9.5 Propensity score approaches

Suppose the data are conditionally mean independent
E[Y:| X,D] = E[Y; | X]
EYy | X,D]=E[Y, | X]

so treatment 1s ignorable,and common X support leads to nondegenerate propen-

sity scores
O0<p(X)=Pr(D=1|X)<1forall X

then average treatment effect estimands are
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The econometric procedure is to first estimate the propensity for treatment or
propensity score, p (X ), via some flexible model (e.g., nonparametric regression;
see chapter 6), then ATE, ATT, and ATUT are consistently estimated via sample
analogs to the above.



9.5.1 ATE and propensity score

ATE = F pgg)_(zi(_);)(%)} 1s 1dentified as follows. Observed outcome 1s

Y =DY:+(1—-D)Y,
Substitution for Y and evaluation of the conditional expectation produces
E[D-p(X))Y | X]
= FEDDY1+D(1-D)Yy—p(X)DY; —p(X)(1 —-—D)Yy | X]
= EDY14+0—-p(X)DY; —p(X)(1—-D)Yy | X]

Letting m; (X) = F'|Y; | X] and recognizing
p(X) = Pr(D=1]|X)
= F|D|X]
gives
E[DY: —p(X)DY1 —p(X)(1-D)Yy | X]
= p(X)m (X) —p* (X)m1 (X) —p(X) (1 = p (X)) mo (X)
= p(X) (1 =p(X))(my (X) —mp (X))



This leads to the conditional average treatment effect

P (X) (1 —p (X)) (m (X) —mg (X))

= p(X) (1 —p (X))

X

T (X) — TN (X)

EY1 —Yy | X]

The final connection to the estimand 1s made by iterated expectations,

ATE = E[Y;-Y

= Ex|[EY1—Yy | X]



9.5.2 ATT, ATUT, and propensity score

Similar logic identifies the estimand for the average treatment effect on the treated

(D—-p(X))Y
(1-p(X))

ATT_E[ ]/Pr(D_l)

Utilize
E[(D-p(X)Y | X]=p(X) (1 -p(X)) (m1 (X) —mg (X))

from the propensity score identification of ATE. Eliminating (1 — p (X)) and
rewriting gives

= p(X) (ma (X) —m (X
— Pr(D=1]|X)(EYs | X] - E[Y | X))

Conditional mean independence implies
Pr(D=1|X)(EVi | X] - E[¥y | X))

- Pr(D=1|X)(E[Yi|D=1,X]|-E[Yy|D=1,X]
= Pr(D=1|X)E[Y,-Yy|D=1X]

Then, by iterated expectations, we have

ExPr(D=1|X)E[Y; -Yy|D=1,X]
= Pr(D=1)E[Y;-Yy|D=1]

Putting it all together produces the estimand

(D—-p(X))Y

(1-p(X))
= EYi-Yy|D=1]

ATT = EX[ ]/Pr(D_l)



For the average treatment effect on the untreated estimand

(D-p(X))Y
p(X)

identification is analogous to that for ATT. Eliminating p (X) from

ATUT:E[ ]/Pr(D:O)

E[D-p(X))Y | X]=p(X) ([ =p(X))(mi (X) = mg (X))
and rewriting gives
p(X) (A —p (X)) (m1 (X) —my (X))
p(X)

= (1= p(X)) (ma (X) — mp (X))
— Pr(D=0|X)(E[Y: | X] - E[Y | X))

Conditional mean independence implies
Pr(D=0|X)(EM|X]-E[Y|X])
= Pr(D=0|X)(EFY1| D=0, X]—-F[Yy| D=0,X])
= Pr(D=0|X)EY1—-Yy|D=0,X]

Iterated expectations yields
Ex[Pr(D=0|X)E[Y1 —Yy| D =0,X]]
= Pr(D=0)EY1 Yy | D =0]
Putting everything together produces the estimand

(D-p(X))Y _

= EY1-Y,| D=0

ATUT = E[



Finally, the average treatment effects are connected as follows.

ATE = Pr(D=1)ATT +Pr(D =0)ATUT
(D-p(X))Y
 (1-p(X)) |
(D-p(X))Y
- p(X)
(D-p(X))Y IE'(D—p(X))Y'
 (1-p(X)) - p(X)
= Ex[Pr(D=1|X)(F[Y;|X]|-FE[Yy | X])]

+Ex [Pr(D=0|X)(E[Y; | X]-FE|Yy | X])]
= Pr(D=1E[Y; — Y| +Pr(D=0)E[Y; — Y]
= E[Y; - Y]

= Pr(D=1)E

/Pr(D = 1)

+Pr(D=0)E /Pr(D = 0)

= b




