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Within- and between-group regression for
improving the robustness of causal claims
in cross-sectional analysis
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Abstract

Background: A major objective of environmental epidemiology is to elucidate exposure-health outcome associations.
To increase the variance of observed exposure concentrations, researchers recruit individuals from different geographic
areas. The common analytical approach uses multilevel analysis to estimate individual-level associations adjusted for
individual and area covariates. However, in cross-sectional data this approach does not differentiate between residual
confounding at the individual level and at the area level. An approach allowing researchers to distinguish between
within-group effects and between-group effects would improve the robustness of causal claims.

Methods: We applied an extended multilevel approach to a large cross-sectional study aimed to elucidate the
hypothesized link between drinking water pollution from perfluoroctanoic acid (PFOA) and plasma levels of
C-reactive protein (CRP) or lymphocyte counts. Using within- and between-group regression of the individual
PFOA serum concentrations, we partitioned the total effect into a within- and between-group effect by including
the aggregated group average of the individual exposure concentrations as an additional predictor variable.

Results: For both biomarkers, we observed a strong overall association with PFOA blood levels. However, for lymphocyte
counts the extended multilevel approach revealed the absence of a between-group effect, suggesting that most
of the observed total effect was due to individual level confounding. In contrast, for CRP we found consistent between-
and within-group effects, which corroborates the causal claim for the association between PFOA blood levels and CRP.

Conclusion: Between- and within-group regression modelling augments cross-sectional analysis of epidemiological
data by supporting the unmasking of non-causal associations arising from hidden confounding at different levels. In
the application example presented in this paper, the approach suggested individual confounding as a probable
explanation for the first observed association and strengthened the robustness of the causal claim for the second one.
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Background
An important issue in environmental epidemiology is
the robustness of causal claims linking exposures to ad-
verse health outcomes. Strong support for causality
arises if dose–response relationships between exposures
and outcome at the individual level can be demonstrated.
However, exposures (e.g. air pollution, persistent chemi-
cals) are often spatially correlated and vary relatively little
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within single geographic regions. Thus, to obtain sufficient
variance of exposure concentrations researchers often re-
cruit individuals from different geographic areas. Com-
pared to measuring exposure directly at the individual
level, such assessment of exposure at the area level offers
the advantage of lower costs. This approach, referred to as
ecological studies or ecological inference, has emerged as
an avenue for studying exposure-health associations at the
macro-level [1–4]. However, if causal claims are a research
objective [5–8], investigators must focus on individual-
level exposure-outcome analysis (“biologic inference”) [1].
In most cases individual-level associations cannot be
deducted from group-level associations, a phenomenon
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referred to as ecological fallacy or cross-level bias.
Cross-level bias arises from “context effects” (i.e. effects
of neighbourhoods on the individual-level exposure-
outcome relationships) or from confounding or biases aris-
ing differentially at the individual or group level [9–11].
Simple statistical analysis of individual-level data also

fails to offer straightforward solutions due to the hier-
archical clustering of determinants on different levels,
e.g. ecological factors such as environmental exposure
concentrations and individual factors such as daily in-
take, absorption and excretion. To address these issues,
researchers increasingly employ hierarchical modelling
techniques (multilevel modelling), which allow covari-
ates at different levels [12–14] to be included. However,
in cross-sectional data analysis, even these advanced ap-
proaches have limitations with regard to the robustness
of causal claims. The resulting estimate from such multi-
level analysis is a single coefficient for the exposure-
outcome relationship that fails to disentangle within-group
effects from between-group effects.
The present work describes an approach, which parti-

tions within- and between-group relations. Originally de-
veloped in the social sciences, the methodology is
within- and between-group regression (WBGR) [15]. For
example, the average intelligence quotient (IQ) of a
school class commonly affects the individual-level asso-
ciation between the IQ and learning performance of stu-
dents. However, this WBGR approach is rarely applied
in environmental epidemiology [16].
The aim of our paper is to generalise the WBGR ap-

proach for epidemiological studies where individuals are
recruited from different geographical areas and where en-
vironmental exposure varies between areas. In these stud-
ies, the variation of exposure within and between areas is
affected by different factors. Between-area variation results
from the effect of area-specific variables (i.e. the magni-
tude of environmental exposure concentration). Thus,
exposure-outcome relations analysed within areas (indi-
vidual level) and between areas (group level) may yield dif-
ferent results because the relations are prone to different
sources of bias or to the presence of a context effect. The
latter implies that the average level of a given group affects
the individuals’ within-group relation (e.g. the effect of
neighbourhoods on individual-level exposure-outcome re-
lations). In the present paper, we illustrate this WBGR ap-
proach using a dataset from a cross-sectional study, which
primarily investigates whether serum concentrations of
the chemical substance perfluorooctanoic acid (PFOA) af-
fected different health-related outcomes.

Methods
We briefly introduce the basic concepts of WBGR for
the applied researcher; mathematical details of the pro-
cedure are described in the appendix.
The conventional multilevel approach for clustered
data employs equation (1)

Y ij ¼ α00 þ β10 xij þ U0j þ Rij ð1Þ
which incorporates an intercept α00, a fixed effect β10 de-
noting the total effect observed at the individual level
and a random effect of the group U0j; Rij denotes the re-
sidual error term at the individual level within group j.
Researchers usually include additional covariates at both
individual and group levels to minimize the residual
error. If the observed total effect β10 (TE) has exactly the
same magnitude as the association observed within
areas, the within-group effect (WGE), and as the associ-
ation observed between area-average values, the between-
group effects (BGE), the analysis could safely stop here, as
there is little evidence for confounding on the individual
or area level. However, equation (1) does not provide this
information.

Within- and between-group regression
The first step of WBGR is to elucidate whether there is
homogeneity of the different effect estimators described
above, i.e. whether TE =WGE = BGE. We achieve this
by introducing an additional term into equation (1),
namely, the group average of the individual-level expos-
ure concentrations (equation 2):

Y ij ¼ α00 þ β10 xij þ β01 �x:j þ U0j þ Rij ð2Þ
In equation (2) the parameter β01 quantifies the differ-

ence between WGE and BGE; the derivation of this rela-
tionship is briefly described in the appendix and more
mathematical details are described elsewhere [17]. Reject-
ing the null hypothesis of β01 = 0 implies an effect of the
exposure concentration averaged at the group level be-
yond the WGE. This test procedure is known in econo-
metrics as the Hausman test [18]. For β01 > 0, the BGE is
larger than the WGE, while for β01 < 0 the BGE is smaller
than the WGE (see section below for interpretation).
If β01 ≠ 0, BGE and WGE should be explicitly esti-

mated by fitting a second model with a slightly different
parameterisation. This we achieve by including the devi-
ance of the individual exposure from the group average
xij−�x:j
� �

as a predictor, resulting in equation (3):

Y ij ¼ ~α00 þ ~β10 xij−�x:j
� �þ ~β01 �x:j þ U0j þ Rij ð3Þ

now explicitly estimating BGE ~β01 ¼ β10 þ β01

� �
and

WGE ~β10 ¼ β10

� �
.

The extension of WBGR to more complex study
designs with more than two levels of clustering is
straightforward, as illustrated in the following example.
A multi-centre study recruited students from different
schools. To disentangle within-class effects, between-
class effects and between-school effects, we introduce
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two additional random effects at the class and at the
school level with their respective aggregated exposure
levels. Expanding equation (3) allows the size of the
between-class and between-school effect to be compared
to exposure-outcome associations at the individual level.
Mathematical details and applications of three- or higher
order multilevel modelling are described elsewhere [17].

Adjustment for residual within-group clustering
In multilevel modelling, random effects are the pre-
ferred approach to address residual within-group clus-
tering [13, 19]. Conceptually, the random variable
represents the effects of all unobserved determinants at
the group level. Presence of clustering should be tested
by a hypothesis test based on an estimate of the vari-
ance of the random effect. Since random-effect model-
ling has stringent data assumptions (e.g. sufficient
number of groups, distributional assumptions of the
random effect), robust alternatives such as generalised
estimating equations (GEE) or robust variance estima-
tion are often preferable [20–22].

Interpretation of WGE and BGE
The simplification above does not account for clustering
of individuals within groups, which is examined by de-
termining the intra-class correlation coefficient (ICC). In
the classical example of examining the relationship be-
tween IQ and academic achievement in students clus-
tered within classes, WGE is the impact of the students’
IQs on the performance score averaged across classes.
By contrast, the BGE expresses the effect of the group
mean IQ on the group mean performance scores. The
overall exposure-outcome relation (TE) estimated by
equation (1) is a weighted average of the underlying
within- and between-group relations with weights pro-
portional to the (ICC) [17]:

TE ¼ BGE � ICCþ WGE � 1−ICCð Þ: ð4Þ

Equation (4) implies that the TE must always be be-
tween BGE and WGE. If clustering is substantial (e.g.
ICC > 0.7), the TE will be very close to the BGE. How-
ever, if there is only little clustering (e.g. ICC < 0.3), the
TE will be close to the WGE. The larger the clustering,
the better the BGE represents the TE.

WBGR and context effects in environmental epidemiology
True context effects are very common in research on
psychosocial determinants of health and have been ac-
knowledged in the social sciences since Émile Dur-
kheim’s seminal work on regional differences in suicide
rates more than a century ago [23]. In contrast, in most
environmental epidemiological applications, true context
effects are rare. A true context effect in the present
example of the C8 health project would imply that the
biological effect of PFOA on an individual’s health is af-
fected by the average district concentration of PFOA
serum exposure beyond the individual PFOA serum con-
centration. This is rather unlikely, since an individual’s
PFOA serum concentration results from the individual’s
consumption of polluted water; a person drinking solely
bottled water would not have any PFOA exposure at all.
Because the effect of the exposure at the macro-level
(PFOA concentration in the water district) is reflected in
the PFOA exposure in the serum, we can exclude here an-
other causal pathway from the average district level to the
health outcomes. Thus, if true context effects are unlikely
in terms of biological reasoning but a WBGR analysis re-
veals the presence of considerable between-group associa-
tions (as in our example), at least this part of the total
effect cannot be explained by biases or confounding at the
individual level. To the extent that we can exclude con-
founding at the group level, this finding may be inter-
preted to improve causal claims as illustrated below. In
contrast, if the between-group effect estimate is negligible
in comparison to the within-group effect or the individual
level outcome-exposure association, the presence of bias
and non-causality is more likely (Fig. 1) [9].

An application example – the C8 Health Study
To illustrate the WBGR approach, we analyse data from
a large cross-sectional study, the C8 Health Project. The
study was approved by the London School of Hygiene
and Tropical Medicine Ethics Committee and is one of
the C8 Science Panel studies; details of the study design
are described elsewhere [24]. Briefly, the aim of the
study was to elucidate the possible association between
the toxic pollutant PFOA and intermediate health out-
comes (biomarkers) and clinical outcomes in 69,030
people living in different water districts exposed to en-
vironmental pollution by a chemical plant emitting
PFOA used in the manufacturing of fluoropolymers. Eli-
gible study participants were recruited between August
2005 and August 2006 in the states of Ohio and West
Virginia, USA. Individuals were eligible to participate if
they had consumed water for at least one year between
1950 and 2004 while living, working or going to school
in one of the six water districts, in an area of private
water sources or in areas of documented PFOA pollu-
tion (participation rate 80 %). A separate analysis identi-
fied residence in one of the contaminated water districts
as the strongest predictor of individual PFOA serum
concentration [25]. As supporting the causal claim of
linking PFOA pollution to health outcomes was a major
objective, researchers decided to use the individual’s
PFOA serum concentrations as the exposure measure
and a variety of health measures as outcomes, including
an array of intermediary biomarkers [26–30]. For the



Fig. 1 Example patterns of within-and between-group relations. Footnote: The lines are within-group regression lines, x-axis is exposure level, and
y-axis is outcome level
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present application example we selected a subpopulation
of the C8 Health Project study population consisting of
25,817 adults (> = 18 years) that were stable residents of
six different water districts with different PFOA expos-
ure concentrations in the drinking water.
Individual PFOA serum concentrations ensued pri-

marily from water intake from a contaminated drinking
water supply. However, an individual’s serum concentra-
tions can ensue both from regional characteristics (i.e.
between-group differences in drinking water concentra-
tion of PFOA) and from multiple individual factors af-
fecting the bioaccumulation of PFOA (i.e. within-group
differences, such as genetic factors, amount of daily
water intake, duration of residence in the area). Thus,
the exposure was the result of a complex causal chain of
exposure determinants acting on different levels (Fig. 2).
As the perfect district level exposure measurement (i.e.
drinking water concentrations of PFOA at time of water
consumption) was not available, the individual PFOA
serum concentration reflecting the integrated bio-
accumulation over time had to be used as best proxy.
Other research has used such proxies in the concept

of instrumental variables [31–33]. An instrumental vari-
able is an operationalisation of an intermediary variable
within the causal chain leading from exposure to health
outcomes. The key feature of the instrumental variable
is its independence of any individual-confounding variable.
For example, the association between LDL cholesterol
(LDL-C) and cardiovascular disease may be confounded by
a myriad of individual behaviour variables, which lead both
to elevated LDL-C levels and increased risk of cardiovascu-
lar disease. However, genetic variations leading to higher
LDL-C levels are very unlikely to be confounded by behav-
ioural variables acquired after birth. Likewise, in the
present example, district-average PFOA serum concentra-
tions may be employed as an instrumental variable for
PFOA drinking water exposure, as long as individual con-
founders (e.g. genetic variation in metabolism or individual
factors affecting water intake) are randomly distributed
across water districts.

Applying WBGR to the data of the C8 Health Project
We conducted data analysis in several steps. First, we
tested different linear models (total and stratified by dis-
trict), assuming log-linear and log-log relations. All
models were adjusted for potential individual-level con-
founding variables (age, gender, body mass index, fre-
quency of exercise, alcohol consumption, month of
measurement). Secondly, we visualised the relationship
pattern by bar plots showing the fitted marginal means
of outcomes vs. deciles of PFOA (total, stratified by dis-
trict and aggregated by district). Third, we tested for het-
erogeneity of within-district slopes across districts by
including interaction terms. Fourth, we assessed whether
within- and between-district associations were different
by using the WBGR approach, which incorporates the
average PFOA level of each district as an additional ex-
planatory variable. If we found heterogeneous BGE and



Fig. 2 Conceptual model of the C8 Health Project. Footnote: Dotted rectangles indicate larger not directly observable causal constructs
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WGE, we fitted a second model using the deviance of
individual PFOA exposure from the average PFOA ex-
posure in the district. Finally, we tested for the presence
of residual within-district clustering by estimating the
variance of the random effect.
Fig. 3 Distribution of PFOA serum concentrations in the water districts
For the present illustration of the WBGR concept, we
deliberately selected two biomarkers, which showed dif-
ferent patterns of within- and between-district relations:
lymphocyte count, where we found evidence that the ob-
served association is non-causal, and C-reactive protein
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(CRP), where we found consistent within- and between-
district associations.
Results
Serum concentrations of PFOA (measured in ng/ml)
varied substantially across the six water districts (mean
of district means = 89.8, SD = 118.0, min = 15.0, max =
324.2) and among the 25,817 individuals (mean = 102.9,
SD = 187.7, min = 0.25, max = 4751.5). As expected, individ-
ual PFOA exposure concentrations clustered substantially
within water districts (ICC = 46 %, Fig. 3). Likewise, we ob-
served for CRP serum concentrations (measured in mg/l)
substantial variance between districts (mean of district me-
dians = 1.7, SD = 0.2, min = 1.5, max = 2.0) and between in-
dividuals (median = 2.4, iqr = 2.8, min = 0.2, max = 10.0). By
contrast, lymphocyte counts showed very small variation
between districts (mean of district means = 2.08, SD = 0.03,
min = 2.04, max = 2.12) but strong variation between indi-
viduals (mean = 2.07, SD = 0.66, min = 0.20, max = 10.70).
Calculation of ICC confirmed this observation: we found
significant clustering of CRP concentrations within districts
(ICC = 2 %) but absence of within-district clustering of
lymphocyte count (ICC = 0 %).
Crude multilevel estimates of the association between

PFOA serum concentrations, after adjusting for multiple
confounders at the district and individual level, revealed
significant overall associations (p < 0.001) with the two
outcome variables (see total effects shown in Table 1).
At this point, it was unclear whether these results were
due to residual confounding not detected by a regular
multilevel analytical approach.
Applying the strategy outlined in the methods section

by introducing the district-average PFOA serum concen-
tration as the term β01 �x:j in equation (2) revealed β01 as
different from 0 for both outcomes (p < 0.01). This vari-
ance suggested the need for further exploration using
the WBGR approach. Estimating the BGE and the WGE
using equation (3) revealed a significant BGE for CRP,
Table 1 Results of within- and between-regression modelling of PFO

Between-district effect Within-district effec

Outcome model betaa SEb betaa SEb

CRP log-linear −0.232 0.0525 −0.113 0.0403

log-log −31.021 6.3289 −36.605 7.9959

Lymphocytes log-linear −0.012 0.0166 0.065 0.0127

log-log −1.365 1.9997 23.091 2.5265
a: regression coefficient of PFOA * 1000
b: standard error of regression coefficient * 1000
c: coefficient of determination of a model only including covariates without PFOA
d: coefficient of determination of a model additionally including PFOA
e: difference in R2 due to inclusion of PFOA
f: coefficient of determination within districts
g: coefficient of determination between districts
but no BGE for lymphocyte counts. Results are tabulated
in Table 1 and illustrated in Figs. 4 and 5.
In summary, the R2 contribution of PFOA was very

small and quite similar for log-linear and log scales. For
CRP, we observed consistent slopes within all districts
(Fig. 5, panel b); slopes were less consistent for lympho-
cytes within district, showing a saturation effect in some
districts (Fig. 4, panel b). If PFOA causes the observed
relationship, we would also expect to see an association
at the aggregated level (i.e. between districts shown in
panel c). This was the case for CRP, where we also ob-
served a clear trend on the aggregated level (Fig. 4c) but
not for lymphocyte counts (Fig. 5c). Additionally, we
found that the significant clustering of CRP concentra-
tions within districts (ICC = 2 %) disappeared after
adjusting for PFOA and other covariates, corroborating
the hypothesis that part of the CRP variation is ex-
plained by heterogeneous PFOA concentrations between
districts. Results from WBGR further corroborated this
finding; WGE and BGE were of similar magnitude and
statistically significant (Table 1). For lymphocytes, we
observed heterogeneous WDE and BDE and heteroge-
neous WDE within districts, both indicating confound-
ing and/or reverse causality.
Discussion
We presented WBGR as an approach for statistical ana-
lysis of clustered epidemiological data aimed at improv-
ing the robustness of causal claims in cross-sectional
analysis. We illustrated the application of the approach
to data from a large cross-sectional study with strong
clustering of individual exposure concentrations (serum
concentrations of PFOA) within water districts, which
had been contaminated by the emissions from a chem-
ical plant. By disentangling the exposure-outcome rela-
tions observed within- and between-groups, such as
individuals living in a particular geographical area, the
approach may reveal bias in estimates and indicate
A on immune biomarkers (the C8-Health project, N = 25 817)

t Total effect Model fit

betaa SEb R2oc R2d dR2e R2wf R2bg

−0.157 0.0328 21.0 % 21.1 % 0.1 % 20.7 % 90.4 %

−33.170 6.3668 21.0 % 21.2 % 0.2 % 20.8 % 92.8 %

0.036 0.0097 11.4 % 11.4 % 0.1 % 11.2 % 88.2 %

8.045 3.8012 11.4 % 11.5 % 0.1 % 11.4 % 88.4 %



Fig. 4 Lymphocyte count per decile of PFOA: a Total association
observed at the individual level, b Within-district associations, stratified
by district, c Between-district associations (group-level association)

Fig. 5 C-reactive protein per decile of PFOA: a Total association
observed at the individual level, b Within-district associations, stratified
by district, c Between-district associations (group-level association)
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spurious non-causal exposure-outcome associations. We
introduced the basic statistical concepts, discussed the
ideas of context effects and cross-level bias, and pre-
sented a two-step modelling strategy for practical data
analysis within the multilevel framework. From the
PFOA study we chose two biomarkers (lymphocyte
count and CRP) to illustrate how the approach can be
used to improve the robustness of causal claims in
cross-sectional analysis; further application examples in
the same study are described elsewhere [28–30]. The
lymphocyte count showed a strong within-group relation
with PFOA but no between-group relation. Thus, we
interpreted the observed within-group pattern as a result
of individual confounders, i.e. drinking water consumption
or absorption/excretion of PFOA (e.g. genetic factors), ra-
ther than as due to a causal effect of PFOA exposure. In
contrast, for CRP we found consistent and significant
within- and between-district associations and thus support
a causal claim for the effect of PFOA on CRP. In line with
this result, we observed a slight clustering of CRP within
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districts. This may be interpreted as arising from risk-
factor exposure at the group level (e.g. PFOA concentra-
tions in the drinking water assumed to be constant within
a particular water district).
The WBGR approach using the district average PFOA

serum concentrations as a proxy to estimate the un-
known district drinking water concentration at the time
of water consumption is related to the statistical frame-
work of instrumental variables [31–33]. An example
from the medical literature is the research about the as-
sociation of CRP and cardiovascular disease. Until gen-
etic Mendelian randomisation studies were performed
that introduced genetic factors as instrumental variables
to predict biomarkers, it was unclear whether the ob-
served association was causal (i.e. whether CRP causally
affects the risk of cardiovascular disease or whether it is
merely a marker for a previous cardiovascular). In the
present study, district-average PFOA serum concentra-
tions were more proximate to the true exposure (district
PFOA water concentration at the time of water consump-
tion) than the individual’s PFOA serum concentration.
Another application in epidemiology could be the elucida-
tion of the association between unfavourable psychosocial
work characteristics and adverse health outcomes, e.g. the
association between work-related perception of stress and
cardiovascular disease [34]. If aggregated perceived stress
perception levels at the department or company level were
available, such aggregated value would be more proximate
to the unobservable psychosocial adversity of specific
work-settings.
The suggested approach is only applicable if there is

some clustering of individual exposure concentrations
within water districts or units of aggregation (ICC > > 0
and ICC < < 1). The WBGR approach turns a nuisance
in straightforward multilevel regression analysis into an
advantage for in-depth analysis supporting or refuting
causal claims in cross sectional analysis. In the present
study, individual PFOA exposure concentrations were
substantially clustered within water districts (ICC =
46 %, Fig. 3), a not surprising finding since the level of
environmental pollution with PFOA was different in the
water districts. This high intra-district correlation
seemed to be a problem because spatial autocorrelation
in exposure may correlate with spatial autocorrelation in
disease (e.g. due to spatial clustering in health provision,
screening take-up or other risk factors). However, disen-
tangling within- and between-district relations by multi-
level modelling helped to reveal spurious, non-causal
associations (as demonstrated by the example of bio-
marker lymphocyte counts). Since a true context effect
was unlikely in our environmental example, we inter-
preted heterogeneous between- and within-district rela-
tions as an indicator for estimation bias and non-causality
of the observed associations. Individual variation in each
water district may have resulted from variation in daily tap
water intake and other factors affecting the bioaccumula-
tion of PFOA. In contrast, the between-group relations
obtained by analysing the data at the district level are ro-
bust against these individual confounders.
Further applications of WBGR approach in environ-

mental epidemiology are illustrated in the following
hypothetical example. Assuming that simple regression
analysis shows an association of PFOA with headaches,
an individual-level analysis alone does not clarify
whether a) PFOA causes (or prevents) headaches or b)
“reverse causality” is present, i.e. people with headaches
have a different water intake than healthy individuals
and thus have different levels of PFOA. In case (a), we
would find an association between PFOA and headaches
both within and between areas since the higher average
PFOA within a given area would increase the prevalence
of headaches in this area. In contrast, in case (b) we
would find a relation within each district, but between
districts there would be little or no correlation as most
of the individual PFOA variation is explained by the
PFOA concentration in the water supply. Another reason
would be the presence of a third (confounding) factor,
which was associated with both PFOA and prevalence of
headaches. For example, alcohol use may cause headaches
and affect water intake. In that case, a naive individual-
level analysis might suggest that PFOA prevented head-
aches, even if the prevalence of headaches was not lower
in a district with lower PFOA exposure.
A major limitation of WBGR is that it improves the

robustness of causal claims only indirectly by showing
up non-causal associations, which are likely due to bias-
neglecting confounders and/or effect modifiers on differ-
ent levels. Homogeneous between- and within- group
relations are a necessary but insufficient condition for
assessing causal links. Other criteria are needed to fur-
ther support the causal claim; however, they can often
only be assessed by conducting longitudinal studies, for
example, a temporal relationship, plausibility, consistency
and strength of association. Further details are described
in a systematic approach originally elaborated by Hill [5].
A further limitation to the approach is that the average ex-
posure concentrations of geographical areas are not per-
fect instrument variables as are genetic factors in a
Mendelian randomisation study. However, in our applica-
tion example, detailed environmental experimental and
modelling studies [23] substantiated the claim that the
average serum PFOA concentrations in a particular water
district may serve as a proxy for its PFOA concentrations
in the drinking water.

Conclusion
Our methodological work shows that WBGR is an ele-
gant technique for the statistical analysis of clustered
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epidemiological data. The statistical approach proposed
in this paper may improve the robustness of causal
claims of exposure-outcome associations in cross-
sectional analysis by unmasking non-causal associations
showing up due to hidden confounding. The approach is
especially useful for individual-level analysis in environ-
mental epidemiology in which individuals were recruited
from different geographical areas with heterogeneous
levels of environmental exposure.

Appendix
Mathematical details of within- and between group
regression
For a continuous outcome Y and an explanatory variable
X (with observations of individual i clustered within
groups j) we obtain the multilevel regression model

Y ij ¼ α00 þ β10 xij þ U0j þ Rij: ðA1Þ
For simplicity, model (A1) only incorporates one

individual-level explanatory variable (X); extensions for
more explanatory variables at both individual- and
group-levels are straightforward. Model (A1) is called a
mixed-effects model, incorporating an intercept α00 , a
fixed effect (β10) quantifying the effect of the explanatory
variable X and a random effect U0j, a random variable
which follows a presumed theoretical distribution (usu-
ally normal or gamma), and a normal distributed error
term Rij. We note that in model (A1) the within- and be-
tween group coefficients are forced to be equal, which is
an unrealistic assumption for many practical applica-
tions. Thus, as an extension, we add the group mean �x:j
as an explanatory variable and obtain the more flexible
model

Y ij ¼ α00 þ β10 xij þ β01 �x:j þ U0j þ Rij; ðA2Þ
which allows BGE and WGE to be different.
If we consider model (A2) within a given group, the

terms can be reordered as

Y ij ¼ α00 þ β01 �x:j þ U0j
� �þ β10 xij þ Rij; ðA3Þ

with the group-specific random intercept
α00 þ β01 �x:j þ U0j
� �

and the regression coefficient of X
within this group (β10). The systematic part is the
within-group regression model

Y ¼ α00 þ β01 �x:j
� �þ β10 x ðA4Þ

By taking the group average on both sides of equation
(A3), we obtain the between-group regression model

�Y :j ¼ α00 þ β10 �x:j þ β01 �x:j þ U0j þ Rij

¼ α00 þ β10 þ β01
� �

�x:j þ U0j þ Rij: ðA5Þ
Model (A5) shows that using this parameterization the
term (β10 + β01) estimates the BGE. If we reject the null
hypothesis (β01 = 0) we fit a second model (7) incorpor-
ating group-centered explanatory variables, i.e. variables
with mean 0 that measure the individuals’ deviation
within a group from the group mean:

Y ij ¼ ~α00 þ ~β10 xij−�x:j
� �þ ~β01 �x:j þ U0j þ Rij :

ðA6Þ

Model (A6) now explicitly estimates BGE
~β01 ¼ β10 þ β01

� �
and WGE ~β10 ¼ β10

� �
.

Competing interests
All authors disclose any competing interests.

Authors’ contribution
BG had the idea for the research and has written the manuscript. The other
authors contributed in drafting the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
The authors thank the participants of the C8 Health project for their
contributions to this study. They also thank Dr Tony Fletcher and Dr Ben
Armstrong for their comments on the manuscript and Amy Beierholm and
Susan Sills for linguistic corrections. Funding for this work, the C8 Science
Panel Community Study at London School of Hygiene and Tropical Medicine
(LSHTM), comes from the C8 Class Action Settlement Agreement (Circuit Court
of Wood County, WV, USA) between DuPont and plaintiffs, which resulted
from the release of perfluorooctanoic acid (PFOA) into drinking water. It is
one of the C8 Science Panel Studies undertaken by the Court-approved C8
Science Panel established under the same Settlement Agreement. The task
of the C8 Science Panel, of which TF is a member, is to undertake research
in the Mid-Ohio Valley and subsequently evaluate the results, along with
other available information, to determine if there are any probable links
between PFOA and disease. Funds were administered by the Garden City
Group (Melville, NY), which reports to the Court. This work was further
supported by the Brazilian Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico [contract no. 400011-2011-0 to BG]. There was no funding by
National Institutes of Health (NIH) or, Wellcome Trust. or the Howard Hughes
Medical Institute (HHMI).

Author details
1Mannheim Institute of Public Health, Social and Preventive Medicine,
University of Heidelberg, Ludolf-Krehl-Strasse 7-11, Mannheim 68167,
Germany. 2Instituto de Saúde Coletiva, Federal University of Bahia, Salvador,
Brazil. 3Centro de Pesquisa Gonçalo Muniz, Fundação Oswaldo Cruz
(FIOCRUZ), Salvador, Bahia, Brazil.

Received: 21 February 2015 Accepted: 19 June 2015

References
1. Morgenstern H. Ecologic Studies. In: Rothman KJ, Greenland S, editors.

Modern Epidemiology. Lipincott: Philadelphia; 1998. p. 459–80.
2. Prentice RL, Sheppard L. Dietary fat and cancer: rejoinder and discussion of

research strategies. Cancer Causes Control. 1991;2(1):53–8.
3. Prentice RL, Sheppard L. Dietary fat and cancer: consistency of the

epidemiologic data, and disease prevention that may follow from a practical
reduction in fat consumption. Cancer Causes Control. 1990;1(1):81–97.
discussion 99–109.

4. Prentice RL, Pepe M, Self SG. Dietary fat and breast cancer: a quantitative
assessment of the epidemiological literature and a discussion of
methodological issues. Cancer Res. 1989;49(12):3147–56.

5. Hill AB. The Environment and Disease: Association or Causation? Proc R Soc
Med. 1965;58:295–300.



Genser et al. Environmental Health  (2015) 14:60 Page 10 of 10
6. Greenland S. Randomization, statistics, and causal inference. Epidemiology.
1990;1(6):421–9.

7. Rothman KJ, Greenland S. Causation and causal inference in epidemiology.
Am J Public Health. 2005;95 Suppl 1:S144–150.

8. Pearl J. Robustness of causal claims. Proceeding UAI ’04 Proceedings of the
20th conference on Uncertainty in artificial intelligence. Virginia, United
States: AUAI Press Arlington; 2004. p. 446–53.

9. Sheppard L. Insights on bias and information in group-level studies.
Biostatistics. 2003;4(2):265–78.

10. Greenland S. Ecologic versus individual-level sources of bias in ecologic esti-
mates of contextual health effects. Int J Epidemiol. 2001;30(6):1343–50.

11. Greenland S, Morgenstern H. Ecological bias, confounding, and effect
modification. Int J Epidemiol. 1989;18(1):269–74.

12. Rice N, Leyland A. Multilevel models: applications to health data. J Health
Serv Res Policy. 1996;1(3):154–64.

13. Greenland S. Principles of multilevel modelling. Int J Epidemiol.
2000;29(1):158–67.

14. Austin PC, Goel V, van Walraven C. An introduction to multilevel regression
models. Can J Public Health. 2001;92(2):150–4.

15. Davis JA, Spaeth JL, Huson C. A technique for analyzing the effects of group
composition. Am Sociological Rev. 1961;26:215–25.

16. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL,
et al. Long-term exposure to air pollution and incidence of cardiovascular
events in women. N Engl J Med. 2007;356(5):447–58.

17. Snijders T, Bosker R. Multilevel analysis. London: Sage Publications; 2000.
18. Hausman JA, Taylor WE. Panel data and unobservable individual effects.

Econometrica. 1981;49:1377–98.
19. Diez-Roux AV. Multilevel analysis in public health research. Annu Rev Public

Health. 2000;21:171–92.
20. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear

models. Biometrika. 1986;73(1):13–22.
21. Huber PJ, editor. The behavior of maximum likelihood estimates under

nonstandard conditions. Fifth Berkeley Symposium on Mathematical
Statistics and Probability. Berkely, CA: University of California Press; 1967.

22. White H. A heteroskedasticity-consistent covariance matrix estimator and a
direct test for heteroskedasticity. Econometrica. 1980;48:817–30.

23. Durkheim E. Suicide (translated by Spaulding JA and Simpson G). Glencoe,
I.L.: Free Press; 1951.

24. Frisbee SJ, Brooks Jr AP, Maher A, Flensborg P, Arnold S, Fletcher T, et al.
The C8 health project: design, methods, and participants. Environ Health
Perspect. 2009;117(12):1873–82.

25. Steenland K, Jin C, MacNeil J, Lally C, Ducatman A, Vieira V, et al. Predictors
of PFOA levels in a community surrounding a chemical plant. Environ
Health Perspect. 2009;117(7):1083–8.

26. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of
perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids
among adults living near a chemical plant. Am J Epidemiol.
2009;170(10):1268–78.

27. Lopez-Espinosa MJ, Fletcher T, Armstrong B, Genser B, Dhatariya K, Mondal
D, et al. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane
Sulfonate (PFOS) with Age of Puberty among Children Living near a
Chemical Plant. Environ Sci Technol. 2011;45(19):8160–6.

28. Gallo V, Leonardi G, Genser B, Lopez-Espinosa MJ, Frisbee SJ, Karlsson L,
et al. Serum Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate
(PFOS) Concentrations and Liver Function Biomarkers in a Population with
Elevated PFOA Exposure. Environ Health Perspect. 2012;120(5):655–60.

29. Mondal D, Lopez-Espinosa MJ, Armstrong B, Stein CR, Fletcher T. Relationships
of Perfluorooctanoate and Perfluorooctane Sulfonate Serum Concentrations
Between mother-child pairs in a Population with Perfluorooctanoate Exposure
from Drinking Water. Environ Health Perspect. 2012;120(5):752–7.

30. Steenland K, Fletcher T, Savitz DA. Epidemiologic evidence on the health
effects of perfluorooctanoic acid (PFOA). Environ Health Perspect.
2010;118(8):1100–8.

31. Gennetian LA, Magnuson K, Morris PA. From statistical associations to
causation: what developmentalists can learn from instrumental variables
techniques coupled with experimental data. Dev Psychol. 2008;44(2):381–94.

32. Greenland S. An introduction to instrumental variables for epidemiologists.
Int J Epidemiol. 2000;29(4):722–9.
33. Rassen JA, Brookhart MA, Glynn RJ, Mittleman MA, Schneeweiss S.
Instrumental variables I: instrumental variables exploit natural variation in
nonexperimental data to estimate causal relationships. J Clin Epidemiol.
2009;62(12):1226–32.

34. Kivimaki M, Nyberg ST, Batty GD, Fransson EI, Heikkila K, Alfredsson L, et al.
Job strain as a risk factor for coronary heart disease: a collaborative
meta-analysis of individual participant data. Lancet. 2012;380(9852):1491–7.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Within- and between-group regression
	Adjustment for residual within-group clustering
	Interpretation of WGE and BGE
	WBGR and context effects in environmental epidemiology

	An application example – the C8 Health Study
	Applying WBGR to the data of the C8 Health Project


	Results
	Discussion
	Conclusion
	Appendix
	Mathematical details of within- and between group regression

	Competing interests
	Authors’ contribution
	Acknowledgements
	Author details
	References



