
Preference estimation via MSM
We attempt to estimate risk and time preferences subject to taste dis-

turbance via method of simulated moments (MSM). We structure the analy-
sis around Ross’ recovery theorem where we observe state prices (or, equiva-
lently, the full range of state-contingent payoffs and nominal prices) and state-
contingent consumption.

First, we discuss the recovery theorem and the pricing kernel. Then, we
discuss estimation of time and risk preference parameters along with some asyn-
chronous data limitations.

Recovery theorem

Ross’ [2015]1 recovery theorem says that in a complete, pure exchange mar-
ket setting, linear no arbitrage equilibrium state prices convey a representative
investor’s state probability assignments. That is, state prices convey Markovian
state transition probabilities (and preferences regarding timing of consumption
and risk) for a representative investor.

The key is the pricing kernel which says the (state) price, pij , per unit
probability, fij , is equal to a personal discount factor, δ, times the ratio of
marginal utilities for consumption in the future state, cj , to current, c0, where
j refers to the future state and i refers to the initial state.

pij
fij

= δ
U
′
(cj)

U ′ (c0)

In other words, a representative investor with wealth or endowment, W0, solves
for optimal (expected utility of) consumption subject to a budget or wealth
constraint.

max
c0,cj≥0

U (c0) + δ

n∑
j=1

fijU (cj)

s.t. c0 +
∑n
j=1 pijcj ≤W0

The first order conditions for the Lagrangian representation of the above con-
strained optimization problem yield the pricing kernel.

λ = U
′
(c0)

δfijU
′
(cj) = pijU

′
(c0)

For Markovian transition probabilities assigned as F = 1
δDPD

−1 where D is

a diagonal matrix with elements U
′
(c1) , . . . , U

′
(cn) and with U

′
(c0) = U

′
(ci),

then the pricing kernel for the representative investor is

pij
fij

= δ
U
′
(cj)

U ′ (ci)

1Ross, S. 2015, ”The recovery theorem,” Journal of Finance.
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Suppose preferences exhibit constant relative risk aversion

U (c) =
c1−r

1− r

where r → 1 leads to U (c) = ln c.2 For constant relative risk aversion, relative
marginal utility is

U
′
(cj)

U ′ (ci)
=

(
cj
ci

)−r
and logarithmic relative marginal utility is

U
′
(cj)

U ′ (ci)
=

(
cj
ci

)−1
State transition probability assignment follows from eigensystem decompo-

sition of the dynamic system of state prices P along with the requirement the
rows of F sum to one.

Pζ = δζ

where, by the Perron-Frobenius theorem, ζ is the positive-valued eigenvector
associated with the largest eigenvalue δ. The Perron-Frobenius theorem says
for a nonnegative matrix the largest eigenvalue and its associated eigenvector
are nonnegative. Since P is a matrix of state prices, P is a nonnegative matrix
(otherwise, there exist arbitrage opportunities).

Let ι be a vector of ones and recall eigenvectors are scale-free, P (αζ) = δ (αζ)
implies Pζ = δζ. Then, we can write

D−1ι = ζ

with ζ scaled appropriately. Notice, the pricing kernel is also scale-free as only
ratios of marginal utilities enter. Collecting terms, we have

Pζ = δζ

PD−1ι = δD−1ι

1

δ
DPD−1ι = ι

F ι = ι

which confirms that F is a proper probability assignment as the terms are
nonnegative and sum to one.3

2Constant relative risk aversion is attractive as a change in wealth leads to no change in
the relative composition of an individual’s portfolio (fraction of wealth invested in various
assets).

3For the a simple two-state economy we have F = 1
δ
DPD−1 or[

f11 f12
f21 f22

]
=

 p11
δ

U′ (c1)p12
δU′ (c 2)

U′ (c2)p21
δU′ (c1)

p22
δ

as indicated by the pricing kernel.
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Example

Since state-contingent consumption is likely observed asynchronously (at

different times)4 we allow for taste disturbance νt so that U (ct) =
c1−r
t

1−r νt and
the pricing kernel is

pij
fij

= δ
U
′
(cj)

U ′ (ci)
= δ

(
cj
ci

)−r
νj
νi

DGP

We generate a sample based on a simple two-state economy where state
prices in initial state one are p1j =

[
0.619 0.333

]
and in initial state are

p2j =
[

0.500 0.471
]
. The recovery theorem provides

F =
1

δ
DPD−1[

0.645 0.355
0.509 0.491

]
=

1

0.9599

[
1.430 0

0 1.399

] [
0.619 0.333
0.500 0.471

] [
0.699 0

0 0.715

]
With observed or proxy consumption data ct subject to taste disturbance νt the
pricing kernel is

pij
fij
− δ
(
cj
ci

)−r
= 0

The proposed DGP involves δ = 0.9599, r = 0.9, c1 = 0.9756, c2 = 1.0250
(when νj/νi = 1), and νt ∼ N (1, σ) with sample size n = 30. Asynchronicity is
increasing in σ. In our simulations below, we vary σ as 0.01, 0.02, 0.03.

MSM estimation

Since the analyst cannot observe νt simulation of the sample moments to es-
timate the risk and time preference parameters, r and δ, presents an alternative
to GMM with proxy data. The simulated sample is

pij
fij
− δ
(
c̃j

c̃i

)−r
= 0

where c̃t are the T = 100 simulated draws for ct. That is,

(
c̃j

c̃i

)−r
=

(
cj
ci

)−r
νj
νi

4If prices are also asynchronous then observed state prices are not fully deterministic of
state transition probabilities. In this case, probability assignment might employ maximum
entropy subject to observed state prices (Jaynes [2003]). We proceed with asynchronous
consumption only.
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The MSM sample moment is

m (i, j; δ, r) ≡ 1

n

∑{
pij
fij
− 1

T

∑
δ

(
c̃j

c̃i

)−r}

Estimation minimizes the quadratic

[
m (1, 2; δ, r) m (1, 1; δ, r)

] [ m (1, 2; δ, r)
m (1, 1; δ, r)

]
We compare estimation of δ and r from the DGP utilizing observed, proxy

consumption ct (GMM)5 to MSM estimation for S = 1, 000 simulations.

σ = 0.01 GMM MSM GMM MSM
δ δ r r

mean 0.960 0.960 0.914 0.919
std dev 0.000003 0.000005 0.112 0.113

1%
quantile

0.960 0.960 0.707 0.713

5%
quantile

0.960 0.960 0.757 0.759

10%
quantile

0.960 0.960 0.781 0.785

25%
quantile

0.960 0.960 0.840 0.842

50%
quantile

0.960 0.960 0.900 0.904

75%
quantile

0.960 0.960 0.977 0.981

90%
quantile

0.960 0.960 1.060 1.068

95%
quantile

0.960 0.960 1.131 1.129

99%
quantile

0.960 0.960 1.213 1.212

5GMM sample moments and the quadratic to be minimized are analogous to those for
MSM except ct replaces c̃t .
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σ = 0.02 GMM MSM GMM MSM
δ δ r r

mean 0.960 0.960 0.990 1.009
std dev 0.0002 0.0002 0.354 0.363

1% quantile 0.960 0.960 0.593 0.601
5% quantile 0.960 0.960 0.662 0.676
10% quantile 0.960 0.960 0.697 0.712
25% quantile 0.960 0.960 0.780 0.800
50% quantile 0.960 0.960 0.927 0.940
75% quantile 0.960 0.960 1.092 1.117
90% quantile 0.960 0.960 1.308 1.351
95% quantile 0.960 0.960 1.518 1.539
99% quantile 0.960 0.960 2.097 2.156

σ = 0.03 GMM MSM GMM MSM
δ δ r r

mean 0.960 0.960 1.137 1.184
std dev 0.0127 0.0128 0.689 0.713

1% quantile 0.955 0.954 0.516 0.535
5% quantile 0.960 0.960 0.581 0.605
10% quantile 0.960 0.960 0.635 0.662
25% quantile 0.960 0.960 0.747 0.780
50% quantile 0.960 0.960 0.923 0.965
75% quantile 0.960 0.960 1.248 1.293
90% quantile 0.960 0.960 1.805 1.894
95% quantile 0.960 0.960 2.443 2.568
99% quantile 0.960 0.960 4.045 4.424

Not surprisingly, estimation of δ is more precise than for r. Estimation re-
sults are slightly better for proxy consumption data (GMM) than for simulated
consumption data (MSM). As expected, the performance of both declines with
asynchronicity (increasing σ). Median estimates are a more effective measure
of central tendency than means for both GMM and MSM. Results are likely to
improve with additional moments and/or adjustment for differential precision.

Three-state economy example

Next, we undertake another experiment. First, since estimation of δ is not
stochastic given our assumptions regarding the data, we focus estimation on
r alone. Further, we compare estimation of r with one moment based on a
two-state economy with three moments based on a three-state economy.

The sample moment based on proxy consumption data for the two-state
economy is

mp (i, j; δ, r) ≡ 1

n

∑{
pij
fij
− δ
(
cj
ci

)−r}
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and the simulated sample moment for the two-state economy is

ms (i, j; δ, r) ≡ 1

n

∑{
pij
fij
− 1

T

∑
δ

(
c̃j

c̃i

)−r}

where i = 1, j = 2. The risk parameter r is estimated by setting the sample
moments equal to zero. For this experiment we set n = 30, T = 300 and again
we vary σ = 0.01, 0.02, 0.03.

The sample moments for the three-state economy are defined as above except
the (i, j) pairs are (1, 2) , (1, 3) , (2, 3). Estimation of the risk aversion parameter
minimizes the quadratic (with identity weight matrix and δ, r implied).

mkm
T
k =

[
mk (1, 2) mk (1, 3) mk (2, 3)

] [
mk (1, 2) mk (1, 3) mk (2, 3)

]T
for k = p, s.

Results for the two-state economy are reported below.

σ = 0.01 σ = 0.02 σ = 0.03
r (GMM) r (MSM) r (GMM) r (MSM) r (GMM) r (MSM)

mean 0.919 0.923 0.988 1.007 1.098 1.144
std dev 0.112 0.112 0.352 0.363 0.590 0.607

1% quantile 0.718 0.721 0.584 0.595 0.524 0.541
5% quantile 0.764 0.769 0.643 0.655 0.577 0.603
10% quantile 0.789 0.793 0.697 0.712 0.626 0.651
25% quantile 0.839 0.841 0.786 0.800 0.734 0.764
50% quantile 0.904 0.910 0.916 0.931 0.927 0.972
75% quantile 0.983 0.988 1.104 1.130 1.254 1.319
90% quantile 1.073 1.078 1.321 1.347 1.722 1.813
95% quantile 1.128 1.130 1.512 1.539 2.250 2.323
99% quantile 1.234 1.254 2.142 2.206 3.465 3.479

Results for the (equally-weighted moments) three-state economy are re-
ported below. As expected, three moment conditions produce smaller bias and
variation in the estimation of r than the single moment condition, two-state
economy.

.
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σ = 0.01 σ = 0.02 σ = 0.03
r (GMM) r (MSM) r (GMM) r (MSM) r (GMM) r (MSM)

mean 0.898 0.903 0.898 0.916 0.900 0.936
std dev 0.041 0.036 0.089 0.076 0.140 0.123

1% quantile 0.809 0.829 0.709 0.767 0.629 0.710
5% quantile 0.833 0.847 0.762 0.806 0.695 0.766
10% quantile 0.845 0.857 0.791 0.824 0.734 0.795
25% quantile 0.870 0.877 0.838 0.851 0.810 0.851
50% quantile 0.897 0.901 0.894 0.911 0.888 0.919
75% quantile 0.924 0.927 0.952 0.965 0.978 0.999
90% quantile 0.951 0.949 1.011 1.016 1.077 1.091
95% quantile 0.965 0.965 1.050 1.044 1.147 1.162
99% quantile 1.006 0.998 1.134 1.130 1.343 1.309

Weighted moments

Experiments with weighting based on the inverse of the covariance of the
“residuals” from the first stage estimation of r produce greater bias and greater
variance (results reported below) than those without weighting.

mkΩmT
k

Ω =

(
1

n
eeT
)−1

where the n = 30 “residuals” eij =
pij
fij
− δ
(cj
ci

)−r
and eT =

[
e12 e13 e23

]
have similar variances and are highly correlated (0.5 to 0.7 in absolute value).

The small sample size likely contributes to weak estimation of the covari-
ance and subsequent poor results. Results for the three-state economy based on
minimization of weighted quadratic moments are reported below.

o = 0.01 σ = 0.02 σ = 0.03
r (GMM) r (MSM) r (GMM) r (MSM) r (GMM) r (MSM)

mean 0.902 0.867 0.916 0.795 0.943 0.707
std dev 0.042 0.055 0.093 0.091 0.155 0.124

1% quantile 0.814 0.752 0.736 0.610 0.687 0.486
5% quantile 0.835 0.779 0.785 0.660 0.741 0.532
10% quantile 0.849 0.799 0.804 0.682 0.770 0.565
25% quantile 0.874 0.829 0.851 0.733 0.840 0.624
50% quantile 0.901 0.885 0.907 0.789 0.916 0.697
75% quantile 0.928 0.902 0.969 0.851 1.016 0.774
90% quantile 0.957 0.936 1.036 0.915 1.136 0.859
95% quantile 0.973 0.960 1.086 0.952 1.227 0.922
99% quantile 1.014 1.006 1.195 1.053 1.448 1.104
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