Ralph's row component

A simple double entry accounting system is defined by Ay = x where y is a vector of transaction amounts $[y_1 \ y_2 \ y_3]^T$, x is a vector of changes in account balances $[2 \ -3 \ 1]^T$, and

$$A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix},$$

an incidence matrix.

Suggested:

A. singular value decomposition and pseudoinverse

1. Find the singular value decomposition of A such that $A = UDV^T$ where V is a matrix of orthonormal eigenvectors of A^TA , D is a diagonal matrix containing the square root of the eigenvalues of A^TA , and $U = AVD^{\dagger}$ where D^{\dagger} is a diagonal matrix containing the inverse of the nonzero elements plus the zero elements of D.

2. Find the pseudo-inverse of A such that $A^{\dagger} = VD^{\dagger}U^{T}$, $AA^{\dagger}A = A$, and $A^{\dagger}AA^{\dagger} = A^{\dagger}$.

3. Find the consistent solution for y that lies entirely in the rows of A, the row component, $y_{row} = A^{\dagger}x$. $Ay_{row} = x$, $AN^{T} = 0$, and $Ny_{row} = 0$. (Hint: find the nullspace of A, N.)

4. Verify $y_{row} = P_A y_p = A_0^T (A_0 A_0^T)^{-1} A_0 y_p$ where A_0 is the *A* matrix after dropping the last row, and $P_A = A^{\dagger}A = A_0^T (A_0 A_0^T)^{-1} A_0$ where y_p is any solution of Ay = x. (Hint: form a spanning tree to find y_p .)

5. Verify $y_{row} = (I - P_N)y_p = (I - N^T (N N^T)^{-1} N)y_p$ and $I - P_N = P_A$.

B. QR decomposition

QR decomposition of an $m \ge n$ matrix A (in this example A_0^T) constructs orthonormal columns in Q and a square, invertible upper triangular matrix R by a Gram-Schmidt, Gaussian elimination-like series of steps.

Gram-Schmidt QR algorithm:

Let *a* represent the first column of A_0^T . Normalize *a* to form $a_1 = a/(a^T a)^{(1/2)}$.

Let *a* represent the second column of A_0^T . Use Gram-Schmidt to make it orthogonal to a_1 , $a = (I - a_1 a_1^T)a$. Normalize *a* to form $a_2 = a/(a^T a)^{(1/2)}$.

Next, let *a* represent the third column of A_0^T . Use Gram-Schmidt to make it orthogonal to a_1 and a_2 , $a = (I - a_1a_1^T - a_2a_2^T) a$ (orthogonalization of the third column can be applied one step-at-a-time since a_1 and a_2 are already orthogonal). Normalize *a* to form $a_3 = a/(a^Ta)^{(1/2)}$.

Repeat for all *n* columns.

Form Q from $[a_1 a_2 \dots a_n]$. Construct $R = Q^T A_0^T$.

Householder *QR* algorithm:

Ralph seeks an operation where the first n rows of $H_n cdots H_I A_0^T$ yield R and the first n rows of $H_n cdots H_1$ yields Q^T where $Q^T Q = I$ and H_i (i = 1, ..., n) operates on column *i* of $H_{i-1} cdots H_0 A_0^T$ with $H_0 = I$.

Let a_i represent the first column of A_0^T and e_i be a same length vector of zeros except for a one in position *i*.

Construct $v = a_1 + (a_1^T a_1)^{(1/2)} e_1$. Now, $H_1 = I - 2 v v^T / (v^T v)$.

In the next step, a_2 is the second column of $H_1A_0^T$ with zeros above the main diagonal position (in this case, the first row is set to zero).

Repeat the steps above by setting

 $v = a_2 + (a_2^T a_2)^{(1/2)} e_2$ and $H_2 = I - 2 vv^T / (v^T v)$.

 $H_2H_1A_0^T$ creates the first two columns of *R*. The steps are repeated for all columns of A_0^T . Some refinements make the algorithm computationally fast and stable for solving projections, etc.

Suggested:

1. Find the *QR* decomposition of $A_0^T = QR$ where *Q* is a rectangular matrix composed of orthonormal columns and *R* is a square invertible upper triangular matrix such that $A_0^T R^{-1} = Q$.

2. Find the row component of *y* via *QR*. Compare this result with the solution for y_{row} from part A. (Hint: $A_0 y = x_0$ where x_0 is formed by dropping the last element of *x* and $A_0 = R^T Q^T$. Hence, $R^T Q^T y = x_0$ or $R^T Q^T y_{row} = x_0$ so that

 $Q(R^{T})^{-1} R^{T} Q^{T} y_{row} = y_{row} = Q(R^{T})^{-1} x_{0}.$