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9.5 Propensity score approaches
Suppose the data are conditionally mean independent

E [Y1 | X,D] = E [Y1 | X]

E [Y0 | X,D] = E [Y0 | X]

so treatment is ignorable,and commonX support leads to nondegenerate propen-
sity scores

0 < p (X) = Pr (D = 1 | X) < 1 for all X
then average treatment effect estimands are

ATE = E

!
(D − p (X))Y
p (X) (1− p (X))

"

ATT = E

!
(D − p (X))Y
(1− p (X))

"
/Pr (D = 1)

ATUT = E

!
(D − p (X))Y

p (X)

"
/Pr (D = 0)

The econometric procedure is to first estimate the propensity for treatment or
propensity score, p (X), via some flexible model (e.g., nonparametric regression;
see chapter 6), then ATE, ATT, and ATUT are consistently estimated via sample
analogs to the above.

9.5.1 ATE and propensity score

ATE = E
h
(D−p(X))Y
p(X)(1−p(X))

i
is identified as follows. Observed outcome is

Y = DY1 + (1−D)Y0

Substitution for Y and evaluation of the conditional expectation produces

E [(D − p (X))Y | X]
= E [DDY1 +D (1−D)Y0 − p (X)DY1 − p (X) (1−D)Y0 | X]
= E [DY1 + 0− p (X)DY1 − p (X) (1−D)Y0 | X]

Lettingmj (X) ≡ E [Yj | X] and recognizing

p (X) ≡ Pr (D = 1 | X)
= E [D | X]

gives

E [DY1 − p (X)DY1 − p (X) (1−D)Y0 | X]
= p (X)m1 (X)− p2 (X)m1 (X)− p (X) (1− p (X))m0 (X)

= p (X) (1− p (X)) (m1 (X)−m0 (X))
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This leads to the conditional average treatment effect

E

!
p (X) (1− p (X)) (m1 (X)−m0 (X))

p (X) (1− p (X))
| X
"

= m1 (X)−m0 (X)

= E [Y1 − Y0 | X]

The final connection to the estimand is made by iterated expectations,

ATE = E [Y1 − Y0]
= EX [E [Y1 − Y0 | X]]

9.5.2 ATT, ATUT, and propensity score
Similar logic identifies the estimand for the average treatment effect on the treated

ATT = E

!
(D − p (X))Y
(1− p (X))

"
/Pr (D = 1)

Utilize

E [(D − p (X))Y | X] = p (X) (1− p (X)) (m1 (X)−m0 (X))

from the propensity score identification of ATE. Eliminating (1− p (X)) and
rewriting gives

p (X) (1− p (X)) (m1 (X)−m0 (X))

(1− p (X))
= p (X) (m1 (X)−m0 (X))

= Pr (D = 1 | X) (E [Y1 | X]− E [Y0 | X])

Conditional mean independence implies

Pr (D = 1 | X) (E [Y1 | X]− E [Y0 | X])
= Pr (D = 1 | X) (E [Y1 | D = 1, X]− E [Y0 | D = 1, X])

= Pr (D = 1 | X)E [Y1 − Y0 | D = 1, X]

Then, by iterated expectations, we have

EX [Pr (D = 1 | X)E [Y1 − Y0 | D = 1, X]]

= Pr (D = 1)E [Y1 − Y0 | D = 1]

Putting it all together produces the estimand

ATT = EX

!
(D − p (X))Y
(1− p (X))

"
/Pr (D = 1)

= E [Y1 − Y0 | D = 1]
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For the average treatment effect on the untreated estimand

ATUT = E

!
(D − p (X))Y

p (X)

"
/Pr (D = 0)

identification is analogous to that for ATT. Eliminating p (X) from

E [(D − p (X))Y | X] = p (X) (1− p (X)) (m1 (X)−m0 (X))

and rewriting gives

p (X) (1− p (X)) (m1 (X)−m0 (X))

p (X)

= (1− p (X)) (m1 (X)−m0 (X))

= Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])

Conditional mean independence implies

Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])
= Pr (D = 0 | X) (E [Y1 | D = 0, X]− E [Y0 | D = 0, X])

= Pr (D = 0 | X)E [Y1 − Y0 | D = 0, X]

Iterated expectations yields

EX [Pr (D = 0 | X)E [Y1 − Y0 | D = 0, X]]

= Pr (D = 0)E [Y1 − Y0 | D = 0]

Putting everything together produces the estimand

ATUT = E

!
(D − p (X))Y

p (X)

"
/Pr (D = 0)

= E [Y1 − Y0 | D = 0]

Finally, the average treatment effects are connected as follows.

ATE = Pr (D = 1)ATT + Pr (D = 0)ATUT

= Pr (D = 1)E

!
(D − p (X))Y
(1− p (X))

"
/Pr (D = 1)

+Pr (D = 0)E

!
(D − p (X))Y

p (X)

"
/Pr (D = 0)

= E

!
(D − p (X))Y
(1− p (X))

"
+ E

!
(D − p (X))Y

p (X)

"

= EX [Pr (D = 1 | X) (E [Y1 | X]− E [Y0 | X])]
+EX [Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])]

= Pr (D = 1)E [Y1 − Y0] + Pr (D = 0)E [Y1 − Y0]
= E [Y1 − Y0]



9.5 Propensity score approaches 15

For the average treatment effect on the untreated estimand

ATUT = E

!
(D − p (X))Y

p (X)

"
/Pr (D = 0)

identification is analogous to that for ATT. Eliminating p (X) from

E [(D − p (X))Y | X] = p (X) (1− p (X)) (m1 (X)−m0 (X))

and rewriting gives

p (X) (1− p (X)) (m1 (X)−m0 (X))

p (X)

= (1− p (X)) (m1 (X)−m0 (X))

= Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])

Conditional mean independence implies

Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])
= Pr (D = 0 | X) (E [Y1 | D = 0, X]− E [Y0 | D = 0, X])

= Pr (D = 0 | X)E [Y1 − Y0 | D = 0, X]

Iterated expectations yields

EX [Pr (D = 0 | X)E [Y1 − Y0 | D = 0, X]]

= Pr (D = 0)E [Y1 − Y0 | D = 0]

Putting everything together produces the estimand

ATUT = E

!
(D − p (X))Y

p (X)

"
/Pr (D = 0)

= E [Y1 − Y0 | D = 0]

Finally, the average treatment effects are connected as follows.

ATE = Pr (D = 1)ATT + Pr (D = 0)ATUT

= Pr (D = 1)E

!
(D − p (X))Y
(1− p (X))

"
/Pr (D = 1)

+Pr (D = 0)E

!
(D − p (X))Y

p (X)

"
/Pr (D = 0)

= E

!
(D − p (X))Y
(1− p (X))

"
+ E

!
(D − p (X))Y

p (X)

"

= EX [Pr (D = 1 | X) (E [Y1 | X]− E [Y0 | X])]
+EX [Pr (D = 0 | X) (E [Y1 | X]− E [Y0 | X])]

= Pr (D = 1)E [Y1 − Y0] + Pr (D = 0)E [Y1 − Y0]
= E [Y1 − Y0]


