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7
Bayesian simulation

In the chapter, we discuss direct and conditional posterior simulation as
well as Markov chain Monte Carlo (McMC ) simulation.

7.1 Direct posterior simulation

Posterior simulation allows us to learn about features of the posterior (in-
cluding linear combinations, products, or ratios of parameters) by drawing
samples when the exact form of the posterior density is analytically in-
tractable. Monte Carlo simulation implies we employ a suffi ciently large
number of draws to (approximately) cover the sample space for the quan-
tities of interest.

Example

For example, suppose x1 and x2 are (jointly) Gaussian or normally distrib-
uted with unknown means,

[
µ1 µ2

]
, and known variance-covariance,

σ2I2 = 9I, but we’re interested in x3 =
√
α1x1 + α2x2. Based on a sam-

ple of data (n = 30), y = {x1, x2}, we can infer the posterior means and
variance for x1 and x2 and simulate posterior draws for x3 from which prop-
erties of the posterior distribution for x3 can be inferred. Suppose µ1 = 50
and µ2 = 75 and we have no prior knowledge regarding the location of x1
and x2 so we employ uniform (uninformative) priors. Sample statistics for
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x1 and x2 are reported below.

statistic x1 x2
mean 51.0 75.5
median 50.8 76.1

standard deviation 3.00 2.59
maximum 55.3 80.6
minimum 43.6 69.5
quantiles:

0.01 43.8 69.8
0.025 44.1 70.3
0.05 45.6 71.1
0.10 47.8 72.9
0.25 49.5 73.4
0.75 53.0 77.4
0.9 54.4 78.1
0.95 55.1 79.4
0.975 55.3 80.2
0.99 55.3 80.5

Sample statistics

Since we know x1 and x2 are independent each with variance 9, the
marginal posteriors for µ1 and µ2 are

p (µ1 | y) ∼ N
(
x1 = 51.0,

9

30

)
and

p (µ2 | y) ∼ N
(
x2 = 75.5,

9

30

)
and the predictive posteriors for x1 and x2 are based on posteriors draws
for µ1 and µ2

p (x1 | µ1, y) ∼ N (µ1, 9)

and
p (x2 | µ2, y) ∼ N (µ2, 9)

The posterior distributions for the means are proportional to their likeli-
hood functions.

`
(
µj ;xj , σ

)
∝

n∏
i=1

exp

[
− 1

2σ2
(xji − µ)

2

]
This expands (by completing the square) and simplifies.

`
(
µj ;xj , σ

)
∝ exp

[
− n

2σ2
(xj − µ)

2
]

exp

− n

2σ2

(
1

n

n∑
i=1

x2ji − xj2
)2
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The second term does not involve µj so it is absorbed into the normalizing
constant and the likelihood simplifies as

`
(
µj ;xj , σ

)
∝ exp

[
− 1

2σ2/n
(xj − µ)

2

]
In other words, as indicated above, µj is drawn from a normal distribution

with mean xj and variance σ2

n .
For α1 = 2 and α2 = 3, we generate 1, 000 posterior predictive draws

of x1 and x2, and utilize them to create posterior predictive draws for x3.
Sample statistics for these posterior draws are reported below.

statistic µ1 µ1 x1 x2 x3
mean 51.0 75.5 50.9 75.4 149.2
median 51.0 75.5 50.8 75.3 149.2

standard deviation 0.55 0.56 3.15 3.04 5.07
maximum 52.5 77.5 59.7 85.4 163.1
minimum 48.5 73.5 39.4 65.4 131.4
quantiles:

0.01 49.6 74.4 44.1 68.5 137.8
0.025 49.8 74.5 44.7 69.7 139.8
0.05 50.1 74.6 45.7 70.6 141.2
0.10 50.3 74.8 46.8 71.6 142.8
0.25 50.6 75.2 48.8 73.3 145.7
0.75 51.3 75.9 52.9 77.6 152.8
0.9 51.6 76.3 55.0 79.4 155.6
0.95 51.8 76.5 56.2 80.5 157.6
0.975 52.0 76.7 57.5 81.6 159.4
0.99 52.3 76.9 58.5 82.4 160.9

Sample statistics for posterior draws

A normal probability plot1 and histogram based on 1, 000 draws of x3
along with the descriptive statistics above based on posterior draws suggest

1We employ Filliben’s [1975] approach by plotting normal quantiles of uj , N (ui),
(horizontal axis) against z scores (vertical axis) for the data, y, of sample size n where

ui =

1− 0.5n j = 1
j−0.3175
n+0.365

j = 2, . . . , n− 1
0.5n j = n

(a general expression is j−a
n+1−2a , in the above a = 0.3175), and

zi =
yi − y
s

with sample average, y, and sample standard deviation, s.
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that x3 is well approximated by a Gaussian distribution.

Normal probability plot for x3
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7.2 Independent simulation

The above example illustrates independent simulation. Since x1 and x2
are independent, their joint distribution, p (x1, x2), is the product of their
marginals, p (x1) and p (x2). As these marginals depend on their unknown
means, we can independently draw from the marginal posteriors for the
means, p (θ1 | y) and p (θ2 | y), to generate predictive posterior draws for
x1 and x2.2

The general independent posterior simulation procedure is
1. draw θ2 from the marginal posterior p (θ2 | y),
2. draw θ1 from the marginal posterior p (θ1 | y).

7.3 Nuisance parameters & conditional simulation

When there are nuisance parameters or, in other words, the model is hier-
archical in nature, it is simpler to employ conditional posterior simulation.
That is, draw the nuisance parameter from its marginal posterior then draw
the other parameters of interest conditional on the draw of the nuisance or
hierarchical parameter.
The general conditional simulation procedure is
1. draw θ2 (say, scale) from the marginal posterior p (θ2 | y),
2. draw θ1 (say, mean) from the conditional posterior p (θ1 | θ2, y).
Again, a key is we employ a suffi ciently large number of draws to "fully"

sample θ1 conditional on "all" θ2.

Example

We compare independent simulation based on marginal posteriors for the
mean and variance with conditional simulation based on the marginal pos-
terior of the variance and the conditional posterior of the mean for the
Gaussian (normal) unknown mean and variance case. First ,we explore
informed priors, then we compare with uninformative priors. An exchange-
able sample of n = 50 observations from a Gaussian (normal) distribution
with mean equal to 46, a draw from the prior distribution for the mean (de-
scribed below), and variance equal to 9, a draw from the prior distribution
for the variance (also, described below).

2Predictive posterior simulation is discussed below where we add another simula-
tion step involving a predictive draw conditional on the observed data and simulated
parameters.
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7.3.1 Informed priors

The prior distribution for the mean is Gaussian with mean equal to θ0 = 50

and variance equal to σ2

κ0
= 18 (κ0 = 1

2 ). The prior distribution for the
variance is inverted-chi square with ν0 = 5 degrees of freedom and scale
equal to σ20 = 9. Then, the marginal posterior for the variance is inverted-
chi square with νn = ν0 + n = 55 degrees of freedom and scale equal
to νnσ2n = 45 + 49s2 + 25

50.5 (50− y)
2 where s2 = 1

n−1
∑n
i=1 (yi − y)

2 and
y = 1

n

∑n
i=1 yi depend on the sample. The conditional posterior for the

mean is Gaussian with mean equal to θn = 1
50.5 (25 + 50y) and variance

equal to the draw from marginal posterior for the variance scaled by κ0+n,
σ2

50.5 . The marginal posterior for the mean is noncentral, scaled Student t
with noncentrality parameter equal to θn = 1

50.5 (25 + 50y) and scale equal

to σ2n
50.5 . In other words, posterior draws for the mean are θ = t

√
σ2n
50.5 + θn

where t is a draw from a standard Student t(55) distribution.
Statistics for 1, 000 marginal and conditional posterior draws of the mean

and marginal posterior draws of the variance are tabulated below.

statistic (θ | y)
(
θ | σ2, y

) (
σ2 | y

)
mean 45.4 45.5 9.6
median 45.4 45.5 9.4

standard deviation 0.45 0.44 1.85
maximum 46.8 46.9 21.1
minimum 44.1 43.9 5.5
quantiles:

0.01 44.4 44.4 6.1
0.025 44.5 44.6 6.6
0.05 44.7 44.8 7.0
0.10 44.9 44.8 7.0
0.25 45.1 45.2 8.3
0.75 45.7 45.8 10.7
0.9 46.0 46.0 12.0
0.95 46.2 46.2 12.8
0.975 46.3 46.3 13.4
0.99 46.5 46.5 14.9

Sample statistics for posterior draws based on informed priors

Clearly, marginal and conditional posterior draws for the mean are very
similar, as expected. Marginal posterior draws for the variance have more
spread than those for the mean, as expected, and all posterior draws com-
port well with the underlying distribution. Sorted posterior draws based on
informed priors are plotted below with the underlying parameter depicted
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by a horizontal line.

Posterior draws for the mean and variance based on informed priors

As the evidence and priors are largely in accord, we might expect the in-
formed priors to reduce the spread in the posterior distributions somewhat.
Below we explore uninformed priors.

7.3.2 Uninformed priors

The marginal posterior for the variance is inverted-chi square with n −
1 = 49 degrees of freedom and scale equal to (n− 1) s2 = 49s2 where
s2 = 1

n−1
∑n
i=1 (yi − y)

2 and y = 1
n

∑n
i=1 yi depend on the sample. The

conditional posterior for the mean is Gaussian with mean equal to y and
variance equal to the draw from marginal posterior for the variance scaled
by n, σ

2

50 . The marginal posterior for the mean is noncentral, scaled Student

t with noncentrality parameter equal to y and scale equal to s2

50 . In other
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words, posterior draws for the mean are θ = t
√

s2

50 + y where t is a draw
from a standard Student t(49) distribution.
Statistics for 1, 000 marginal and conditional posterior draws of the mean

and marginal posterior draws of the variance are tabulated below.

statistic (θ | y)
(
θ | σ2, y

) (
σ2 | y

)
mean 45.4 45.4 9.7
median 45.4 45.5 9.4

standard deviation 0.43 0.45 2.05
maximum 46.7 47.0 18.9
minimum 44.0 43.9 4.8
quantiles:

0.01 44.4 44.3 6.2
0.025 44.6 44.5 6.6
0.05 44.7 44.7 6.9
0.10 44.9 44.8 7.3
0.25 45.1 45.1 8.3
0.75 45.7 45.7 10.9
0.9 46.0 46.0 12.4
0.95 46.1 46.2 13.5
0.975 46.3 46.3 14.3
0.99 46.4 46.4 15.6

Sample statistics for posterior draws based on informed priors

There is remarkably little difference between the informed and uninformed
posterior draws. With a smaller sample we would expect the priors to have
a more substantial impact. Sorted posterior draws based on uninformed
priors are plotted below with the underlying parameter depicted by a hor-
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izontal line.

Posterior draws for the mean and variance based on uninformed priors

7.3.3 Discrepant evidence

Before we leave this subsection, perhaps it is instructive to explore the
implications of discrepant evidence. That is, we investigate the case where
the evidence differs substantially from the priors. We again draw a value
for θ from a Gaussian distribution with mean 50 and variance 9

1/2 , now the
draw is θ = 53.1. Then, we set the prior for θ, θ0, equal to 50+6 σ√

κ0
= 75.5.

Everything else remains as above. As expected, posterior draws based on
uninformed priors are very similar to those reported above except with the
shift in the mean for θ.3

3To conserve space, posterior draws based on the uninformed prior results are not
reported.
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Based on informed priors, the marginal posterior for the variance is
inverted-chi square with νn = ν0 + n = 55 degrees of freedom and scale
equal to νnσ2n = 45+49s2+ 25

50.5 (75.5− y)
2 where s2 = 1

n−1
∑n
i=1 (yi − y)

2

and y = 1
n

∑n
i=1 yi depend on the sample. The conditional posterior for

the mean is Gaussian with mean equal to θn = 1
50.5 (37.75 + 50y) and vari-

ance equal to the draw from marginal posterior for the variance scaled by
κ0 + n, σ2

50.5 . The marginal posterior for the mean is noncentral, scaled
Student t with noncentrality parameter equal to θn = 1

50.5 (37.75 + 50y)

and scale equal to σ2n
50.5 . In other words, posterior draws for the mean are

θ = t
√

σ2n
50.5 + θn where t is a draw from a standard Student t(55) distrib-

ution.
Statistics for 1, 000 marginal and conditional posterior draws of the mean

and marginal posterior draws of the variance are tabulated below.

statistic (θ | y)
(
θ | σ2, y

) (
σ2 | y

)
mean 53.4 53.4 13.9
median 53.4 53.4 13.5

standard deviation 0.52 0.54 2.9
maximum 55.3 55.1 26.0
minimum 51.4 51.2 7.5
quantiles:

0.01 52.2 52.2 8.8
0.025 52.5 52.4 9.4
0.05 52.6 52.6 10.0
0.10 52.8 52.8 10.6
0.25 53.1 53.1 11.9
0.75 53.8 53.8 15.5
0.9 54.1 54.1 17.6
0.95 54.3 54.4 19.2
0.975 54.5 54.5 21.1
0.99 54.7 54.7 23.3

Sample statistics for posterior draws based on informed priors: discrepant case

Posterior draws for θ are largely unaffected by the discrepancy between the
evidence and the prior, presumably, because the evidence dominates with a
sample size of 50. However, consistent with intuition posterior draws for the
variance are skewed upward more than previously. Sorted posterior draws
based on informed priors are plotted below with the underlying parameter
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depicted by a horizontal line.

Posterior draws for the mean and variance based on informed priors:
discrepant case

7.4 Posterior predictive distribution

As we’ve seen for independent simulation (the first example in this section),
posterior predictive draws allow us to generate distributions for complex
combinations of parameters or random variables.
For independent simulation, the general procedure for generating poste-

rior predictive draws is
1. draw θ1 from p (θ1 | y),
2. draw θ2 from p (θ2 | y),
3. draw ỹ from p(ỹ | θ1, θ2, y) where ỹ is the predictive random variable.
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Also, posterior predictive distributions provide a diagnostic check on model
specification adequacy. If sample data and posterior predictive draws are
substantially different we have evidence of model misspecification.
For conditional simulation, the general procedure for generating posterior

predictive draws is
1. draw θ2 from p (θ2 | y),
2. draw θ1 from p (θ1 | θ2, y),
3. draw ỹ from p(ỹ | θ1, θ2, y).

7.5 Markov chain Monte Carlo (McMC) simulation

Markov chain Monte Carlo (McMC ) simulations can be employed when
the marginal posterior distributions cannot be derived or are extremely
cumbersome to derive. McMC approaches draw from the set of conditional
posterior distributions instead of the marginal posterior distributions. The
utility of McMC simulation has evolved along with the R Foundation for
Statistical Computing.
Before discussing standard algorithms (the Gibbs sampler and Metropolis-

Hastings) we briefly review some important concepts associated with Markov
chains and attempt to develop some intuition regarding their effective us-
age. The objective is to eventually generate draws from a stationary pos-
terior distribution which we denote π but we’re unable to directly access.
To explore how Markov chains help us access π, we begin with discrete
Markov chains then connect to continuous chains.

7.6 Discrete state spaces

Let S =
{
θ1, θ2, . . . , θd

}
be a discrete state space. A Markov chain is the

sequence of random variables, {θ1, θ2, . . . , θr, . . .} given θ0 generated by the
following transition

pij ≡ Pr
(
θr+1 = θj | θr = θi

)
The Markov property says that transition to θr+1 only depends on the
immediate past history, θr, and not all history. Define a Markov transition
matrix, P = [pij ], where the rows denote initial states and the columns
denote transition states such that, for example, pii is the likelihood of
beginning in state i and remaining in state i.
Now, relate this Markov chain idea to distributions from which random

variables are drawn. Say, the initial value, θ0, is drawn from π0. Then, the
distribution for θ1 given θ0 ∼ π0 is

π1j ≡ Pr
(
θ1 = θj

)
=
∑d
i=1 Pr

(
θ0 = θi

)
pij =

∑d
i=1 π0ipij , j = 1, 2, . . . , d
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In matrix notation, the above is

πT1 = πT0 P

and after r iterations we have

πTr = πT0 P
r

As the number of iterations increases, we expect the effect of the initial
distribution, π0, dies out so long as the chain does not get trapped.

7.6.1 Irreducibility and stationarity

The idea of no absorbing states or states in which the chain gets trapped
is called irreducibility. This is key to our construction of Markov chains. If
pij > 0 (strictly positive) for all i, j, then the chain is irreducible and there
exists a stationary distribution, π, such that

lim
r→∞

πT0 P
r = πT

and
πTP = πT

Since the elements are all nonnegative and each row of P sums to one,
the maximum eigenvalue of PT is one and its corresponding eigenvector
determines π. The Perron-Frobenius theorem says for a nonnegative (pos-
itive) matrix the largest eigenvalue and its associated eigenvector are real
and nonnegative (positive). Further,

ιT
(
PT − I

)
= 1− 1 = 0

and the rows of
(
PT − I

)
sum to the zero row. Hence,

(
PT − I

)
is singular

and one is an eigenvalue. Second,
(
PT
)r
is a Markov matrix just as is PT .

Therefore, πr cannot grow without bound and the maximum eigenvalue of
PT is one. Putting this together gives, by singular value decomposition,
PT = SΛS−1 where S is a matrix of eigenvectors and Λ is a diagonal
matrix of corresponding eigenvalues,

(
PT
)r

= SΛrS−1 since(
PT
)r

= SΛS−1SΛS−1 · · ·SΛS−1

= SΛrS−1

This implies the long-run steady-state is determined by the largest eigen-
value (if maxλ = 1) and in the direction of its (real and positive) eigenvec-
tor (if the remaining λ′s < 1 then λri goes to zero and their corresponding
eigenvectors’influence on direction dies out). That is,(

PT
)r

= S1Λ
rS−11
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where S1 denotes the eigenvector (column vector) corresponding to the
unit eigenvalue and S−11 denotes the corresponding inverse eigenvector (row
vector). Since one is the largest eigenvalue of PT , after a large number of
iterations πT0 P

r converges to 1 × π = π. Hence, after many iterations the
Markov chain produces draws from a stationary distribution if the chain is
irreducible.
On the other hand, consider the reducible (p11 = p22 = 0) Markov

transition matrix

P = PT =

[
0 1
1 0

]

The eigenvalues are 1 and −1 with eigenvectors
[

1
1

]
and

[
1
−1

]
. The dis-

tribution oscillates between the starting distribution vector and its reverse
order. For example, suppose πT0 =

[
0.25 0.75

]
, then πT1 =

[
0.75 0.25

]
,

πT2 =
[

0.25 0.75
]
, πT3 =

[
0.75 0.25

]
, and so on. Hence, for this re-

ducible matrix there is no stationary distribution.
One more special case, suppose the Markov transition matrix is irre-

ducible and symmetric, then the stationary distribution is uniform. That
is, the eigenvector associated with unit eigenvalue is a vector composed of
equal elements. This follows by recognizing Pι = 1ι and PT = P implies
PT ι = 1ι. Hence, ι is the eigenvector associated with λ = 1 and normaliza-
tion leads to uniform probability assignment.

7.6.2 Time reversibility and stationarity

Another property, time reversibility, is sometimes more useful when work-
ing with more general state space chains – the chains with which McMC
methods typically work. Time reversibility says that if we reverse the or-
der of a Markov chain, the resulting chain has the same transition behav-
ior. First, we show the reverse chain is Markovian if the forward chain is
Markovian, then we relate the forward and reverse chain transition prob-
abilities, and finally, we show that time reversibility implies πipij = πjpji
and this implies πTP = πT where π is the stationary distribution for the
chain. The reverse transition probability (by Bayesian "updating") is

p∗ij ≡ Pr
(
θr = θj | θr+1 = θi1 , θr+2 = θi2 , . . . , θr+T = θiT

)
=

Pr
(
θr = θj , θr+1 = θi1 , θr+2 = θi2 , . . . , θr+T = θiT

)
Pr
(
θr+1 = θi1 , θr+2 = θi2 , . . . , θr+T = θiT

)
=

Pr
(
θr = θj

)
Pr
(
θr+1 = θi1 | θr = θj

)
Pr
(
θr+1 = θi1

)
×

Pr
(
θr+2 = θi2 , . . . , θr+T = θiT | θr = θj , θr+1 = θi1

)
Pr
(
θr+2 = θi2 , . . . , θr+T = θiT | θr+1 = θi1

)
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Since the forward chain is Markovian, this simplifies as

p∗ij =
Pr
(
θr = θj

)
Pr
(
θr+1 = θi1 | θr = θj

)
Pr
(
θr+1 = θi1

)
×

Pr
(
θr+2 = θi2 , . . . , θr+T = θiT | θr+1 = θi1

)
Pr
(
θr+2 = θi2 , . . . , θr+T = θiT | θr+1 = θi1

)
=

Pr
(
θr = θj

)
Pr
(
θr+1 = θi1 | θr = θj

)
Pr
(
θr+1 = θi1

)
The reverse chain is Markovian.
Let P ∗ represent the transition matrix for the reverse chain then the

above says

p∗ij =
πjpji
πi

By definition, time reversibility implies pij = p∗ij . Hence, time reversibility
implies

πipij = πjpji

Time reversibility says the likelihood of transitioning from state i to j is
equal to the likelihood of transitioning from j to i.
The above implies if a chain is reversible with respect to a distribution

π then π is the stationary distribution of the chain. To see this sum both
sides of the above relation over i∑

i πipij =
∑
i πjpji = πj

∑
i pji = πj × 1, j = 1, 2, . . . , d

In matrix notation, we have

πTP = πT

π is the stationary distribution of the chain.
An important implication of reversibility is the joint distribution p (π, P )

expressed in matrix form is symmetric.

p (π, P ) =


π1p11 π1p12 · · · π1p1n
π2p21 π2p22 · · · π2p2n
...

...
. . .

...
πnpn1 πnpn2 · · · πnpnn


We’ll revisit the implications of this symmetry when we discuss the Gibbs
sampler, specifically, deriving marginals from the set of conditional distri-
butions.
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Kolmogorov reversibility criterion

Kolmogorov’s theorem provides a mechanism to gauge whether a Markov
matrix is reversible without knowing π. Kolmogorov’s criterion says if the
product of transition probabilities in a forward loop equals the product of
transition probabilities in its reverse loop

pijpjkpkl . . . pni = pin . . . plkpkjpji

for all loops, then the Markov matrix is reversible. How many loops do
we need to check? Every two state matrix is reversible. There is only one
three-state loop to check for a three state matrix, three four-state loops for
a four state matrix, twelve five-state loops for a five state matrix, and so
on. In general, there are (n−1)!

2 n-state loops for an n state matrix.
Consider a special case where P is defined to be

1− (n− 1) e1 e1 e1 · · · e1
e2 1− (n− 1) e2 e2 · · · e2
e3 e3 1− (n− 1) e3 e3
...

...
...

. . .
...

en en en · · · 1− (n− 1) en


As every n-element loop involves one non-diagonal element from each row,
Kolmogorov’s criterion is satisfied and such Markov transition matrices are
reversible. A similar (special case) reversible transition matrix involves the
same non-diagonal elements in each column.

1− e2 − e3
· · · − en

e2 e3 · · · en

e1
1− e1 − e3
· · · − en

e3 · · · en

e1 e2
1− e1 − e2
· · · − en

en

...
...

...
. . .

...

e1 e2 e3 · · · 1− e1 − e2
· · · − en−1



7.7 Continuous state spaces

Continuous state spaces are analogous to discrete state spaces but with
a few additional technical details. Transition probabilities are defined in
reference to sets rather than the singletons

{
θi
}
. For example, for a set

A ∈ Θ the chain is defined in terms of the probabilities of the set given the
value of the chain on the previous iteration, θ. That is, the kernel of the
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chain, K (θ,A), is the probability of set A given the chain is at θ where

K (θ,A) =

∫
A

p (θ, φ) dφ

p (θ, φ) is a density function with given θ and p (·, ·) is the transition or
generator function of the kernel.
An invariant or stationary distribution with density π (·) implies∫

A

π (θ) dθ =

∫
θ

K (θ,A)π (θ) dθ =

∫
θ

[∫
A

p (θ, φ) dφ

]
π (θ) dθ

Time reversibility in the continuous space case implies

π (θ) p (θ, φ) = π (φ) p (φ, θ)

And, irreducibility in the continuous state case is satisfied for a chain with
kernel K with respect to π (·) if every set A with positive probability π
can be reached with positive probability after a finite number of itera-
tions. In other words, if

∫
A
π (θ) dθ > 0 then there exists n ≥ 1 such that

Kn (θ,A) > 0. With continuous state spaces, irreducibility and time re-
versibility produce a stationary distribution of the chain as with discrete
state spaces.
Next, we briefly discussion application of these Markov chain concepts to

two popularMcMC strategies: the Gibbs sampler, and Metropolis-Hastings
(MH ) algorithm. The Gibbs sampler is a special case ofMH and somewhat
simpler so we review it first.

7.8 Gibbs sampler

Suppose we cannot derive p (θ | Y ) in closed form (it does not have a stan-
dard probability distribution) but we are able to identify the set of con-
ditional posterior distributions. We can utilize the set of full conditional
posterior distributions to draw dependent samples for parameters of inter-
est via McMC simulation.4

4The Gibbs sampler is a Markov chain Monte Carlo simulation approach developed by
Geman and Geman [1984] to address the Gibbs distribution (also Boltzman distribution)
in Markov networks. The Gibbs measure is the probability of system X being in state x

P (X = x) =
exp (−βE [x])

Z (β)

with physical interpretation E [x] is energy of x, β is inverse temperature, and Z (β) is the
normalizing partition function. We see the Gibbs measure is the foundation of maximum
entropy probability assignment. The Hammersley-Clifford theorem (a foundational idea
of McMC analyses along with Besag [1974]) says the Gibbs measure can represent the
distribution of any Markovian process made up of only positive probabilities.
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For the full set of conditional posterior distributions

p (θ1 | θ−1, Y )

...

p (θk | θ−k, Y )

draws are made for θ1 conditional on starting values for parameters other
than θ1, that is θ−1. Then, θ2 is drawn conditional on the θ1 draw and
the starting values for the remaining θ. Next, θ3 is drawn conditional on
the draws for θ1 and θ2 and the starting values for the remaining θ. This
continues until all θ have been sampled. Then the sampling is repeated for
a large number of draws with parameters updated each iteration by the
most recent draw.
For example, the procedure for a Gibbs sampler involving two parameters

is
1. select a starting value for θ2,
2. draw θ1 from p (θ1|θ2, y) utilizing the starting value for θ2,
3. draw θ2 from p(θ2|θ1, y) utilizing the previous draw for θ1,
4. repeat until a converged sample based on the marginal posteriors is

obtained.
The samples are dependent. Not all samples will be from the posterior;

only after a finite (but unknown) number of iterations are draws from the
marginal posterior distribution (see Gelfand and Smith [1990]). (Note, in
general, p (θ1, θ2 | Y ) 6= p (θ1 | θ2, Y ) p (θ2 | θ1, Y ).) Convergence is usually
checked using trace plots, burn-in iterations, and other convergence di-
agnostics. Model specification includes convergence checks, sensitivity to
starting values and possibly prior distribution and likelihood assignments,
comparison of draws from the posterior predictive distribution with the
observed sample, and various goodness of fit statistics.

7.8.1 Marginals from set of conditionals

The Gibbs sampler derives the desired (approximate, in finite samples)
marginal posterior distributions from the set of conditional posterior dis-
tributions. While deriving marginals from a joint distribution is simply
the sum rule, the idea of deriving marginals from conditionals is a bit
more involved. It is feasible to derive marginals from conditionals provided
the joint distribution exists. We illustrate its feasibility for the two vari-
able/parameter case. We’ll focus on X but the analogous ideas apply to Y .
From the sum rule we have

fX (x) =

∫
fX,Y (x, y) dy
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while the product rule gives

fX (x) =

∫
fX|Y (x | y) fY (y) dy

Now, apply the product rule again where we think of Xk−1 rather than
draw k. This yields

fX (x) =

∫
fX|Y (x | y)

∫
fY |X (y | t) fX (t) dtdy

Next, rearrangement leads to

fX (x) =

∫ [∫
fX|Y (x | y) fY |X (y | t) dy

]
fX (t) dt

As y is integrated out, the term in brackets is a function of x and t, h (x, t) =[∫
fX|Y (x | y) fY |X (y | t) dy

]
. Hence,

fX (x) =

∫
h (x, t) fX (t) dt

which is a fixed point integral equation for which fX (x) = fX (t) for x =
t is a unique solution. Below we illustrate this result for a simple, but
illuminating discrete case.

7.8.2 Example

Suppose the unknown joint and marginal distributions are as follows.

fX,Y (x, y) y = 4 y = 5 y = 6 fX (x)
x = 1 0.1 0.05 0.15 0.3
x = 2 0.15 0.2 0.05 0.4
x = 3 0.05 0.1 0.15 0.3
fY (y) 0.3 0.35 0.35

The known conditional distributions are

fX|Y (x | y) y = 4 y = 5 y = 6
x = 1 1

3
1
7

3
7

x = 2 1
2

4
7

1
7

x = 3 1
6

2
7

3
7

and
fY |X (y | x) y = 4 y = 5 y = 6
x = 1 1

3
1
6

1
2

x = 2 3
8

1
2

1
8

x = 3 1
6

1
3

1
2
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The product of the conditionals summed over y yields

h (x, t) t = 1 t = 2 t = 3
x = 1 0.3492 0.2500 0.3175
x = 2 0.3333 0.4911 0.3452
x = 3 0.3175 0.2589 0.3373

where h (x, t) =
∑
y fX|Y (x | y) fY |X (y | t). As written, h (x, t) is the trans-

pose of the Markov transition matrix, PT = h (x, t) where each column
sums to one. It has maximum eigenvalue equal to one and associated eigen-
vector proportional to πT =

[
0.3 0.4 0.3

]T
. Hence, from the set of

conditional posteriors we have recovered the transition matrix and the sta-
tionary distribution π.
To complete the discussion started above and verify the immediately pre-

ceding claim, we solve for the marginal distribution of X, π ≡ fX (x), by
equating fX (x) =

∑
t h (x, t) fX (t). Marginalization of X involves fX (t)

but it is unknown and cannot be directly retrieved from h (x, t) since it
is not a proper density (or mass) function (it sums to 3 and h (t) =∑
x h (x, t) = 1 for all t = 1, 2, 3 – recall these are transition probabilities).

However, we can solve fX (x) =
∑
t h (x, t) fX (t) such that fX (x) = fX (t)

for x = t and
∑
x fX (x) = 1.

h (x, t) fX (t) t = 1 t = 2 t = 3
x = 1 0.1048 0.1000 0.0952
x = 2 0.1000 0.1964 0.1036
x = 3 0.0952 0.1036 0.1012

Notice, this matrix exhibits the time reversible symmetry we alluded to
earlier in the discussion of time reversibility where the (unique) fixed point
solution from fX (x) =

∑
t h (x, t) fX (t) is

fX (x) = fX (t) =
0.3, x = 1
0.4, x = 2
0.3, x = 3

the desired marginal distribution.5 Therefore, when we take a suffi ciently
large number of draws from the conditionals we reach (approximately, in
finite samples) p (π, P ) and numerous draws from this distribution (covering
Xk−1 = t for almost all t) reveals the marginal distribution for X.

5Applying the analogous ideas to derive the marginal distribution for Y , we have

h (y, t) t = 4 t = 5 t = 6

y = 4 0.3264 0.3095 0.2679
y = 5 0.3611 0.4048 0.2857

y = 6 0.3125 0.2857 0.4464
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7.8.3 more general approach

For more than two blocks of variables/parameters for which we desire
their marginal posterior distributions but only know the set of conditional
distributions we follow Besag [1974]. Suppose we have n blocks of vari-
ables: X = X1, . . . , Xn. and we have two sets of realizations x1, . . . , xn and
y1, . . . , yn for these variables, say, draw k and k − 1 as before. The joint
distribution can be written

p (x1, . . . , xn) = p (x1 | x2, . . . , xn) p (x2, . . . , xn)

but we know the first term on the right hand side but not the second term.
Next, add k− 1 draws for X1 in the form

p(x2,...,xn,y1)
p(y1|x2,...,xn) = p (x2, . . . , xn) and

write

p (x1, . . . , xn) =
p (x1 | x2, . . . , xn) p (x2, . . . , xn, y1)

p (y1 | x2, . . . , xn)

Again, apply the above procedure for the problematic term in the numer-
ator by adding k − 1 draws for X2 by writing

p (x2, . . . , xn, y1) =
p (x2 | x3, . . . , xn, y1) p (x3, . . . , xn, y1, y2)

p (y2 | x3, . . . , xn, y1)

Substitution and continuing the procedure yields

p (x1, . . . , xn) =
p (x1 | x2, . . . , xn)

p (y1 | x2, . . . , xn)

p (x2 | x3, . . . , xn, y1)
p (y2 | x3, . . . , xn, y1)

×p (x3, . . . , xn, y1, y2)

=
p (x1 | x2, . . . , xn)

p (y1 | x2, . . . , xn)

p (x2 | x3, . . . , xn, y1)
p (y2 | x3, . . . , xn, y1)

· · · p (xn | y1, . . . , yn−1)
p (yn | y1, . . . , yn−1)

p (y1, . . . , yn)

Now, we have the ratio of the joint distribution for two different sets of
realizations equal to the product of ratios of the known conditional distri-

for the (transpose of the) transition matrix with characteristic vector, πT =[
0.3 0.35 0.35

]
,

h (y, t) fY (t) t = 4 t = 5 t = 6

y = 4 0.09792 0.10833 0.09375
y = 5 0.10833 0.14172 0.10000
y = 6 0.09375 0.10000 0.15625

and

fY (y) = fY (t) =

0.3, y = 4

0.35, y = 5
0.35, y = 6
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butions.

p (x1, . . . , xn)

p (y1, . . . , yn)
=

p (x1 | x2, . . . , xn)

p (y1 | x2, . . . , xn)

p (x2 | x3, . . . , xn, y1)
p (y2 | x3, . . . , xn, y1)

· · · p (xn | y1, . . . , yn−1)
p (yn | y1, . . . , yn−1)

How does this aid our quest for the marginal distribution? If we think
about this the ratios of the joint contain a suffi cient amount of informa-
tion for deducing the joint distribution. We’ll illustrate this by way of a
numerical example.

7.8.4 example

Suppose we have 3 variables with the following unknown joint and marginal
distributions.

p (x1, x2, x3)
x2, x3
= 1, 1

x2, x3
= 1, 2

x2, x3
= 2, 1

x2, x3
= 2, 2

p (x1)

x1 = 1 0.10 0.05 0.15 0.05 0.35
x1 = 2 0.10 0.05 0.05 0.10 0.30
x1 = 3 0.05 0.10 0.05 0.15 0.35

p (x2) p (x3)
xj = 1 0.45 0.50
xj = 2 0.55 0.50

We know the conditional distributions

p (x1 | x2, x3)
x2, x3
= 1, 1

x2, x3
= 1, 2

x2, x3
= 2, 1

x2, x3
= 2, 2

x1 = 1 0.40 0.25 0.60 1
6

x1 = 2 0.40 0.25 0.20 1
3

x1 = 3 0.20 0.50 0.20 1
2

p (x2 | x1, x3)
x1, x3
= 1, 1

x1, x3
= 1, 2

x1, x3
= 2, 1

x1, x3
= 2, 2

x1, x3
= 3, 1

x1, x3
= 3, 2

x2 = 1 0.40 0.50 2
3

1
3 0.50 0.40

x2 = 2 0.60 0.50 1
3

2
3 0.50 0.60

p (x3 | x1, x2)
x1, x2
= 1, 1

x1, x2
= 1, 2

x1, x2
= 2, 1

x1, x2
= 2, 2

x1, x2
= 3, 1

x1, x2
= 3, 2

x3 = 1 2
3 0.75 2

3
1
3

1
3 0.25

x3 = 2 1
3 0.25 1

3
2
3

2
3 0.75
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From the conditional distributions we derive the ratio of the joint dis-
tribution where xj denotes the realization from draw k and yj denotes the
realization from draw k − 1. For example,

p (x1 = 1, x2 = 1, x3 = 1)

p (y1 = 1, y2 = 1, y3 = 2)

=
p (x1 = 1 | x2 = 1, x3 = 1)

p (y1 = 1 | x2 = 1, x3 = 1)

p (x2 = 1 | x3 = 1, y1 = 1)

p (y2 = 1 | x3 = 1, y1 = 1)

×p (x3 = 1 | y1 = 1, y2 = 1)

p (y3 = 2 | y1 = 1, y2 = 1)

=
0.40

0.40

0.40

0.40

2
3
1
3

= 2

It is suffi cient, for example, to derive the complete set of ratios involving
p(x1=1,x2=1,x3=1)

p(y1,y2,y3)
for all values of y1, y2, and y3. Then, form the linear equa-

tion based on the relative likelihoods and the sum of the likelihoods equal
to one

Ap = b

where p is a vector completely describing the joint distribution for X,

A =

1 −2 0 0 0 0 0 0 0 0 0 0
1 0 − 23 0 0 0 0 0 0 0 0 0

1 0 0 −2 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 −2 0 0 0 0 0 0
1 0 0 0 0 0 −2 0 0 0 0 0
1 0 0 0 0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0 −2 0 0 0
1 0 0 0 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0 0 −2 0
1 0 0 0 0 0 0 0 0 0 0 − 23
1 1 1 1 1 1 1 1 1 1 1 1
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and

b =



0
0
0
0
0
0
0
0
0
0
0
1


Since A is full rank the solution is the unique joint distribution for X.

p =



p (x1 = 1, x2 = 1, x3 = 1)
p (x1 = 1, x2 = 1, x3 = 2)
p (x1 = 1, x2 = 2, x3 = 1)
p (x1 = 1, x2 = 2, x3 = 2)
p (x1 = 2, x2 = 1, x3 = 1)
p (x1 = 2, x2 = 1, x3 = 2)
p (x1 = 2, x2 = 2, x3 = 1)
p (x1 = 2, x2 = 2, x3 = 2)
p (x1 = 3, x2 = 1, x3 = 1)
p (x1 = 3, x2 = 1, x3 = 2)
p (x1 = 3, x2 = 2, x3 = 1)
p (x1 = 3, x2 = 2, x3 = 2)



=



0.10
0.05
0.15
0.05
0.10
0.05
0.05
0.10
0.05
0.10
0.05
0.15


Gaussian elimination and back substitution applied to Ap = b reveals

a deeper result regarding the full matrix, B, of joint likelihood ratios,
p(x1,x2,x3)
p(y1,y2,y3)

.

B =



p(1,1,1)
p(1,1,1)

p(1,1,1)
p(1,1,2)

p(1,1,1)
p(1,2,1) · · · p(1,1,1)

p(3,2,2)
p(1,1,2)
p(1,1,1)

p(1,1,2)
p(1,1,2)

p(1,1,2)
p(1,2,1) · · · p(1,1,2)

p(3,2,2)
p(1,1,3)
p(1,1,1)

p(1,1,3)
p(1,1,2)

p(1,1,3)
p(1,2,1) · · · p(1,1,3)

p(3,2,2)

...
...

...
. . .

...
p(3,2,2)
p(1,1,1)

p(3,2,2)
p(1,1,2)

p(3,2,2)
p(1,2,1) · · · p(3,2,2)

p(3,2,2)


Each row of B identified by the numerator of the ratio, p (l,m, n), can be
utilized to create a matrix A from which row operations reveal

p (i, j, k) =

p(i,j,k)
p(l,m,n)

Z (l,m, n)
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where Z (l,m, n) =
∑
r,s,t

p(r,s,t)
p(l,m,n) . In other words, each column of B (iden-

tified by the denominator of the ratio, p (l,m, n)) rescaled (normalized) by
the column sum identifies the joint distribution, p (x1, x2, x3).
These concepts reinforce the notion that generating simulated draws from

the relevant marginal posterior distribution based on the set of conditional
posterior distributions entails numerous (Gibbs) samples.

7.9 Metropolis-Hastings algorithm

If neither some conditional posterior, p (θj | Y, θ−j), or its marginal poste-
rior, p (θ | Y ), is recognizable, then we may be able to employ the Metropolis-
Hastings (MH ) algorithm. The Gibbs sampler is a special case of the MH
algorithm. The random walk Metropolis algorithm is most common and
outlined next.
We wish to draw from p (θ | ·) but we only know p (θ | ·) up to constant

of proportionality, p (θ | ·) = cf (θ | ·) where c is unknown. The random
walk Metropolis algorithm for one parameter is as follows.
1. Let θ(k−1) be a draw from p (θ | ·).
2. Draw θ∗ from N

(
θ(k−1), s2

)
where s2 is fixed.

3. Let α = min

{
1, p(θ∗|·)

p(θ(k−1)|·)
= cf(θ∗|·)

cf(θ(k−1)|·)

}
.

4. Draw z∗ from U (0, 1).
5. If z∗ < α then θ(k) = θ∗, otherwise θ(k) = θ(k−1). In other words, with

probability α set θ(k) = θ∗, and otherwise set θ(k) = θ(k−1).6

These draws converge to random draws from the marginal posterior distri-
bution after a burn-in interval if properly tuned.
Tuning the Metropolis algorithm involves selecting s2 (jump size) so that

the parameter space is explored appropriately. Usually, smaller jump size
results in more accepts and larger jump size results in fewer accepts. If s2 is
too small, the Markov chain will not converge quickly, has more serial cor-
relation in the draws, and may get stuck at a local mode (multi-modality
can be a problem). If s2 is too large, the Markov chain will move around too
much and not be able to thoroughly explore areas of high posterior prob-
ability. Of course, we desire concentrated samples from the posterior dis-
tribution. A commonly-employed rule of thumb is to target an acceptance
rate for θ∗ around 30% (20− 80% is usually considered “reasonable”).7

6A modification of the RW Metropolis algorithm sets θ(k) = θ∗ with log(α) proba-
bility where α = min{0, log[f(θ∗|·)]− log[f(θ(k−1)|·)]}.

7Gelman, et al [2004] report the optimal acceptance rate is 0.44 when the number of
parameters K = 1 and drops toward 0.23 as K increases.
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The above procedure describes the algorithm for a single parameter or
vector of parameters. A general K parameter Metropolis-Hastings algo-
rithm works similarly (see Train [2002], p. 305).
1. Start with a value β0n.
2. DrawK independent values from a standard normal density, and stack

the draws into a vector labeled η1.
3. Create a trial value of β1n = β0n+σΓη1 where σ is the researcher-chosen

jump size parameter, Γ is the Cholesky factor of W such that ΓΓT = W .
Note the proposal distribution is specified to be normal with zero mean
and variance σ2W .
4. Draw a standard uniform variable µ1.

5. Calculate the ratio F =
L(β1n|yn)φ(β1n)
L(β0n|yn)φ(β0n)

where L
(
β1n | yn

)
is the likeli-

hood for the proposal and φ
(
β1n
)
is the prior for the proposal and L

(
β0n | yn

)
and φ

(
β0n
)
are the analogs for the initial or previous draw.

6. If µ1 ≤ F , accept β1n; if µ1 > F , reject β1n and let β
1
n = β0n.

7. Repeat the process many times, adjusting the tuning parameters if
necessary. For suffi ciently large t, βtn is a draw from the marginal posterior.

7.9.1 Metropolis-Hastings algorithm and reversibility

Now, we explore how the MH algorithm exploits reversibility to assure
that a convergent distribution π∗ can be found. Since we don’t have the
full set of conditional posterior distributions we cannot directly derive the
transition kernel, rather we choose a candidate generator density (for the
next potential draw j) qij and adapt it, if necessary, to satisfy reversibility.
If πiqij = πjqji, that is reversibility is satisfied, then our search is complete.
However, this is unlikely. Rather, suppose πiqij > πjqji. This indicates
instability as the process moves from i to j too often and too infrequently
from j to i. To adjust for this we introduce a probability of move parameter,
αij < 1, to reduce the frequency of moves from i to j. Transitions from i to
j are made according to pMH

ij = qijαij . If no transition occurs the generator
returns the previous draw i. αij is determined to satisfy the reversibility
condition.

πiqijαij = πjqjiαji

Since πiqij > πjqji tells us the process too infrequently moves from j to i,
we make αji = 1, as large as possible (one, since it’s a probability). This
leaves

πiqijαij = πjqji

αij =
πjqji
πiqij
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As π is only proportional to the distribution of interest (f = cπ, for some
unknown constant c), define the probability of move as

αij =
min

(
πjqji
πiqij

, 1
)

πiqij > 0

1 otherwise

Since αij is a ratio, the normalizing constant c cancels. If the generator
density q is symmetric, qij = qji, and αij simplifies to

αij =
min

(
πj
πi
, 1
)

πiqij > 0

1 otherwise

so that if πj > πi the process moves to j, otherwise it moves with proba-
bility πj

πi
. This standard version of the MH algorithm accepts an α fraction

of moves from i to j and effectively all moves from j to i. (i.e., rejecting a
move is as if a move was made from j to i).
On the other hand, suppose πiqij < πjqji, then time reversibility is

ensured if we reverse the above process. That is,

πiqijαij = πjqjiαji

allows us to set the probability of a forward move αij = 1 and control the

probability of a reverse move by αji = min
(
πiqij
πjqji

, 1
)
. Therefore, collec-

tively we have

πipij = πiqijαij = πiqij min

(
πjqji
πiqij

, 1

)
= min (πjqji, πiqij)

πjpji = πjqjiαji = πjqji min

(
πiqij
πjqji

, 1

)
= min (πjqji, πiqij)

In other words, reversibility is satisfied, πipij = πjpji, and administering
either the forward or reverse chain achieves the same result.
The generator density q determines the MH algorithm with transition

controlled via αij . The algorithm effectively defines a transition kernel K
whose nth iterate converges to the target distribution π for large n. The
MH algorithm ensures reversibility by creating a Markov chain which moves
with probability α and repeats the last draw with probability 1− α. If the
reversibility property is satisfied, then π is the invariant distribution for K
(for additional details, see Tierney [1994], Chib and Greenberg [1995], and
below).

MH and kernel convergence

Following the continuous state spaces notation and setup we have a tran-
sition kernel, as a function of a generator density p (θ, φ), defined as

K (θ, φ) = p (θ, φ) dφ+ r (θ) δθ (φ)
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where p (θ, θ) = 0, δθ (φ) = 1 if θ ∈ dφ and 0 otherwise, and r (θ) =
1−

∫
p (θ, φ) dφ, the probability the chain remains at θ. The nth iterate of

the transition kernel is given by

K(n) (θ,A) =

∫
K(n−1) (θ, dφ)K (φ,A)

where K(1) (θ, dφ) = K (θ, dφ). Invariance in distribution implies

π∗ (dφ) =

∫
K (θ, dφ)π (θ) dθ

For McMC methods, the invariant distribution π (·) is known (up to a con-
stant) but the kernel K (·, ·) is unknown. The task is to define an algorithm
that identifies a transition kernel. The above discussion suggests the ker-
nel is primarily determined by the generator density p (·, ·). Next, we show
that if the generator is reversible, then the known target distribution is the
invariant distribution associated with the kernel. In other words, we can
identify an algorithm (MH ) for determining the transition kernel.
If p (·, ·) satisfies reversibility p (θ, φ)π (θ) = p (φ, θ)π (φ), then π (·) is

the invariant distribution for K (·, ·).∫
K (θ,A)π (θ) dθ =

∫ [∫
A

p (θ, φ) dφ

]
π (θ) dθ

+

∫
r (θ) δθ (A)π (θ) dθ

=

∫
A

[∫
p (θ, φ)π (θ) dθ

]
dφ

+

∫
A

r (θ)π (θ) dθ

=

∫
A

[∫
p (φ, θ)π (φ) dθ

]
dφ

+

∫
A

r (θ)π (θ) dθ

=

∫
A

(1− r (φ))π (φ) dφ+

∫
A

r (θ)π (θ) dθ

=

∫
A

π (φ) dφ

The left hand side gives the probability of transitioning from θ to φ, where
θ is generated by π (·), while the right hand side gives the probability of
moving from φ to θ,. again where φ is generated by π (·). Reversibility as-
sures equality of the two sides. In summary, the MH algorithm utilizes a
generator density to define the transition kernel associated with the known
invariant distribution where (kernel) convergence occurs after a large num-
ber of iterations.



7.9 Metropolis-Hastings algorithm 29

7.9.2 Gibbs sampler as a special case of the MH algorithm

For the Gibbs sampler, draws are generated directly from the conditional
posteriors and the MH acceptance probability is αij = 1 for all i and
j. In other words, the (conditional) transition kernels are defined by the
conditional posterior distributions – each identified in blocks. The key is
to recognize that "block-at-a-time" sampling from conditional distributions
converges to the invariant joint distribution π∗. (Recall, if the joint or
marginal distributions were identifiable, we could use them directly for
posterior simulation.) This is a tremendous practical advantage as it allows
us to take draws from each block in succession rather than having to run
each block to convergence for every conditioning value (see Hastings [1970],
Chib and Greenberg [1995], and below for details).

Block sampling and conditional kernel convergence

We continue with the notation and setup utilized in the kernel convergence
discussion above. Define two blocks as θ = (θ1, θ2). Suppose there exists
a conditional transition kernel K1 (θ1, dφ1 | θ2) such that π∗1|2 (· | θ2) is its
invariant conditional distribution.

π∗1|2 (dφ1 | θ2) =

∫
K1 (θ1, dφ1 | θ2)π1|2 (θ1 | θ2) dθ1

The analogous conditional kernel exists for the other block

π∗2|1 (dφ2 | θ1) =

∫
K2 (θ2, dφ2 | θ1)π2|1 (θ2 | θ1) dθ2

As alluded to above, the key result is the product of conditional kernels
has the joint distribution π (·, ·) as its invariant distribution. The result
is demonstrated below. Suppose K1 (·, · | θ2) produces φ1 given θ1 and θ2,
and K2 (·, · | φ1) generates φ2 given θ2 and φ1.∫ ∫

K1 (θ1, dφ1 | θ2)K2 (θ2, dφ2 | φ1)π (θ1, θ2) dθ1dθ2

=

∫
K2 (θ2, dφ2 | φ1)

[∫
K1 (θ1, dφ1 | θ2)π1|2 (θ1 | θ2) dθ1

]
×π2 (θ2) dθ2

=

∫
K2 (θ2, dφ2 | φ1)π∗1|2 (dφ1 | θ2)π2 (θ2) dθ2

=

∫
K2 (θ2, dφ2 | φ1)

π2|1 (θ2 | φ1)π∗1 (dφ1)

π2 (θ2)
π2 (θ2) dθ2

= π∗1 (dφ1)

∫
K2 (θ2, dφ2 | φ1)π2|1 (θ2 | φ1) dθ2

= π∗1 (dφ1)π
∗
2|1 (dφ2 | φ1)

= π∗ (dφ1, dφ2)
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This result sets the stage for a variety of block-at-a-time McMC sampling
schemes.

7.10 Missing data augmentation

One of the many strengths of McMC approaches is their flexibility for
dealing with missing data. Missing data is a common characteristic plagu-
ing limited dependent variable models like discrete choice and selection.
As a prime example, we next discuss Albert and Chib’s McMC data aug-
mentation approach to discrete choice modeling. Later we’ll explore McMC
data augmentation of selection models.

7.10.1 Albert and Chib’s Gibbs sampler Bayes’probit

The challenge with discrete choice models (like probit) is that latent utility
is unobservable, rather the analyst observes only discrete (usually binary)
choices.8 Albert & Chib [1993] employ Bayesian data augmentation to “sup-
ply”the latent variable. Hence, parameters of a probit model are estimated
via normal Bayesian regression (see earlier discussion in this chapter). Con-
sider the latent utility model

UD = Wθ − V

where binary choice, D, is observed.

D =

{
1 UD > 0
0 UD < 0

The conditional posterior distribution for θ is

p (θ|D,W,UD) ∼ N
(
b1,
(
Q−1 +WTW

)−1)
where

b1 =
(
Q−1 +WTW

)−1 (
Q−1b0 +WTWb

)
b =

(
WTW

)−1
WTUD

b0 = prior means for θ and Q =
(
WT
0 W0

)−1
is the prior for the covariance.

The conditional posterior distribution for the latent variables are

p (UD|D = 1,W, θ) ∼ N (Wθ, I|UD > 0) or TN(0,∞) (Wθ, I)

8See Accounting and causal eff ects: econometric challenges, chapter 5 for a discussion
of discrete choice models.
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p (UD|D = 0,W, θ) ∼ N (Wθ, I|UD ≤ 0) or TN(−∞,0) (Wθ, I)

where TN (·) refers to random draws from a truncated normal (truncated
below for the first and truncated above for the second). Iterative draws for
(UD|D,W, θ) and (θ|D,W,UD) form the Gibbs sampler. Interval estimates
of θ are supplied by post-convergence draws of (θ|D,W,UD). For simu-
lated normal draws of the unobservable portion of utility, V , this Bayes’
augmented data probit produces remarkably similar inferences to MLE.9

7.10.2 Probit example

We compare ML (maximum likelihood) estimates10 with Gibbs sampler
McMC data augmentation probit estimates for a simple discrete choice
problem. In particular, we return to the choice (or selection) equation re-
ferred to in the illustration of the control function strategy for identifying
treatment effects of the projection chapter. The variables (choice and in-
struments) are

D Z1 Z2 Z3 Z4 Z5
1 1 0 0 0 1
1 0 3 1 1 −2
1 −1 0 0 0 1
0 −1 0 0 2 0
0 0 0 1 0 0
0 1 2 0 0 0

The above data are a representative sample. To mitigate any small sample
bias, we repeat this sample 20 times (n = 120).11

ML estimates (with standard errors in parentheses below the estimates)
are

E [UD | Z] = −0.6091
(0.2095)

Z1 + 0.4950
(0.1454)

Z2 − 0.1525
(0.2618)

Z3 − 0.7233
(0.1922)

Z4 + 0.2283
(0.1817)

Z5

The model has only modest explanatory power (pseudo-R2 = 1− `(Zθ̂)
`(θ̂0)

=

11.1%, where `
(
Zθ̂
)
is the log-likelihood for the model and `

(
θ̂0

)
is the

9An effi cient algorithm for this Gibbs sampler probit, rbprobitGibbs, is available
in the bayesm package of R (http://www.r-project.org/), the open source statistical
computing project. Bayesm is a package written to complement Rossi, Allenby, and
McCulloch [2005].
10See the second appendix to these notes for a brief discussion of ML estimation of

discrete choice models.
11Comparison of estimates based on n = 6 versus n = 120 samples produces no

difference in ML parameter estimates but substantial difference in the McMC estimates.
The n = 6 McMC estimates are typically larger in absolute value compared to their
n = 120 counterparts. This tends to exagerate heterogeneity in outcomes if we reconnect
with the treatment effect examples. The remainder of this discussion focuses on the
n = 120 sample.
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log-likelihood with a constant only). However, recall this selection equation
works perfectly as a control function in the treatment effect example where
high explanatory power does not indicate an adequate model specification
(see projections chapter).
Now, we compare theML results withMcMC data augmentation and the

Gibbs sampler probit discussed previously. Statistics from 10, 000 posterior
draws following 1, 000 burn-in draws are tabulated below based on the
n = 120 sample.

statistic θ1 θ2 θ3 θ4 θ5
mean −0.6225 0.5030 −0.1516 −0.7375 0.2310
median −0.6154 0.5003 −0.1493 −0.7336 0.2243

standard deviation 0.2189 0.1488 0.2669 0.2057 0.1879
quantiles:

0.025 −1.0638 0.2236 −0.6865 −1.1557 −0.1252
0.25 −0.7661 0.4009 −0.3286 −0.8720 0.1056
0.75 −0.4713 0.6007 0.02757 −0.5975 −0.3470
0.975 −0.1252 0.1056 0.2243 0.3549 0.6110

Sample statistics for data augmented Gibbs McMC probit posterior draws
DGP : UD = Zθ + ε, Z =

[
Z1 Z2 Z3 Z4 Z5

]
As expected, the means, medians, and standard errors of the McMC probit
estimates correspond quite well with ML probit estimates.

7.11 Logit example

Next, we apply logistic regression (logit for short) to the same (n = 120)
data set. We compare MLE results with two McMC strategies: (1) logit
estimated via a random walk Metropolis-Hastings (MH ) algorithm without
data augmentation and (2) a uniform data augmented Gibbs sampler logit.

7.11.1 Random walk MH for logit

The random walkMH algorithm employs a standard binary discrete choice
model

(Di | Zi) ∼ Bernoulli
(

exp
[
ZTi θ

]
1 + exp

[
ZTi θ

])
The default tuning parameter, s2 = 0.25, produces an apparently satisfac-
tory MH acceptance rate of 28.6%. Details are below.
We wish to draw from the posterior

Pr (θ | D,Z) ∝ p (θ) ` (θ | D,Z)
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where the log likelihood is

` (θ | D,Z) =

n∑
i=1

Di log
exp

[
ZTi θ

]
1 + exp

[
ZTi θ

]+(1−Di) log

(
1−

exp
[
ZTi θ

]
1 + exp

[
ZTi θ

])

For Z other than a constant, there is no prior, p (θ), which produces a well
known posterior, Pr (θ | D,Z), for the logit model. This makes the MH
algorithm attractive.
The MH algorithm builds a Markov chain (the current draw depends

on only the previous draw) such that eventually the influence of initial
values dies out and draws are from a stable, approximately independent
distribution. The MH algorithm applied to the logit model is as follows.

1. Initialize the vector θ0 at some value.

2. Define a proposal generating density, q
(
θ∗, θk−1

)
for draw k ∈ {1, 2, . . . ,K}.

The random walk MH chooses a convenient generating density.

θ∗ = θk−1 + ε, ε ∼ N
(
0, σ2I

)
In other words, for each parameter, θj ,

q
(
θ∗j , θ

k−1
j

)
=

1√
2πσ

exp

−
(
θ∗j − θk−1j

)2
2σ2



3. Draw a vector, θ∗ from N
(
θk−1, σ2I

)
. Notice, for the random walk,

the tuning parameter, σ2, is the key. If σ2 is chosen too large, then the
algorithm will reject the proposal draw frequently and will converge
slowly, If σ2 is chosen too small, then the algorithm will accept the
proposal draw frequently but may fail to fully explore the parameter
space and may fail to discover the convergent distribution.

4. Calculate α where

α =

{
min

(
1,

Pr(θ∗|D,Z)q(θ∗,θk−1)
Pr(θk−1|D,Z)q(θk−1,θ∗)

)
Pr
(
θk−1 | D,Z

)
q
(
θk−1, θ∗

)
> 0

1 Pr
(
θk−1 | D,Z

)
q
(
θk−1, θ∗

)
= 0

The core of the MH algorithm is that the ratio eliminates the prob-
lematic normalizing constant for the posterior (normalization is prob-
lematic since we don’t recognize the posterior). The convenience of
the random walk MH enters here as, by symmetry of the normal,
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q
(
θ∗, θk−1

)
= q

(
θk−1, θ∗

)
and the calculation of α simplifies as

q(θ∗,θk−1)
q(θk−1,θ∗)

drops out. Hence, we calculate

α =

{
min

(
1, Pr(θ∗|D,Z)

Pr(θk−1|D,Z)

)
Pr
(
θk−1 | D,Z

)
q
(
θk−1, θ∗

)
> 0

1 Pr
(
θk−1 | D,Z

)
q
(
θk−1, θ∗

)
= 0

5. Draw U from a Uniform(0, 1). If U < α, set θk = θ∗, otherwise set
θk = θk−1. In other words, with probability α accept the proposal
draw, θ∗.

6. Repeat K times until the distribution converges.

7.11.2 Uniform Gibbs sampler for logit

On the other hand, the uniform data augmented Gibbs sampler logit spec-
ifies a complete set of conditional posteriors developed as follows. Let

Di =

{
1 with probability πi
0 with probability 1− πi

, i = 1, 2, . . . , n

where πi =
exp[ZTi θ]
1+exp[ZTi θ]

= FV
(
ZTi θ

)
, or log πi

1−πi = ZTi θ, and FV
(
ZTi θ

)
is the cumulative distribution function of the logistic random variable V .

Hence, πi = Pr

(
U <

exp[ZTi θ]
1+exp[ZTi θ]

)
where U has a uniform(0, 1) distribu-

tion. Then, given the priors for θ, p (θ), the joint posterior for the latent
variable u = (u1, u2, . . . , un) and θ given the data D and Z is

Pr (θ, u | D,Z) ∝ p (θ)

n∏
i=1


I

(
ui ≤

exp[ZTi θ]
1+exp[ZTi θ]

)
I (Di = 1)

+I

(
ui >

exp[ZTi θ]
1+exp[ZTi θ]

)
I (Di = 0)

 I (0 ≤ ui ≤ 1)

where I (X ∈ A) is an indicator function that equals one if X ∈ A, and
zero otherwise.
Thus, the conditional posterior for the latent (uniform) variable u is

Pr (ui | θ,D,Z) ∼
{

Uniform

(
0,

exp[ZTi θ]
1+exp[ZTi θ]

)
if Di = 1

Uniform

(
exp[ZTi θ]
1+exp[ZTi θ]

, 1

)
if Di = 0

Since the joint posterior can be written

Pr (θ, u | D,Z) ∝ p (θ)

n∏
i=1

 I
(
ZTi θ ≥ log ui

1−ui

)
I (Di = 1)

+I
(
ZTi θ < log ui

1−ui

)
I (Di = 0)

 I (0 ≤ ui ≤ 1)
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we have ∑5
j=1 Zijθj ≥ log ui

1−ui if Di = 1

so

θ ≥ 1

Zik

log
ui

1− ui
−
∑
j 6=k

Zijθj


for all samples for which Di = 1 and Zik > 0, as well as for all samples for
which Di = 0 and Zik < 0. Similarly,

θk <
1

Zik

log
ui

1− ui
−
∑
j 6=k

Zijθj


for all samples for which Di =1 and Zik > 0, as well as for all samples for
which Di = 0 and Zik < 0.12 Let Ak and Bk be the sets defined by the
above, that is,

Ak = {i : ((Di = 1) ∩ (Zik > 0)) ∪ ((Di = 0) ∩ (Zik < 0))}

and

Bk = {i : ((Di = 0) ∩ (Zik > 0)) ∪ ((Di = 1) ∩ (Zik < 0))}

A diffuse prior p (θ) ∝ 1 combined with the above gives the conditional
posterior for θk, k = 1, 2, . . . , 5, given the other θ’s and latent variable, u.

p (θk | θ−k, u,D,Z) ∼ Uniform (ak, bk)

where θ−k is a vector of parameters except θk,

ak = max
i∈Ak

 1

Zik

log
ui

1− ui
−
∑
j 6=k

Zijθj


and

bk = min
i∈Bk

 1

Zik

log
ui

1− ui
−
∑
j 6=k

Zijθj


The Gibbs sampler is implemented by drawing n values of u in one

block conditional on θ and the data, D, Z. The elements of θ are drawn
successively, each conditional on u, the remaining parameters, θ−k, and the
data, D, Z.

12 If Zik = 0, the observation is ignored as θk is determined by the other regressor
values.
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7.11.3 Comparison of logit results

ML logit estimates (with standard errors in parentheses below the esti-
mates) are

E [UD | Z] = −0.9500
(0.3514)

Z1 + 0.7808
(0.2419)

Z2 − 0.2729
(0.4209)

Z3 − 1.1193
(0.3250)

Z4 + 0.3385
(0.3032)

Z5

Logit results are proportional to the probit results (approximately 1.5 times
the probit estimates), as is typical. As with the probit model, the logit

model has modest explanatory power (pseudo-R2 = 1 − `(Zθ̂)
`(θ̂0)

= 10.8%,

where `
(
Zθ̂
)
is the log-likelihood for the model and `

(
θ̂0

)
is the log-

likelihood with a constant only).
Now, we compare the ML results with McMC posterior draws. Statis-

tics from 10, 000 posterior MH draws following 1, 000 burn-in draws are
tabulated below based on the n = 120 sample.

statistic θ1 θ2 θ3 θ4 θ5
mean −0.9850 0.8176 −0.2730 −1.1633 0.3631
median −0.9745 0.8066 −0.2883 −1.1549 0.3440

standard deviation 0.3547 0.2426 0.4089 0.3224 0.3069
quantiles:

0.025 −1.7074 0.3652 −1.0921 −1.7890 −0.1787
0.25 −1.2172 0.6546 −0.5526 −1.3793 0.1425
0.75 −0.7406 0.9787 0.0082 −0.9482 0.5644
0.975 −0.3134 1.3203 0.5339 −0.5465 0.9924

Sample statistics for MH McMC logit posterior draws
DGP : UD = Zθ + ε, Z =

[
Z1 Z2 Z3 Z4 Z5

]
Statistics from 10, 000 posterior data augmented uniform Gibbs draws fol-
lowing 40, 000 burn-in draws13 are tabulated below based on the n = 120
sample.

statistic θ1 θ2 θ3 θ4 θ5
mean −1.015 0.8259 −0.3375 −1.199 0.3529
median −1.011 0.8126 −0.3416 −1.2053 0.3445

standard deviation 0.3014 0.2039 0.3748 0.2882 0.2884
quantiles:

0.025 −1.6399 0.3835 −1.1800 −1.9028 −0.2889
0.25 −1.2024 0.6916 −0.5902 −1.3867 0.1579
0.75 −0.8165 0.9514 −0.0891 −1.0099 0.5451
0.975 −0.4423 1.2494 0.3849 −0.6253 0.9451

Sample statistics for uniform Gibbs McMC logit posterior draws
DGP : UD = Zθ + ε, Z =

[
Z1 Z2 Z3 Z4 Z5

]
13Convergence to marginal posterior draws is much slower with this algorithm.
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As expected, the means, medians, and standard errors of the McMC logit
estimates correspond well with each other and the ML logit estimates.
Now that we’ve developed McMC data augmentation for the choice or
selection equation, we return to the discussion of causal effects (initiated
in the classical linear models chapter) and discuss data augmentation for
the counterfactuals as well as latent utility.


