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This paper proposes entropy balancing, a data preprocessing method to achieve covariate balance in
observational studies with binary treatments. Entropy balancing relies on a maximum entropy reweighting
scheme that calibrates unit weights so that the reweighted treatment and control group satisfy a potentially
large set of prespecified balance conditions that incorporate information about known sample moments.
Entropy balancing thereby exactly adjusts inequalities in representation with respect to the first, second,
and possibly higher moments of the covariate distributions. These balance improvements can reduce
model dependence for the subsequent estimation of treatment effects. The method assures that balance
improves on all covariate moments included in the reweighting. It also obviates the need for continual
balance checking and iterative searching over propensity score models that may stochastically balance
the covariate moments. We demonstrate the use of entropy balancing with Monte Carlo simulations and
empirical applications.

1 Introduction

Matching and propensity score methods are nowadays often used in observational studies in political
science and other disciplines to preprocess the data prior to the estimation of binary treatment effects
under the assumption of selection on observables (Ho et al. 2007; Sekhon 2009). The preprocessing step
involves reweighting or simply discarding units to improve the covariate balance between the treatment
and control group such that the treatment variable becomes closer to being independent of the background
characteristics. This reduces model dependence for the subsequent estimation of treatment effects with
regression or other standard estimators in the preprocessed data (Abadie and Imbens 2007; Ho et al.
2007).
Although preprocessing methods are gaining ground in applied work, there exists no scholarly con-

sensus in the methodological literature about how the preprocessing step is best conducted. One impor-
tant concern is that many commonly used preprocessing approaches do not directly focus on the goal of
producing covariate balance. In the most widely used practice, researchers “manually” iterate between
propensity score modeling, matching, and balance checking until they attain a satisfactory balancing solu-
tion. The hope is that an accurately estimated propensity score will stochastically balance the covariates,
but this requires finding the correct model specification and often fairly large samples. As a result of this
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26 Jens Hainmueller

intricate search process, low balance levels prevail in many studies and the user experience can be tedious.
Even worse, matching may counteract bias reduction for the subsequent treatment effect estimation when
improving balance on some covariates decreases balance on other covariates (see Diamond and Sekhon
2006, Ho et al. 2007, and Iacus, King, and Porro 2009 for similar critiques).
In this study, we propose entropy balancing as a preprocessing technique for researchers to achieve

covariate balance in observational studies with a binary treatment. In contrast to most other preprocessing
methods, entropy balancing involves a reweighting scheme that directly incorporates covariate balance
into the weight function that is applied to the sample units. The researcher begins by imposing a poten-
tially large set of balance constraints, which imply that the covariate distributions of the treatment and
control group in the preprocessed data match exactly on all prespecified moments. After the researcher
has prespecified her desired level of covariate balance, entropy balancing searches for the set of weights
that satisfies the balance constraints but remains as close as possible (in an entropy sense) to a set of
uniform base weights to retain information. This recalibration of the unit weights effectively adjusts for
systematic and random inequalities in representation.
This procedure has several attractive features. Most importantly, entropy balancing allows the researcher

to obtain a high degree of covariate balance by imposing a potentially large set of balance constraints that
involve the first, second, and possibly higher moments of the covariate distributions as well as interac-
tions. Entropy balancing always (at least weakly) improves upon the balance that can be obtained by
conventional preprocessing adjustments with respect to the specified balance constraints. This is because
the reweighting scheme directly incorporates the researcher’s knowledge about the known sample mo-
ments and balances them exactly in finite samples (analogous to similar reweighting procedures in survey
research that improve inferences about unknown population features by adjusting the sample to some
known population features). This obviates the need for balance checking in the conventional sense, at
least for the characteristics that are included in the specified balance constraints.
A second advantage of entropy balancing is that it retains valuable information in the preprocessed

data by allowing the unit weights to vary smoothly across units. In contrast to other preprocessing meth-
ods such as nearest neighbor matching where units are either discarded or matched (weights of zero or
one)1 , the reweighting scheme in entropy balancing is more flexible: It reweights units appropriately to
achieve balance, but at the same time keeps the weights as close as possible to the base weights to pre-
vent loss of information and thereby retains efficiency for the subsequent analysis. In this regard, entropy
balancing provides a generalization of the propensity score weighting approach (Hirano, Imbens, and
Ridder 2003) where the researcher first estimates the propensity score weights with a logistic regression
and then computes balance checks to see if the estimated weights equalize the covariate distributions. In
practice, such estimated propensity score weights can fail to balance the covariate moments in finite sam-
ples. Entropy balancing in contrast directly adjusts the weights to the known sample moments and thereby
obviates the need for continual balance checking and iterative searching over propensity score models that
may stochastically balance the prespecified covariates.
A third advantage of entropy balancing is that the approach is fairly versatile. The weights that result

from entropy balancing can be passed to almost any standard estimator for the subsequent estimation of
treatment effects. This may include a simple (weighted) difference in means, a weighted least squares re-
gression of the outcome on the treatment variable and possibly additional covariates that are not included
as part of the reweighting, or whatever other standard statistical model the researcher would have ap-
plied in the absence of any preprocessing. Since entropy balancing orthogonalizes the treatment indicator
with respect to the covariates that are included in the balance constraints, the resulting estimates in the
preprocessed data can exhibit lower model dependency compared to estimates from the unadjusted data.
Lastly, entropy balancing is also computationally attractive since the optimization problem to find the

unit weights is well behaved and globally convex; the algorithm attains the weighting solution within
seconds even for moderately large data sets that may be encountered in political science applications
(assuming that the balance constraints are feasible).
We show three Monte Carlo simulations that demonstrate the desirable finite sample properties of en-

tropy balancing in several benchmark settings where the method improves in root mean squared error

1In practice, the weights may sometimes differ from zero or one in the case of ties or for controls units that are matched several
times when matching with replacement.
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Entropy Balancing for Causal Effects 27

(MSE) upon a variety of widely used preprocessing adjustments (including Mahalanobis distance match-
ing, genetic matching, and matching or weighting on a logistic propensity score). We also illustrate the use
of entropy balancing in two empirical settings including a validation exercise in the LaLonde (1986) data
set and a reanalysis of the data used by Ladd and Lenz (2009) to examine the effect of newspaper endorse-
ments on vote choice in the 1997 British general election. Two additional applications that consider the
impact of media bias on voting (DellaVigna and Kaplan 2007) and the financial returns to political office
(Eggers and Hainmueller 2009) are provided in a web appendix.2 Entropy balancing yields high levels of
covariate balance (as measured by standard metrics) in all four data sets and reduces model dependency
for the subsequent estimation of the treatment effects.
Although entropy balancing provides a reweighting scheme for the context of causal inference in ob-

servational studies with a binary treatment (where the goal is to equate the covariate distributions across
the treatment and the control group), important links exist between the reweighting scheme employed
in entropy balancing and various strands of literatures in econometrics and statistics. In particular, the
method heavily borrows from the survey literature that contains several reweighting schemes which are
used to adjust sampling weights so that sample totals match population totals known from auxiliary data
(see Särndal and Lundström 2006 for a recent review and earlier work by Deming and Stephan 1940, Ire-
land and Kullback 1968, Oh and Scheuren 1978, and Zaslavsky 1988 who proposed a similar log-linear
reweighting scheme to adjust for undercount in census data). More broadly, similar reweighting schemes
are also widely used in the literature on methods of moments estimation, empirical likelihood, exponen-
tial tilting, and missing data (Hansen 1982; Qin and Lawless 1994; Kitamura and Stutzer 1997; Imbens
1997; Imbens, Spady, and Johnson 1998; Hellerstein and Imbens 1999; Owen 2001; Schennach 2007;
Qin, Zhang, and Leung 2009; Graham, Pinto, and Egel 2010).

2 Observational Studies with Binary Treatments

2.1 Framework

We consider a random sample of n = n1+n0 units drawn from a population of size N = N1+ N0, where
n ! N and N1 and N0 refer to the size of the target population of treated units and the source population
of control units, respectively. Each unit i is exposed to a binary treatment Di ∈ {1, 0}; Di = 1 if unit i
received the active treatment and Di = 0 if unit i received the control treatment. In the sample, we have
n1 treated units and n0 control units. Let X be a matrix of J exogenous pretreatment characteristics; entry
Xi j refers to the value of the j th characteristic for unit i so that Xi = [Xi1, Xi2, . . . , Xi J ] is the row
vector of characteristics for unit i and X j is the column vector that captures the j th characteristic across
units accordingly. Let fX |D=1 and fX |D=0 denote the densities of these covariates in the treatment and
control population, respectively. Finally, let Yi (Di ) denote the pair of potential outcomes that individual
i attains if it is exposed to the active treatment or the control treatment. Observed outcomes for each
individual are realized as Yi = Yi (1) Di +(1−Di )Yi (0) so that we never observe both potential outcomes
simultaneously but the triple (Di , Yi , Xi ).
The treatment effect for each unit is defined as τi = Yi (1) − Yi (0). Many causal quantities of interest

are defined as functions of τi for different subsets of units.3 Most common are the sample (SATE) and
population (PATE) average treatment effects given by SATE = n−1∑n

i τi and PATE = N−1∑N
i τi and

the sample (SATT) and population (PATT) average treatment effect on the treated given by SATT =
n−1
1
∑n

{i |D=1} τi and PATT = N−1
1
∑N

{i |D=1} τi . Notice that E[SATE] = PATE = E[Y (1) − Y (0)] and
similarly E[SATT] = PATT = E[Y (1) − Y (0)|D = 1] since we consider random samples. Following the
preprocessing literature, we focus on the PATT as our quantity of interest. The entropy balancing methods
described below are also applicable to estimate the PATE and other commonly used quantities of interest
analogously.4
The PATT is given by τ = E[Y (1)|D = 1] − E[Y (0)|D = 1]. The first expectation is easily es-

timable from the treatment group data. The second expectation, E[Y (0)|D = 1], is counterfactual and

2This web appendix is available on the authors webpage at http://www.mit.edu/ jhainm/research.htm.
3Note that some other causal quantities of interest are not defined in this way (e.g., causal mediation or necessary causation).
4For example, the treatment group can be reweighted to match the control group. An important caveat is that it may be more difficult
to estimate the PATE or SATE due to limited overlap in the covariate distributions.
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28 Jens Hainmueller

thus unobserved even in the target population. The only information available about Y (0) is in the sam-
ple from the source population not exposed to the treatment (the control group). In experimental studies,
where treatment assignment is forced to be independent of the potential outcomes, Y (1), Y (0) ⊥ D, we
can simply use E[Y (0)|D = 0] as our estimate of E[Y (0)|D = 1]. In observational studies, however,
selection into treatment usually renders the latter two quantities unequal. The conventional solution to this
problem is to assume ignorable treatment assignment and overlap (Rosenbaum and Rubin 1983), which
implies that Y (0) ⊥ D|X and that Pr(D = 1|X = x) < 1 for all x in the support of fX |D=1. Therefore,
conditional on all confounding covariates X , the potential outcomes are stochastically independent of D
and the PATT is identified as

τ = E[Y |D = 1]−
∫
E[Y |X = x, D = 0] fX |D=1(x)dx,

where the integral is taken over the support of X in the source population. Notice that the last term in
this expression is equal to the covariate adjusted mean, that is, the estimated mean of Y in the source
population if its covariates were distributed as in the target population (Frölich 2007).
To see why covariate balance is key for the estimation of the PATT, notice that the potential outcomes

for the treated units can be written as Yi (Di ) = l(Xi ), where l() is an unknown function. For simplicity,
suppose that the treatment effect is estimated by the difference in means. The treatment effect can then be
decomposed into the estimated treatment effect and the average estimation error:

PATT = P̂ATT+ N−1
1
∑

{i |D=1}
(l0(X{i |D=0}) − l0(X{i |D=1})),

where l0(X{i |D=0}) − l0(X{i |D=1}) = Ŷi (0) − Yi (0) is the unit level treatment error (see Iacus, King, and
Porro 2009). The estimation error has two components: (1) the unknown function l(), which determines
the importance of the variables, and (2) the imbalance, which is defined as the difference between the
empirical covariate distributions of the treatment fX |D=1 and the control group fX |D=0.
Data preprocessing procedures such as matching and related approaches involve reweighting or simply

discarding units to reduce the imbalance in the covariate distributions to decrease the error and model de-
pendency for the subsequent estimation of the treatment effect. As Ho et al. (2007, 209) put it, “the goal of
matching is to achieve the best balance for a large number of observations, using any method of matching
that is a function of X , so long as we do not consult Y .”5 A variety of such preprocessing procedures have
been proposed (Imbens 2004; Rubin 2006; Ho et al. 2007; Sekhon 2009). If X is low dimensional, the
units can simply be matched exactly on the covariates. However, selection on observables is often only
plausible after conditioning on many confounders and if X is fairly high dimensional then the curse of di-
mensionality can render exact matching infeasible. However, as shown by Rosenbaum and Rubin (1983),
the preprocessing problem may be reduced to a single dimension given that the counterfactual mean can
also be identified as

E[Y (0)|D = 1] =
∫
E[Y |p(X) = ρ, D = 0] f p|D=1(ρ)dρ

where f p|D=1 is the distribution of the propensity score p(x) = Pr(D = 1|X = x) in the target pop-
ulation. This follows from their result that under selection on observables Y (0) ⊥ D|X is equal to

5Notice that there is some debate about how to assess covariate balance in practice. Theoretically, we would like the two empirical
distributions to be equal so that the density in the preprocessed control group f ∗X |D=0 mirrors the density in the treatment group
fX |D=1. Comparing the joint empirical distributions of all covariates X is difficult when X is high dimensional and therefore
lower dimensional balance metrics are commonly used (but see Iacus, King, and Porro 2009 who propose a multidimensional
metric). Opinions differ on what metric is most appropriate. The most commonly used metric is the standardized difference in
means (Rosenbaum and Rubin 1983) and t-tests for differences in means. Diamond and Sekhon (2006) argue that paired t-test
and bootstrapped Kolmogorov–Smirnov (KS) tests should be used instead and that commonly used p value cutoffs such as .1 or
.05 are too lenient to obtain reliable causal inferences. Rubin (2006) also considers variance ratios and tests for residuals that
are orthogonalized to the propensity score. Imai, King, and Stuart (2008) criticize the use of t-tests and stopping rules and argue
that all balance measures should be maximized without limit. They advocate QQ plot summary statistics as better alternatives
than t-tests or KS tests. Sekhon (2006) comes to the opposite conclusion. Hansen and Bowers (2008) advocate the use of Fisher’s
randomization inference for balance checking.
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Entropy Balancing for Causal Effects 29

Y (0) ⊥ D|p(x) and this implies that balance on all covariates can be achieved by matching or weighting
on the propensity score alone.
The procedure of particular interest here involves weighting on the propensity score as suggested by

Hirano and Imbens (2001) and Hirano, Imbens, and Ridder (2003). In this method, the researcher first
estimates a propensity score (usually by a logit or probit regression of the treatment indicator on the
covariates) and then the units are weighted by the inverse of this estimated score for the subsequent
analysis. For example, the counterfactual mean in the preprocessed data may be estimated using

̂E[Y (0)|D = 1] =
∑

{i |D=0} Yi di∑
{i |D=0} di

,

where every control unit receives a weight given by di = p̂(xi )
1− p̂(xi ) . If the assignment probabilities are cor-

rectly estimated by the propensity score model, then the control observations will form a balanced sample
with the treated observations in the reweighted data.6 The idea is similar to the classic Horvitz–Thompson
adjustment used in the survey literature where units are weighted by the inverse of the inclusion probabil-
ities that result from the sampling design (Horvitz and Thompson 1952). This similarity between survey
sampling weights and propensity score weights provides the entry point for the reweighting methods
proposed below.

2.2 Achieving Balance with Matching and Propensity Score Methods

In principle, propensity score weighting has some attractive theoretical features compared to other adjust-
ment techniques such as pair matching or propensity score matching. Hirano, Imbens, and Ridder (2003)
show that weighting on the estimated propensity score achieves the semiparametric efficiency bound for
the estimation of average causal effects as derived in Hahn (1998). This result requires sufficiently large
samples and a propensity score that is sufficiently flexibly estimated to approximate the true propensity
score.
However, in practice, this procedure suffers from the same drawbacks that plague all propensity score

methods: the true propensity score is valuable because it is a “balancing score” that stochastically equal-
izes the distributions of all covariates between the two groups, but the true score is usually unknown and
often difficult to estimate accurately enough to actually produce the desired covariate balance.7 Several
studies have demonstrated that misspecified propensity scores can lead to substantial bias for the subse-
quent estimation of treatment effects (Drake 1993; Smith and Todd 2001; Diamond and Sekhon 2006)
because misspecified propensity scores can fail to balance the covariates distributions.
When estimating propensity scores in practice it is often difficult to jointly balance all covariates, es-

pecially in high-dimensional data with possibly complex assignment mechanisms. Applied researchers
almost always rely on simple logit or probit models to estimate the propensity score and try to avoid
misspecification by “manually” iterating between matching or weighting, propensity score modeling, and
balance checking until a satisfactory balancing solution is reached. In other words, the resulting balance
provides the appropriate yardstick to assess the accuracy of a propensity score model. Some researchers
have criticized this cyclical process as the “propensity score tautology” (Imai, King, and Stuart 2008).
The iterative process of tweaking the propensity score model and balance checking can be tedious and
frequently results in low balance levels. Even worse, as Diamond and Sekhon (2006, 8) observe, a “sig-
nificant shortcoming of common matching methods such as Mahalanobis distance and propensity score
matching is that they may (and in practice, frequently do) make balance worse across measured potential
confounders.” Unless the distributions of the covariates are ellipsoidally symmetric or are mixtures of

6Formally propensity score reweighting exploits the following equalities: E
[
DY
p(x)

]
= E

[
DY (1)
p(x)

]
= E

[
E
[
DY (1)
p(x) |X

]]
=

E
[
p(x)Y (1)
p(x)

]
= E[Y (1)] which uses the ignorability assumption in the second to last equality (Hirano and Imbens 2001; Hi-

rano, Imbens, and Ridder 2003).
7Hirano, Imbens, and Ridder (2003) derive their result for a case where the propensity score is estimated using a nonparametric
sieve estimator that approximates the true propensity score by a power series in all variables. Asymptotically, this series will
converge to the true propensity score function if the powers increase with the sample size, but no results exist about the finite
sample properties of this estimator. By the authors’ own admission, this approach is computationally not very attractive.
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30 Jens Hainmueller

proportional ellipsoidally symmetric distributions, there is no guarantee that the matching techniques will
be equally percent bias reducing (EPBR). Therefore, the bias of some linear functions of X may be in-
creased, whereas all univariate covariate means are closer after the preprocessing.8 Also notice that even
with a good propensity score model, imbalances often remain because stochastic balancing occurs only
asymptotically. Chance imbalances may remain in finite samples and in these cases one may still improve
the balance by enforcing balance constraints on the specified moments.
One way to improve the search for a better balancing score is to replace the logistic regression with

a better estimation techniques for the assignment mechanism such as boosted regression (McCaffrey,
Ridgeway, and Morral 2004) or kernel regression (Frölich 2007). Entropy balancing takes a different
approach and directly focuses on covariate balance.

3 Entropy Balancing

Entropy balancing is a preprocessing procedure that allows researchers to create balanced samples for
the subsequent estimation of treatment effects. The preprocessing consists of a reweighting scheme that
assigns a scalar weight to each sample unit such that the reweighted groups satisfy a set of balance con-
straints that are imposed on the sample moments of the covariate distributions. The balance constraints
ensure that the reweighted groups match exactly on the specified moments. The weights that result from
entropy balancing can be passed to any standard model that the researcher may want to use to model the
outcomes in the reweighted data—the subsequent effect analysis proceeds just like with survey sampling
weights or weights that are estimated from a logistic propensity score covariate model. The preprocessing
step can reduce the model dependence for the subsequent analysis since entropy balancing orthogonalizes
the treatment indicator with respect to the covariate moments that are included in the reweighting.

3.1 Entropy Balancing Scheme

For convenience, we motivate entropy balancing for the simplest scenario where the researcher’s goal is to
reweight the control group to match the moments of the treatment group in order to subsequently estimate
the PATT τ = E[Y (1)|D = 1] − E[Y (0)|D = 1] using the difference in mean outcomes between the
treatment group and the reweighted control group. In this case, the counterfactual mean may be estimated
by

̂E[Y (0)|D = 1] =
∑

{i |D=0} Yi wi∑
{i |D=0} wi

, (1)

where wi is a weight chosen for each control unit. The weights are chosen by the following reweighting
scheme:

min
wi

H(w) =
∑

{i |D=0}
h(wi ) (2)

subject to balance and normalizing constraints
∑

{i |D=0}
wi cri (Xi ) = mr with r ∈ 1, . . . , R and (3)

∑

{i |D=0}
wi = 1 and (4)

wi " 0 for all i such that D = 0, (5)

where h(·) is a distance metric and cri (Xi ) = mr describes a set of R balance constraints imposed on the
covariate moments of the reweighted control group as discussed below.

8Ellipsoidal symmetry fails if X includes binary, categorical, and or skewed continuous variables.
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Entropy Balancing for Causal Effects 31

The reweighting scheme consists of three features. First, the loss function h(·) is a distance metric
chosen from the general class of empirical minimum discrepancy estimators defined by the Cressie–
Read (CR) divergence (Read and Cressie 1988). We prefer to use the directed Kullback (1959) entropy
divergence defined by h(wi ) = wi log(wi/qi ) with estimated weight wi and base weight qi .9 The loss
function measures the distance between the distribution of estimated control weights defined by the vector
W = [wi , . . . , wn0 ]′ and the distribution of the base weights specified by the vector Q = [qi , . . . , qn0 ]′
with qi " 0 for all i such that D = 0 and

∑
{i |D=0} qi = 1. Notice that the loss function is nonnegative

and decreases the closer W is to Q; the loss equals zero if W = Q. We usually use the set of uniform
weights with qi = 1/n0 as our base weights.
The second feature of the scheme involves the balance constraints defined in equation (3). They are im-

posed by the researcher to equalize the moments of the covariate distributions between the treatment and
the reweighted control group (we assume that the relevant moments exist). A typical balance constraint
is formulated with mr containing the r th order moment of a given variable X j from the target population
(i.e., the treatment group), whereas the moment functions are specified for the source population (i.e., the
control group) as cri (Xi j ) = Xri j or cri (Xi j ) = (Xi j − µ j )r with mean µ j .
The third feature are the two normalization constraints in equations (4–5). The first condition implies

that the weights sum to the normalization constant of one. This choice is arbitrary and other constants can
be used by the researcher.10 The second condition implies a nonnegativity constraint because the distance
metric is not defined for negative weight values. Below we see that this constraint is not binding and can
be safely ignored.
The entropy balancing scheme can be understood as a generalization of the conventional propensity

score weighting approach where the researcher first estimates the unit weights with a logistic regression
and then computes balance checks to see if the estimated weights indeed equalize the covariate distri-
butions. Entropy balancing tackles the adjustment problem from the reverse and estimates the weights
directly from the imposed balance constraints. Instead of hoping that an accurately estimated logistic
score will balance the covariates stochastically, the researcher directly exploits her knowledge about
the sample moments and starts by prespecifying a potentially large set of balance constraints that im-
ply that the sample moments in the reweighted control group exactly match the corresponding moments
in the treatment group. The entropy balancing scheme then searches for a set of weights that are ad-
justed far enough to satisfy the balance constraints, but at the same time kept as close as possible (in
an entropy sense) to the set of uniform base weights in order to retain efficiency for the subsequent
analysis. This procedure has the key advantage that it directly adjusts the unit weights to the known sam-
ple moments such that exact moment matching is obtained in finite samples. Balance checking in the
conventional sense is therefore no longer necessary, at least for the moments included in the balance
constraints.
In the case of a large randomized experiment where the distributions are (asymptotically) balanced

before the reweighting, the specified balance constraints in equation (3) are nonbinding (assuming no
chance imbalances) and the counterfactual mean is simply estimated as a weighted average of the out-
comes with every control unit weighted equally. The higher the level of imbalance in the covariate dis-
tributions, the further the weights have to be adjusted to meet the balance constraints. The number of
moment conditions may vary depending on the dimensionality of the covariate space, the shapes of the
covariate densities in the two groups, the sample sizes, and the desired balance level. At a minimum, the
researcher would want to adjust at least the first moments of the marginal distributions of all confounders
in X , but variances can be similarly adjusted (see the empirical examples below). In many empirical cases,

9The CR divergence family is described by h(w) ≡ CR(γ ) = wγ+1−1
γ (γ+1) , where γ indexes the family and limits are defined by

continuity so that lim
γ→0

CR(γ ) = lim
γ→0

wγ+1 − 1
γ

= lim
γ→0

w log(w) and lim
γ→−1

CR(γ ) = lim
γ→−1

wγ+1 − 1
γ

= lim
γ→−1

− log(wi )

where the last equalities follow from l’Hospital respectively. Notice that h(w) = w log(w) represents the Shannon entropy metric
which is (up to a constant) equivalent to the Kullback entropy divergence when uniformweights qi are used for the null distribution.
Another choice with good properties is γ = −1 which results in an empirical likelihood (EL) scheme. We prefer the entropy loss
because it is more robust under misspecification (Imbens, Spady, and Johnson 1998; Schennach 2007) and constrains the weights
to be non-negative.

10For example, the sum of the control weights could be normalized to equal the number of treated units; that is identical to setting
the normalization constraint to n1.
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32 Jens Hainmueller

we would expect the bulk of the confounding to depend on the first and second moments. If, however, the
researcher is concerned about dependencies in higher moments, these can be similarly adjusted by in-
cluding higher moments in the condition vector. Interactions can be similarly included. The number of
moment constraints can be increased at a constant rate with a growing sample size.
Notice that this reweighting scheme is analogous to reweighting adjustments that are sometimes used

in the survey literature to correct sampling weights for bias due to nonresponse, frame undercoverage,
response biases, or integrate auxiliary information to improve precision of estimates. The idea is that by
introducing auxiliary information about known characteristics of the target population (e.g., population
totals known from the census), one can improve estimates about unknown characteristics of the target pop-
ulation by adjusting the sampling design weights so that the sample moments match (at least) the known
population moments. These adjustments include a wide variety of methods such as poststratification, rak-
ing, and calibration estimators (see, e.g., Deming and Stephan 1940, Oh and Scheuren 1978, or Särndal
and Lundström 2006 for a recent review). Zaslavsky (1988) proposes a similar log-linear reweighting
scheme with an entropy divergence to adjust for undercount in census data. Ireland and Kullback (1968)
develop a minimum discrimination estimator that fits the cell probabilities of a (multidimensional) contin-
gency table based on fixed marginal probabilities by minimizing the directed entropy divergence (starting
from equal weights). They show that minimizing the entropy from uniform base weights provides an
estimator that is consistent as well as asymptotically normal and efficient.
In contrast to most applications of reweighting in a survey context, where the vector of auxiliary in-

formation is commonly limited to a few known totals, in the case of entropy balancing, the data from the
treatment group allows us to create a very large set of moment conditions. This can force the density of X
in the reweighted control group to look very close to that in the treatment group. Moreover, by including
balance constraints for the moments of all confounders, the researcher can rule out the possibility that
balance decreases on any of the specified moments. This is an important advantage over conventional
propensity score weighting where the weights are not directly adjusted to the know sample moments.

3.2 Implementation

To fit the entropy balancing weights, we need to minimize the loss function H(w) subject to the balance
and normalization constraints given in equations (3–5). Using the Lagrange multiplier, we obtain the
primal optimization problem:

min
W,λ0,Z

L p =
∑

{i |D=0}
wi log(wi/qi ) +

R∑

r=1
λr




∑

{i |D=0}
wi cri (Xi ) − mr





+(λ0 − 1)




∑

{i |D=0}
wi − 1



 , (6)

where Z = {λ1, . . . , λR}′ is a vector or Lagrange multipliers for the balance constraints and λ0 − 1,
the Lagrange multiplier for the normalization constraints. This system of equations is computationally
inconvenient given its dimensionality of n0 + R + 1. However, we can exploit several structural features
that make this problem very susceptible to solution. First, the loss function is (strictly) convex since
∂2h
∂W 2 > 0 for wi " 0, so that every local solution W ∗ is a global solution and any global solution is
unique if the constraints are consistent. Second, as was recognized by Erlander (1977), duality holds and
we can substitute out the constraints.11 The first order condition of ∂L p

∂wi
= 0 yields that the solution for

each weight is attained by

w∗
i = qi exp(−

∑R
r=1 λr cri (Xi ))

∑
{i |D=0} qi exp

(
−∑R

r=1 λr cri (Xi )
) . (7)

11Also see Kapur and Kevsavan (1992) or Mattos and Veiga (2004) for detailed treatments and similar algorithms for entropy
optimization.
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The expression makes clear that the weights are estimated as a log-linear function of the covariates speci-
fied in the moment conditions.12Plugging this expression back into L p eliminates the constraints and leads
to an unrestricted dual problem given by

min
Z

Ld = log




∑

{i |D=0}
qi exp

(

−
R∑

r=1
λr cri (Xi )

)

+
R∑

r=1
λr mr . (8)

The solution to the dual problem Z∗ solves the primal problem and the weights W ∗ can be recovered via
equation (7). This dual problem is much more tractable because it is unconstrained and dimensionality is
reduced to a system of nonlinear equations in the R Lagrange multipliers. Moreover, if a solution exists,
it will be unique since Ld is strictly convex.
We use a Levenberg–Marquardt scheme to find Z∗ for this dual problem. We rewrite the constraints

in matrix form by defining the (R × n0) constraint matrix C = [c1(Xi ), . . . , cR(Xi )]′ and the moment
vector M = [m1, . . . ,mR]′. The balance constraints are given byCW = M , whereC ′ must be full column
rank, otherwise the constraints are not linearly independent and the system has no feasible solution. The
rewritten problem is

min
Z

Ld = log(Q′exp(−C ′Z)) + M ′Z with solution W ∗ = Q · exp(−C ′Z))

Q′exp(−C ′Z)
. (9)

The gradient and Hessian are ∂Ld
∂Z = M − CW and ∂2Ld

∂Z2 = C[D(W ) − WW ′]C ′, where D(W ) is a
n0-dimensional diagonal matrix with W in the diagonal. We exploit this second-order information by
iterating

Znew = Zold − l ∇2
Z L

d−1∇Z Ld , (10)

where l is a scalar that denotes the step length. In each iteration, we either take the full Newton step or
otherwise l is chosen by backtracking in the Newton direction to the optimal step length using line search
that combines a golden section search and successive quadratic approximation. Z0 = (CC ′)−1M provides
a starting guess. This iterative algorithm is globally convergent if the problem is feasible, and the solution
is usually obtained within seconds even in moderately large data sets.

3.3 Alternative Base Weights

Instead of minimizing the distance from uniform weights qi = 1/n0, the entropy balancing adjustment
may be started from alternative base weights. In the survey context, the base weights usually come from
the sampling design and the goal is to adjust the sample to some known features of the target population
while moving the design weights as little as possible (Oh and Scheuren 1978; Zaslavsky 1988; Särndal and
Lundström 2006). In our context, a base weight can be similarly drawn from preexisting sampling weights
or weights that are constructed from a balancing score that is initially estimated with a logistic regression
of the treatment indicator on the covariates. These base weights can provide a first step toward balancing
the covariates, but for various reasons discussed above imbalances may remain on several covariates.
Entropy balancing can then “overhaul” the weights to fix these remaining imbalances for the specified
moments.

3.4 Estimation in the Preprocessed Data

As indicated above, the entropy balancing weights can be easily combined with almost any standard esti-
mator that the researcher may want to use to model the outcome in the preprocessed data. In particular, the
entropy balancing weights are easily passed to regression models that may further address the correlation
between the outcome and covariates in the reweighted data and also provide variance estimates for the
treatment effects (which treat the weights as fixed). Such regression models may include covariates or

12Evidently, the inequality bounds wi ! 0 are inactive and can be safely ignored.
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34 Jens Hainmueller

interactions that are not directly included in the reweighting to remove bias that may arise from remain-
ing differences between the treatment and the reweighted control group. The outcome model may also
increase precision if the (additional) variables in the outcome model account for residual variation in the
outcome of interest (Robins, Rotnitzky, and Zhao 1995; Hirano and Imbens 2001). Notice that because
the entropy balancing weights orthogonalize the treatment variable with respect to the covariates that are
included in the reweighting, adding these covariates to the outcome regression has no effect on the point
estimate of the treatment indicator (see the empirical applications below).

3.5 Entropy Balancing and Other Preprocessing Methods

As described above, entropy balancing may be seen as a generalization of conventional propensity score
weighting approach where the unit weights are directly estimated from the balance constraints. Among
other commonly used preprocessing methods, entropy balancing shares a similarity with genetic matching
as described in Diamond and Sekhon (2006) insofar as it directly focuses on covariate balance. However,
it differs from genetic matching in several important aspects. Genetic matching finds nearest neighbors
based on a generalized distance metric that assigns weights to each covariate included in the matching.
These covariate weights are chosen by a genetic algorithm in order to find a matching that maximizes
covariate balance as measured by the minimum p value across a set of balance tests. In contrast, entropy
balancing directly searches for a set of unit weights that balances the covariate distributions with respect
to the specified moments. This obviates the need for balance checking altogether, at least with respect
to the moments included in the balance constraints. Moreover, by freeing the weights to vary smoothly
across units, entropy balancing also gains efficiency as it dispenses with the weight constraints that require
that a unit is either matched or discarded. Entropy balancing is also computationally less demanding. The
optimization problem in genetic matching is usually very difficult and irregular.
Entropy balancing is also related to coarsened exact matching (CEM) as recently proposed in Iacus,

King, and Porro (2009) insofar as covariate balance is specified before the preprocessing adjustment, but
entropy balancing also differs from CEM in important ways. CEM involves coarsening the covariates
in order to match units exactly on the coarsened scale; treated and control units that cannot be matched
exactly are discarded. Since exact matching is difficult in high-dimensional data, CEM often involves
dropping some treated units (depending on the coarsening) and thereby changes the estimand from the
PATT or SATT to a more local treatment effect for the remaining treated units (see Iacus, King, and
Porro [2009] for reasons about why this can be beneficial). This differs from entropy balancing and other
preprocessing approaches like genetic matching that traditionally do not involve the discarding of treated
units in order to leave the estimand unchanged.13 In principle, entropy balancing can be easily combined
with other matching methods. For example, the researcher could first run CEM to trim the data and then
apply entropy balancing to the remaining units. This may be useful when the researcher is not concerned
about changing the estimand, perhaps because there are a small number of very unusual treated units
that may be discarded to gain overlap. We leave it for further research to more closely investigate such a
combined approach.

3.6 Potential Limitations

For any method, it is important to understand its potential limitations. There are at least three particular
instances when entropy balancing may run into problems. First, no weighting solution exists if the balance
constraints are inconsistent. For example, the researcher cannot specify a constraint which implies that the
control group has a higher fraction of both males and females. This is easily avoided.
A second and more important issue can arise when the balance constraints are consistent, but there

exists no set of positive weights to actually satisfy the constraints. This may occur if a user with limited
data specifies extreme balance constraints that are very far from the control group data (e.g., imagine a
treatment group with only 1% males and a control group with 99% males). This challenge of finding good
matches with limited overlap is shared by all matching methods of course. The user has to be realistic
about how much balance she asks for given the available data and overlap therein. If there simply are not

13There are exceptions to this rule (e.g., when calipers are used).
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enough controls that look anything like the treated units, then the existing data do not contain sufficient
information to reliably infer the counterfactual of interest.
Third, there may be a scenario where a solution exists, but due to limited overlap, the solution involves

an extreme adjustment to the weights of some control units. In particular, if there are only very few “good”
control units that are similar to the treated units then these controls may receive large weights because they
contribute most information about the counterfactual of interest. Large weights increase the variance for
the subsequent analysis and the user may also be uncomfortable with relying too heavily on a small
number of highly weighted controls. A similar problem is shared by many preprocessing methods when
matching with replacement reuses the good controls several times. In these cases, a weight refinement
may be used to trim weights that are considered too large (see below). The researcher should also apply
commonly used model diagnostics to check if the results for the subsequent analysis are possibly sensitive
to some extreme weights. With limited overlap, the results will necessarily be more model dependent.
In general, the severity of these issues depends on the specific application (size of the data set, dimen-

sionality, and degree of overlap). Below, we provide extensive simulations and several empirical appli-
cations that suggest that the method performs well in scenarios that may be typical of problems that are
commonly encountered in political science.

3.7 Weight Refinements

Once a weighting solution is obtained that satisfies the balance constraints, the weights may be further
refined by trimming large weights to lower the variance of the weights and thus the variance for the sub-
sequent analysis. The weight refinement is easily implemented by iteratively calling the search algorithm
described above. In each iteration, the set of solution weights w∗ from the previous call are trimmed from
above and or below at user specified thresholds and passed as the vector of starting weights q for the sub-
sequent call. This augmented search is iterated until the weights meet the weight thresholds. Alteratively,
the refinement can be fully automated by iterating until the variance of the weights can be no further
reduced while still satisfying the balance constraints.

4 Monte Carlo Simulations

In this section, we conduct Monte Carlo experiments in order to evaluate the performance of entropy bal-
ancing in a variety of commonly used benchmark settings.14 We compare the following commonly used
matching and weighting procedures: difference in means (Raw), propensity score matching (PSM), Ma-
halanobis distance matching (MD), genetic matching (GM), combined propensity score and Mahalanobis
distance matching (PSMD), propensity score weighting (PSW), and entropy balancing as described above.
All matching is one-to-one matching with replacement. For the propensity score adjustments, the score
is estimated with a logit or probit regression (following common practice in applied work). The web
appendix provides a detailed description of the different preprocessing methods. In all cases, the coun-
terfactual mean is computed as the average outcome of the control units in the preprocessed (matched or
reweighted) data.

4.1 Design

We conduct three different simulations overall. The first two simulations follow the designs presented
in Diamond and Sekhon (2006) and are described in detail in the web appendix. The first experiment

14There is a growing literature that uses simulation to assess the properties of matching procedures (partially reviewed in Imbens
2004). Frölich (2004) presents an extensive simulation study that considers various matching methods across a wide variety of
sample designs, but his study is limited to a single covariate and true propensity scores. Zhao (2004) investigates the finite sample
properties of pair matching and propensity score matching and finds no clear winner among these techniques. Although including
different sample sizes, his study does not vary the controls to treated ratio and is also limited to true propensity scores. Brookhart
et al. (2006) simulate the effect of including or excluding irrelevant variables in propensity score matching. Abadie and Imbens
(2007) present a matching simulation using data from the Panel Study of Income Dynamics data and find that their bias corrected
matching estimator outperforms linear regression adjustment. Diamond and Sekhon (2006) provide two Monte Carlo experiments,
one with multivariate normal data and three covariates and a second using data from the Lalonde data set. They find that their
genetic matching outperforms other matching techniques. Further simulations using multivariate normal data are presented in Gu
and Rosenbaum (1993) and several of the papers collected in Rubin (2006). Drake (1993) finds that misspecified propensity scores
often result in substantial bias in simulations with two normally distributed covariates.
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involves three covariates and is based on conditions that are necessary for matching to achieve the EPBR
property. We consider three cases: equal variances, unequal variances, and one scenario where we adjust
for irrelevant covariates. We find that entropy balancing achieves the lowest root MSE compared to the
other methods across all three cases (see Table I in the online appendix). The second experiment is based
on the LaLonde (1986) data where the covariates are not ellipsoidally distributed and thus the EPBR
conditions do not hold. Again, entropy balancing achieves the lowest MSE across all methods which
suggests that the procedure retains fairly good finite sample properties even in this scenario where the
EPBR conditions do not hold (see Table II in the online appendix).
Here we focus on the third, most comprehensive simulation. It follows the design developed in Frölich

(2007) who to our knowledge provides the most extensive investigation of the finite sample properties
of propensity score adjustments to date. We extend his design and consider a mixture of continuous and
binary variables and we also examine additional factors such as the ratio of treated to controls and the
degree of misspecification for the propensity score model. The idea is to mirror a range of typical sce-
narios that may be encountered in empirical settings in political science. We use six covariates X j with
j ∈ (1, 2, . . . , 6): X1, X2, and X3 are multivariate normal with means zero, variances of (2, 1, 1) and
covariances of (1, −1, −0.5) respectively; X4 is distributed uniform on [−3, 3]; X5 is distributed χ21 ; X6
is Bernoulli with mean 0.5. The treatment and control group are formed using

D = 1[X1 + 2X2 − 2X3 − X4 − 0.5X5 + X6 + ε > 0].

Notice that the covariates are weighted unequally as is reasonable in many empirical settings. We consider
three designs for the error term ε, which relate to different distributions for the true propensity score:
Sample Design 1: ε ∼ N (0, 30); Sample Design 2: ε ∼ N (0, 100); Sample Design 3: ε ∼ χ25 and
scaled to mean 0.5 and variance 67.6. Figure 1 visualizes the densities of the true propensity score in the
three designs. The first design shows the strongest separation between the treatment and control group
and provides a fairly difficult case for preprocessing. The second design has weaker separation so that the
adjustments are expected to be more precise. The third design provides a middle ground as the variance
lies between the first and the second design. However, the error term is leptokurtic such that the probit
estimator for the estimated propensity score is misspecified.
We consider three sample sizes n ∈ (300, 600, 1500) and also vary the ratio of control to treated units

r = n0/n1 with r ∈ (1, 2, 5) by sampling the specified numbers of treated and control units. For the
estimators that rely on the estimated propensity score, we use three different probit specifications with the
following mean functions:

• PS Design 1: p̂(x) = α0 + α1X1 + α2X2 + α3X3 + α4X4 + α5X5 + α6X6

• PS Design 2: p̂(x) = α0 + α1X21 + α2X22 + α3X3 + α4X24 + α5X25 + α6X6

• PS Design 3: p̂(x) = α0 + α1X1 X3 + α2X22 + α3X4 + α4X5 + α5X6.

Fig. 1 Sample designs for Monte Carlo experiment: Density of true propensity score in treatment and control group.
Left graph refers to Sample Design 1 with ε ∼ N (0, 30) (strong separation and normal errors); middle graph refers
to Sample Design 2 with ε ∼ N (0, 100) (weaker separation and normal errors); right graph refers to Sample Design
3 with ε ∼ χ25 and scaled to mean 0.5 and variance 67.6 (medium separation and leptokurtic errors).
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These functions are designed to yield various degrees of misspecification of the propensity score model.
For normal ε (Sample Designs 1 and 2), the first model is correct, the second model is slightly misspec-
ified, and the third model is heavily misspecified. The correlations between the true and the estimated
propensity scores are 1, 0.8, and 0.3, respectively. For nonnormal ε (Sample Design 3), all three are mis-
specified, again with increasing levels of misspecification. Finally, we consider three outcome designs:

• Outcome Design 1: Y = X1 + X2 + X3 − X4 + X5 + X6 + η

• Outcome Design 2: Y = X1 + X2 + 0.2 X3 X4 − √
X5 + η

• Outcome Design 3: Y = (X1 + X2 + X5)2 + η

with η ∼ N (0, 1). These regression functions are increasing in the degrees of nonlinearity in the mapping
of the covariates to the outcome. The true treatment effect is fixed at zero for all units. The different
outcomes also exhibit different correlations with the true propensity score decreasing from 0.8, 0.54, to
0.16 from sample design 1 to 3, respectively. We run 1000 simulations and report the bias and root MSE.

4.2 Results

The full results for N = 300 are presented in Table 1. To facilitate the interpretation, Figure 2 also
presents a graphical summary of the sampling distributions for the case of the 1:5 treated to control ratio.
Full results for N = 600 and N = 1500 are reported in the web appendix. The results are fairly similar
across sample sizes.
Overall, the results suggest that entropy balancing outperforms the other adjustment techniques in

terms of MSE. This result is robust for all three sample designs, the three outcome specifications, the
three ratios of controls to treated, and the three propensity score equations. The gains in MSE are often
substantial. For example, in the most difficult case of sample design 1 (strong separation), N = 300, and
the highly nonlinear outcome design 3, the MSE from entropy balancing is about 2.6 times lower than that
of genetic matching, 3.4 times lower than pair matching on a propensity score that is estimated with the
correctly specified probit regression, 3.9 times lower than Mahalanobis distance matching, and 4.6 times
lower than weighting on the estimated propensity score. As expected, we find that weighting or matching
on misspecified propensity scores (PS designs 2 and 3) results in much higher MSE even in large samples.
Entropy balancing also outperforms the other matching techniques in terms of bias, except in larger

samples where matching and weighting on the propensity scores from the correctly specified probit models
yield equally good bias performance as one would expect given that stochastic balancing of the covariates
improves. Yet, in these cases, entropy balancing retains lower MSE even at a sample size of N = 1500.
This demonstrates the efficiency gains in finite samples that can be derived from adjusting the weights
directly to the known sample moments.

5 Empirical Applications

In this section, we illustrate the use of entropy balancing in two real data settings. The first illustration
reanalyzes data from a randomized evaluation of a large scale job training program. The second illustration
applies the methods to a typical political science data set provided by Ladd and Lenz (2009) who study
the effect of newspaper endorsements on vote choice in the 1997 British general election. Additional
illustrations are provided in the web appendix.

5.1 The LaLonde Data

As a validation exercise, we first apply entropy balancing to the LaLonde (1986) data set, a canoni-
cal benchmark in the causal inference literature (see Diamond and Sekhon (2006) for the extensive de-
bate surrounding this data set).15 The LaLonde data consist of two parts. The first data set comes from a
randomized evaluation of a large scale job training program, the National Supported Work Demonstra-
tion (NSW). This experimental data provide a benchmark estimate for the effect of the program. Using

15Notice that we focus on the Dehejia and Wahba subset of the LaLonde data.
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Table 1 Results for Monte Carlo experiment (N = 300)

Sample Design 1: Strong separation and normal errors
MSE RAW MD GM PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 332 35 29 27 384 193 68 385 200 25 370 188 4
Ratio CtoT 1 Y2 502 24 15 14 163 532 71 193 442 26 161 537 5
Ratio CtoT 1 Y3 1196 1355 898 1186 1676 1835 2266 1995 2377 1590 1486 1633 346
Ratio CtoT 3 Y1 326 29 21 23 369 191 56 370 196 17 362 184 4
Ratio CtoT 3 Y2 495 20 10 11 155 523 57 175 445 18 157 528 4
Ratio CtoT 3 Y3 1269 1197 723 1108 1586 1849 2054 1777 2316 1074 1356 1666 291
Ratio CtoT 5 Y1 341 31 19 24 400 210 53 383 210 14 385 195 4
Ratio CtoT 5 Y2 512 20 12 13 165 550 52 172 473 15 166 547 5
Ratio CtoT 5 Y3 1471 1154 693 1184 1622 2041 2028 1892 2460 942 1378 1723 325

BIAS RAW MD GM PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 179 52 42 13 189 133 79 192 138 13 188 135 1
Ratio CtoT 1 Y2 222 43 29 16 122 227 81 134 208 15 122 230 3
Ratio CtoT 1 Y3 304 350 215 125 359 404 461 428 472 98 347 389 102
Ratio CtoT 3 Y1 177 47 33 7 184 132 70 187 136 12 186 133 -1
Ratio CtoT 3 Y2 221 38 22 11 118 225 71 127 208 16 121 227 1
Ratio CtoT 3 Y3 302 322 206 97 332 400 434 398 461 102 334 389 85
Ratio CtoT 5 Y1 179 45 27 9 189 135 65 187 138 14 191 134 0
Ratio CtoT 5 Y2 223 35 19 10 119 227 65 122 211 17 123 229 2
Ratio CtoT 5 Y3 301 302 182 75 315 400 416 396 460 90 325 384 55
Sample Design 2: Weaker separation and normal errors
MSE RAW MD GM PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 148 15 8 12 137 91 28 146 97 7 129 83 2
Ratio CtoT 1 Y2 229 8 4 6 59 231 21 58 192 8 54 230 2
Ratio CtoT 1 Y3 654 661 364 590 655 994 1156 1016 1383 573 482 825 196
Ratio CtoT 3 Y1 151 14 7 12 138 89 24 140 99 5 130 82 2
Ratio CtoT 3 Y2 225 7 4 7 60 225 18 52 196 6 54 225 3
Ratio CtoT 3 Y3 777 660 360 575 673 1063 1114 984 1421 428 517 902 208
Ratio CtoT 5 Y1 162 16 7 19 159 103 26 154 104 5 144 88 3
Ratio CtoT 5 Y2 236 9 6 10 66 248 20 56 214 6 58 238 3
Ratio CtoT 5 Y3 963 642 349 822 872 1233 1080 1013 1507 482 527 943 288
BIAS RAW MD GM PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 117 32 18 4 107 88 48 114 94 1 108 87 1
Ratio CtoT 1 Y2 149 19 9 5 69 147 40 70 134 2 68 148 2
Ratio CtoT 1 Y3 194 238 149 31 180 281 321 297 353 4 177 266 27
Ratio CtoT 3 Y1 117 29 14 3 106 86 43 110 94 3 108 87 -1
Ratio CtoT 3 Y2 147 16 6 4 68 144 36 64 135 3 68 146 -0
Ratio CtoT 3 Y3 209 231 140 47 177 281 309 285 353 39 185 273 33
Ratio CtoT 5 Y1 118 27 10 3 109 87 41 111 92 2 111 87 -0
Ratio CtoT 5 Y2 149 16 5 5 67 147 33 62 136 3 68 148 0
Ratio CtoT 5 Y3 198 210 119 17 165 276 285 270 341 18 174 263 5
Sample Design 3: Medium separation and leptokurtic errors
MSE RAW MD GM PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 226 26 20 23 251 147 47 254 159 14 246 144 3
Ratio CtoT 1 Y2 350 18 11 11 116 404 46 131 337 18 122 416 3
Ratio CtoT 1 Y3 1213 1174 757 1069 1143 1534 1983 1680 2024 775 1098 1315 374
Ratio CtoT 3 Y1 221 23 16 20 253 153 41 250 156 12 246 142 3
Ratio CtoT 3 Y2 343 16 9 11 114 402 38 118 341 17 122 408 3
Ratio CtoT 3 Y3 1212 1046 645 1050 1011 1521 1769 1465 1934 739 951 1281 354
Ratio CtoT 5 Y1 239 25 15 24 287 161 38 268 169 12 273 150 3
Ratio CtoT 5 Y2 355 16 10 12 125 421 34 118 363 15 127 428 4
Ratio CtoT 5 Y3 1563 1122 701 1328 1253 1799 1828 1562 2124 888 1061 1465 440
BIAS RAW MD GM PSM1 PSM2 PSM3 PSMD1 PSMD2 PSMD3 PSW1 PSW2 PSW3 EB
Ratio CtoT 1 Y1 146 45 35 12 150 116 65 154 123 26 152 117 0
Ratio CtoT 1 Y2 185 36 23 16 101 197 64 110 180 35 107 201 4
Ratio CtoT 1 Y3 306 325 217 123 270 362 430 390 434 201 295 343 145
Ratio CtoT 3 Y1 144 41 29 9 150 117 59 152 120 25 152 116 1
Ratio CtoT 3 Y2 183 32 20 15 98 195 57 102 180 34 106 199 4
Ratio CtoT 3 Y3 295 300 202 91 239 354 400 358 419 186 272 336 130
Ratio CtoT 5 Y1 147 39 23 9 157 116 53 153 122 22 159 117 1
Ratio CtoT 5 Y2 185 29 16 14 101 197 50 97 182 29 107 201 4
Ratio CtoT 5 Y3 309 291 186 85 221 364 387 347 417 187 268 342 122

Note. MSE and BIAS across 1000 simulations. Experimental factors are three sample designs as in Fig. 1, three outcome designs (Y1
is linear, Y2 is somewhat nonlinear, Y3 is highly nonlinear), and three controls-to-treated ratios (Ratio CtoT 1, 3, and 5). Methods
are Difference in means (RAW), Mahalanobis distance matching (MD), genetic matching (GM), entropy balancing (EB), matching
or weighting on propensity score that is estimated with a probit regression (PSM and PSW), and Mahalanobis distance matching
on the estimated propensity score and orthogonalized covariates (PSMD). For the propensity score adjustments the postfixes 1–3
indicate increasing degrees of misspecification for the propensity score estimation (see text for details). We use three specifications
(labeled with a 1, 2, or 3 postfix) for all propensity-score-based methods (PSM, PSW, PSMD). The first propensity score model is
correct for sample designs 1 and 2, and slightly misspecified for sample design 3. Propensity score models 2 and 3 are increasingly
misspecified (as measured by the linear correlation between the true and the estimated score).

a simple difference in means, the program is estimated to increase postintervention earnings by $1794
with a 95% confidence interval of [551; 3038]. In the next step, we replace the experimental control
group with a control group drawn from the Current Population Survey-Social Security Administration
file (CPS-1) where we measure the same covariates as in the experimental data. The covariates include a
set of measures that researchers would typically control for in observational studies on the impact of job
training programs. Using this second data set, LaLonde found that many commonly used methods of co-
variate adjustment (such as regression) were not able to recover the results obtained from the randomized
experiment.
Overall, there are 185 program participants from the experimental NSW evaluation (the treated units)

and 15, 992 nonparticipants from the current population survey data (the control units). The outcome
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of interest is postintervention earnings from the year 1978. The data contain 10 preintervention charac-
teristics to control for the selection into the training program. These include earnings and employment
status for two preintervention years (1974 and 1975), education (years of schooling and an indicator for
completed high school degree), age, ethnicity (indicators for black and hispanic), and marital status. We
conduct entropy balancing using the 10 raw variables, all their pairwise one-way interactions, as well as
squared terms for the continuous variables age and years of education. Overall, this results in 52 covari-
ate combinations.16 We also apply Mahalanobis distance matching, genetic matching, propensity score
matching, and propensity score weighting to the same data as a benchmark. The propensity score is es-
timated with a logistic regression of the treatment indicator on all 52 covariates. Notice that this biases
the results in favor of the conventional propensity score adjustments because this extensive specification
is considerably more flexible than models that are commonly used in applied work where researchers
usually just include the raw covariates.17
For each of the 52 covariates, Figure 3 visualizes the covariate balance that we obtain from the differ-

ent techniques as measured by two conventional balance statistics: the standardized difference in means
between the treatment and control group (left panel) and the p value for a difference of means test (right
panel). The open circles refer to the statistics for the unadjusted data. Not surprisingly, participants of
the job training program differ in many respects from the general population so that almost all of these
covariates are heavily imbalanced between the two groups. Standardized differences often exceed the |.1|
threshold and almost all mean differences are significantly different from zero at conventional levels.18Due
to this stark imbalance, the LaLonde data are generally regarded as a fairly difficult adjustment problem
(the unadjusted difference in mean outcomes is far away from the experimental target at $-8506).
The black squares refer to the balance statistics obtained after the entropy balancing. As expected,

balance is markedly improved such that the reweighted control group now has identical means compared
to the treatment group on all covariates (the standardized means are zero and the p values are one). Ac-
cording to this metric, entropy balancing provides a much higher level of covariate balance than the other
adjustment techniques including matching or weighting on the logistic propensity score that often leaves
several covariates imbalanced (standardized differences often exceed |0.1|, and p values are low). Even
worse, on a few variables the bias is actually increased after the logistic propensity score adjustment in
the sense that the means are now further apart than in the unadjusted data.
Balance from these methods may be improved by tinkering with the propensity score specification.

However, the current propensity score model is already fairly flexible. Moreover, given the skewed distri-
butions of many covariates in this data, it seems very difficult to find a propensity score specification via
trial and error that would jointly balance all covariates. This demonstrates the advantage of entropy bal-
ancing where balance is directly attained by construction of the moment conditions and never decreases
for the moments that are included in the reweighting. Table V in the online appendix provides additional
balance statistics which show that after entropy balancing the variance of the variables are also very simi-
lar on almost all covariates (note that variances are exactly adjusted for binary variables and all continuous
variables for which squared terms are included). Figure I in the online appendix provides QQ plots which
show that for the four continuous variables age, education, and the two years of pretreatment earnings, the
distributions are fairly similar after the preprocessing.
Taken together, entropy balancing delivers a high degree of balance in this data set (according to stan-

dard metrics) despite the low computational cost (the weighting solution is obtained within seconds).
The difference in means between the treatment group and the reweighted control group yields an average
treatment effect on the treated of $1571 with a 95% confidence interval of [97, 3044], an estimate that is
close to the experimental target and slightly more efficient than the final estimate of 1734 [−298; 3766]
reported by Diamond and Sekhon (2006) for the best run from the genetic matching procedure (a linear
regression in all covariates yields an effect estimate of $1159 [−52; 2371]).

16Notice that we exclude nonsensical interactions such as for example between high school degree and years of schooling. We also
omit squared terms for pretreatment earnings and their interaction because due to their collinearity they are simply balanced by
adjusting on the lower order terms. For example, their T-test p values in the reweighted data are .76, .83, .99, respectively.

17In the online appendix, we show another example where weighting on a logistic propensity score that is estimated without any.
squared terms leads to a strong decrease in balance over the raw data for many covariates (see Figs. 5 and 6 in the online appendix).

18Notice that we use p values as a measure of balance, and not to conduct hypothesis tests in the conventional sense (see Imai, King,
and Stuart 2008).
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Fig. 3 Covariate balance in the LaLonde data. Left panel shows plot of covariate-by-covariate standardized bias
in the unadjusted data and after the various preprocessing methods. The standardized bias measures the difference
in means between the treatment and control group (scaled by the standard deviation). Zero bias indicates identical
means, dots to the right (left) of zero indicate a higher mean among the treatment (control) group. The right panel
shows the p value for a covariate-by-covariate t-test for the differences in means after the unadjusted data and after
the various preprocessing methods.

In order to investigate the reduction in model dependency, we follow Ho et al. (2007) and examine the
sensitivity of the effect estimates in both the unadjusted and the preprocessed data across a wide range of
possible specifications of the outcome model. In particular, we fit one million regressions of the outcome
on the treatment variable and a subset of covariates that we randomly draw from the set of all possible
subsets of the 52 covariates.19 We fit each regression twice, once with the unadjusted data (unweighted)
and once with the preprocessed data (regressions are weighted by the entropy balancing weights). Figure 4
provides the densities of the estimates. The results are extremely model dependent in the unadjusted data
with effect sizes ranging from $−8500 to over $4000. In the preprocessed data, however, all regressions
yield the exact same estimate that is expected because the weights orthogonalize the treatment indicator
with respect to all 52 covariate combinations that are included in the reweighting. This suggests that model
dependency is reduced after entropy balancing.

19Notice that there are over 4.5 quadrillion possible subsets of the 52 covariates
(∑52

i=1
(52
i
))
so we cannot run all possible regres-

sions.
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Fig. 4 Model dependency in the LaLonde data. Density of estimated treatment effects across one million randomly
sampled model specifications in the unadjusted data (solid) and the data preprocessed with entropy balancing (dashed
line).

5.2 News Media Persuasion

In this section, we apply entropy balancing to a typical political science survey data set by reanalyzing data
from Ladd and Lenz (2009) who examine how shifts in the partisan endorsements of British newspapers
affected major party vote choice in the 1997 general election.20 The authors’ identification strategy exploits
the fact that on the second day of the official election campaign, the Sun (which had the largest circulation
in Great Britain) and several other British newspapers ended their long-standing support for the ruling
Conservative party and switched their endorsement to the Labour candidate Tony Blair. Ladd and Lenz
(2009) draw upon data from several waves of the British Election Panel Study 1992–1997, where the same
voters are being interviewed before the endorsement shifts (in 1992, 1994, 1995, and 1996) and once
following the 1997 election. The main comparison involves 211 “treated” respondents who in 1996 (the
last wave before the shifts in endorsements) report that they read one of the newspapers that eventually
switched their endorsement to Labour prior to the 1997 election. These treated voters are compared to
1382 “control” respondents who either read papers whose partisan endorsements remained constant or
who report that they did not read a paper. The outcome variable is vote choice in the 1997 election as
reported in the postelection survey.
The authors control for a battery of pretreatment variables to account for the nonrandom selection into

readership of switching newspapers. The control variables include various measures for a respondent’s
prior evaluation of the Labour Party (such as prior party support, prior labour vote, etc.), prior ideology,
socioeconomic status, authoritarianism, gender, age, region, and occupation.21 There are 39 covariates
overall; most of them are binary or ordinal. In their analysis, the authors rescale all variables to vary from
zero to one, match on a subset of eight of the most important covariates, and finally include the additional
controls in a subsequent regression of the outcome on the treatment indicator and all control variables in
the preprocessed data. We conduct entropy balancing by imposing moment conditions on the means of all
covariates directly. Since most variables are binary, exactly adjusting the means also exactly adjusts the
variances. We also apply the other adjustment methods to the same data; the propensity score is estimated
with a logistic regression in all 39 covariates.
Figure 5 displays the balance results from the various preprocessing methods as measured by the stan-

dardized differences in means (left panel) and the p values of the difference in means tests (right panel).

20I am grateful to the authors for sharing their data.
21Notice that variables that are labeled as “prior” are measured in the 1992–1996 survey waves. See the authors’ web appendix for
a detailed explanation of the variable definitions.
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Fig. 5 Covariate balance in the news media persuasion data. Left panel shows plot of covariate-by-covariate stan-
dardized bias in the unadjusted data and after the various preprocessing methods. The standardized bias measures the
difference in means between the treatment and control group (scaled by the standard deviation). Zero bias indicates
identical means, dots to the right (left) of zero indicate a higher mean among the treatment (control) group. The right
panel shows the p value for a covariate-by-covariate t-test for the differences in means after the unadjusted data and
after the various preprocessing methods.

As indicated by the open circles, the unadjusted data are imbalanced on several important covariates. For
example, readers of newspapers that switched their endorsements to Labour were more likely to be fe-
male, younger, prior Labour voters, members of the working class, in temporary employment, and less
politically informed. The standardized differences exceed the |0.1| threshold for 19 covariates, and the
p values are below conventional levels of significance in 16 cases. As indicated by the black squares, en-
tropy balancing removes these differences effectively and exactly adjusts the means for all 39 covariates;
the variances are also adjusted on almost all covariates (see Table VI in the online appendix that provides
additional balance statistics). This exceeds the balance level reported by the authors in their balance table
(Ladd and Lenz, 2009, 401) despite the fact that additional variables are included in the matching. En-
tropy balancing also improves these balance metrics compared to the other preprocessing methods some
of which leave several covariates imbalanced or even decrease the balance in a few instances (especially
Mahalanobis distance and propensity score matching).
The difference in mean outcomes in the reweighted data suggests that the endorsement switch increased

the reported probability of voting for Labour by 0.12 with a 95% confidence interval of [0.20, 0.04]—a
magnitude close to the authors’ original estimate. Figure 6 examines the reduction in model dependence
where we display the effect estimates across one million regression specifications with randomly drawn
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Fig. 6 Model dependency in the news media persuasion data. Density of estimated treatment effects across one
million randomly sampled model specifications in the unadjusted data (solid) and the data preprocessed with entropy
balancing (dashed line).

covariate subsets in the raw and the preprocessed data. The effect estimates remain stable in the prepro-
cessed data since the entropy balancing weights orthogonalize the treatment indicator to all covariates.
In the raw data, the effects vary from about 0.06 to 0.18 across the different regressions suggesting that
model dependence is considerably lower after the preprocessing.

6 Conclusion

The goal of preprocessing is to generate well-balanced samples, but commonly used methods often make it
difficult for applied researchers to achieve high balance targets. One reason for this is that many commonly
used methods fail to focus on covariate balance directly, but instead rely on an intricate and often ineffec-
tive process of “manually” iterating between propensity score modeling, matching, and balance checking
to search for a suitable balancing solution. In the worst case, these techniques may increase bias for the
subsequent estimation of treatment effects when balance improvements in some covariates are accompa-
nied with decreased balance for other important covariates.
We propose entropy balancing as a processing technique to create balanced samples. In entropy bal-

ancing, the researcher starts by imposing a potentially large set of balance conditions which imply that the
treatment and reweighted control group match exactly on a possibly large set of the prespecified moments.
Entropy balancing then directly adjusts the unit weights to the specified sample moments while moving
the weights as little as possible to retain information. This makes it easier for the user to find unit weights
that balance the moments between the treatment and control group and obviates the need for continual
balance checking for the moments that are included in the reweighting.
The entropy balancing weights can be paired with standard estimators that the researcher may want

to use to subsequently model the outcome in the preprocessed data. The balance improvements that re-
sult from entropy balancing can translate into lower approximation error and reduced model dependency
in finite samples as demonstrated through the extensive Monte Carlo simulations and several empirical
applications. Future research may consider the combination of entropy balancing and other preprocessing
methods.
While entropy balancing simplifies the search for covariate balance for practitioners, it is important

to notice that other problems that are commonly associated with preprocessing methods (and covariate
adjustment more generally) still apply. For example, entropy balancing provides no safeguard against bias
from unmeasured confounders that are often a vexing problem in observational studies.
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