , while both propensity score
approaches identify ATT . It is not surprising that EBW (w1) fails as the means
of X in the two subpopulations are the same but the covariates are unbalanced.
Adding the second moment moves entropy balancing closer to ATT but it still
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falls short.
estimator for ATT quantity identified

EBW (w1) 7.0833
EBW (w2) 7.025
EBW (w4) 6.9167
PSW 6.9167
PSM 6.9167
DV R 7.0833

As identification conditions for EBW , PSW , and PSM are the same, their
asymptotic (or identification) behavior is largely the same (with the exception
of knife-edge cases). Hence, design choice depends on matching their finite
sample properties to the setting at hand where we estimate the propensity
score as well as compromise on the number of moments on which to entropy
balance the covariates. Hainmueller’s [2012] simulations suggest promise for
entropy balancing. Nevertheless, the choice is likely context specific and, in
part, dependent on the analyst’s background knowledge and causal thought
experiment.
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