Ralph's row component

A simple double entry accounting system is defined by $A y=x$ where y is a vector of transaction amounts $\left[\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right]^{\mathrm{T}}, x$ is a vector of changes in account balances $[2-31]^{\mathrm{T}}$, and

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

an incidence matrix.
Suggested:
A. singular value decomposition and pseudoinverse

1. Find the singular value decomposition of A such that $A=U D V^{T}$ where V is a matrix of orthonormal eigenvectors of $A^{T} A, D$ is a diagonal matrix containing the square root of the eigenvalues of $A^{T} A$, and $U=A V D^{\dagger}$ where D^{\dagger} is a diagonal matrix containing the inverse of the nonzero elements plus the zero elements of D.
2. Find the pseudo-inverse of A such that $A^{\dagger}=V D^{\dagger} U^{T}, A A^{\dagger} A=A$, and $A^{\dagger} A A^{\dagger}=A^{\dagger}$.
3. Find the consistent solution for y that lies entirely in the rows of A , the row component, $y_{\text {row }}=A^{\dagger} x . A y_{\text {row }}=x, A N^{T}=0$, and $N y_{\text {row }}=0$. (Hint: find the nullspace of A, N.)
4. Verify $y_{\text {row }}=P_{A} y_{p}=A_{0}^{T}\left(A_{0} A_{0}^{T}\right)^{-1} A_{0} y_{p}$ where A_{0} is the A matrix after dropping the last row, and $P_{A}=A^{\dagger} A=A_{0}{ }^{T}\left(A_{0} A_{0}{ }^{T}\right)^{-l} A_{0}$ where y_{p} is any solution of $A y=x$. (Hint: form a spanning tree to find y_{p}.)
5. Verify $y_{\text {row }}=\left(I-P_{N}\right) y_{p}=\left(I-N^{T}\left(N N^{T}\right)^{-1} N\right) y_{p}$ and $I-P_{N}=P_{A}$.
$Q R$ decomposition of an $m \times n$ matrix A (in this example $A_{0}{ }^{T}$) constructs orthonormal columns in Q and a square, invertible upper triangular matrix R by a Gram-Schmidt, Gaussian elimination-like series of steps.

Gram-Schmidt $Q R$ algorithm:
Let a represent the first column of $A_{0}{ }^{T}$. Normalize a to form $a_{l}=a /\left(a^{T} a\right)^{(1 / 2)}$.
Let a represent the second column of $A_{0}{ }^{T}$. Use Gram-Schmidt to make it orthogonal to a_{1}, $a=\left(I-a_{1} a_{I}^{T}\right) a$. Normalize a to form $a_{2}=a /\left(a^{T} a\right)^{(1 / 2)}$.
Next, let a represent the third column of $A_{0}{ }^{T}$. Use Gram-Schmidt to make it orthogonal to a_{1} and $a_{2}, a=\left(I-a_{1} a_{1}{ }^{T}-a_{2} a_{2}{ }^{T}\right) a$ (orthogonalization of the third column can be applied one step-at-a-time since a_{1} and a_{2} are already orthogonal). Normalize a to form $a_{3}=$ $a /\left(a^{T} a\right)^{(I / 2)}$.
Repeat for all n columns.
Form Q from $\left[a_{1} a_{2} \ldots a_{n}\right]$.
Construct $R=Q^{T} A_{0}{ }^{T}$.

Householder $Q R$ algorithm:
Ralph seeks an operation where the first n rows of $H_{n} . . H_{l} A_{0}{ }^{T}$ yield R and the first n rows of $H_{n} \ldots H_{l}$ yields Q^{T} where $Q^{T} Q=I$ and $H_{i}(i=1, \ldots, \mathrm{n})$ operates on column i of $H_{i-1} \ldots H_{0} A_{0}{ }^{T}$ with $H_{0}=I$.
Let a_{l} represent the first column of $A_{0}{ }^{T}$ and e_{i} be a same length vector of zeros except for a one in position i.
Construct $v=a_{l}+\left(a_{1}{ }^{T} a_{1}\right)^{(1 / 2)} e_{1}$.
Now, $H_{l}=I-2 v v^{T} /\left(v^{T} v\right)$.
In the next step, a_{2} is the second column of $H_{1} A_{0}{ }^{T}$ with zeros above the main diagonal position (in this case, the first row is set to zero).
Repeat the steps above by setting
$v=a_{2}+\left(a_{2}{ }^{T} a_{2}\right)^{(1 / 2)} e_{2}$ and $H_{2}=I-2 v v^{T} /\left(v^{T} v\right)$.
$H_{2} H_{l} A_{0}{ }^{T}$ creates the first two columns of R. The steps are repeated for all columns of $A_{0}{ }^{T}$. Some refinements make the algorithm computationally fast and stable for solving projections, etc.

Suggested:

1. Find the $Q R$ decomposition of $A_{0}{ }^{T}=Q R$ where Q is a rectangular matrix composed of orthonormal columns and R is a square invertible upper triangular matrix such that $A_{0}{ }^{T} R^{-1}$ $=Q$.
2. Find the row component of y via $Q R$. Compare this result with the solution for $y_{\text {row }}$ from part A. (Hint: $A_{0} y=x_{0}$ where x_{0} is formed by dropping the last element of x and $A_{0}=$ $R^{T} Q^{T}$. Hence, $R^{T} Q^{T} y=x_{0}$ or $R^{T} Q^{T} y_{\text {row }}=x_{0}$ so that

$$
\left.Q\left(R^{T}\right)^{-1} R^{T} Q^{T} y_{\text {row }}=y_{\text {row }}=Q\left(R^{T}\right)^{-1} x_{0 .} .\right)
$$

