
Ralph’s quantum factoring
Ralph knows factoring a large number (say, 300 digits) into its prime num-

bers is a very computationally-intensive task. However, Shor’s quantum fac-
toring algorithm is exponentially faster than the best classical factoring al-
gorithm. The algorithm is composed of two parts: classical and quantum
order-finding utilizing the quantum period-finding algorithm (order-finding is
a special case of period-finding where the function takes a specific form such as
f (x) = ax modN).

The classical part.
Problem: we wish to factor the integer N .
1. Pick a random integer a < N .
2. Compute GCD (a,N) (use Euclid’s algorithm for greatest common divi-

sor (GCD)).
3. If GCD (a,N) = b 6= 1, then the number is a nontrivial factor of N and

the other factor is N/b.
The quantum part.

4. Otherwise, use the quantum period-finding algorithm (discussed below)
to find r, the period of the function f (x) = ax modN . The period r is the
smallest integer such that f (x) = f (x + r).

5. If r is odd, go back to step 1.1

6. If ar/2 ≡ −1 modN , go back to step 1.2

7. Otherwise, at least one of GCD
(
ar/2 − 1, N

)
and GCD

(
ar/2 + 1, N

)
are nontrivial factors of N and we are done.

Example. N = 15, a = 7, r = 4, GCD
(
72 − 1, 15

)
= GCD (48, 15) = 3,

GCD
(
72 + 1, 15

)
= GCD (50, 15) = 5. For N that is a product of two dis-

tinct primes p and q, Euler’s totient function ϕ (N) = N − p − q + 1 or
(p− 1) (q − 1). For N = 15, ϕ (N) = 8 and r divides 8. More generally,
Euler’s totient is the number of integers relatively prime to N . For N =
15, we have 1, 2, 4, 7, 8, 11, 13, 14 or eight integers. Euler’s totient function is

ϕ (N) = N
∏
p(N)

(
1− 1

p(N)

)
where p (N) are the distinct prime factors of N.

For N = 15, ϕ (N) = 15
(
1− 1

3

) (
1− 1

5

)
= 15

(
2
3

)(
4
5

)
= 8.

Background.
The intuition for using GCD to find the factors stems from Fermat’s factor-

ing approach.

b2 − c2 = N (1)

(b + c) (b− c) = N (2)

(b + c) (b− c) ≡ 0 modN (3)

Utilize the period-finding function to set b2 = ar or the square-root factor
b =
√
ar = ar/2 and let c = 1, then substitution gives(

ar/2 + 1
)(

ar/2 − 1
)
≡ 0 modN (4)

1We want to assure ar/2 is an integer.
2We want to avoid the degenerate case where GCD

(
ar/2 + 1, N

)
might be one.
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This follows from properties of modular arithmetic. In particular, if c1 ≡
b1 modn and c2 ≡ b2 modn, then c1c2 ≡ b1b2 modn. Hence, if either is a
factor of N their modular product is congruent to zero.(

ar/2 + 1
)

modN
(
ar/2 − 1

)
≡ 0 modN (5)

Quantum period-finding algorithm. As with many other quantum
computational advantages, the key to quantum period-finding lies with the dis-
crete quantum Fourier transform. The quantum Fourier transform is a unitary
operator (symmetric but not Hermitian) whose inverse is simply the conjugate
of the matrix (since the matrix is symmetric it is equal to its transpose). The
discrete inverse quantum Fourier transform is

FQ =
1√
Q



1 1 1 1 · · · 1
1 ωn ω2 ω3 · · · ωQ−1

1 ω2 ω4 ω6 · · · ω2(Q−1)

1 ω3 ω6 ω9 · · · ω3(Q−1)

...
...

...
...

. . .
...

1 ωQ−1 ω2(Q−1) ω3(Q−1) · · · ω(Q−1)(Q−1)


(6)

where ω = exp
[
2πi
Q

]
.

The algorithm follows.
1. Given N , choose Q = 2q such that N2 ≤ Q ≤ 2N2 and create q |0〉 qubits

in the first register. Then apply the Hadamard operator H to each qubit. This
creates the state

1√
Q

[|0〉+ |1〉+ |2〉+ · · ·+ |2q − 1〉] (7)

where say for q = 3, |0〉 is |000〉, |1〉 is |001〉, |2〉 is |010〉, |3〉 is |011〉, |4〉 is
|100〉, |5〉 is |101〉, |6〉 is |110〉, and |7〉 is |111〉.

2. Compute f (k) = ak modN where the first register is |k〉 and put the
result in the second register. For N = 15 and a = 7, for example, this produces
state

1√
Q

[|0〉 |1〉+ |1〉 |7〉+ |2〉 |4〉+ |3〉 |13〉+ |4〉 |1〉+ |5〉 |7〉+ · · · ] (8)

3. Apply the inverse Fourier transform to the first register and measure
the first register. This step is most easily accomplished by two measurements
and invoking the principle of implicit measurement for the first measurement.
Since the second register is hereafter untouched, measuring the first register
effectively determines the result for the second register. Based on the state
above (for N = 15), the result for the second register is either |1〉 , |7〉 , |4〉 , or
|13〉. Suppose |7〉 is the result, then the inverse Fourier transform is applied to
the resultant first register

2√
Q

[|1〉+ |5〉+ |9〉+ · · · ] (9)
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For N = 15, q = 8, this generates a probability distribution with masses equal
to 1

4 each associated with |0〉 , |64〉 , |128〉 , and |192〉. The second measurement
is one of these values.

4. The continued fraction for this realized value divided by 2q determines
the order r. Suppose we draw |192〉, then the convergent for the continued
fraction 192

256 = 0 + 1
1+ 1

3

is 3/4 and the denominator is the number we’re after.

Now, we check a4 ≡ 1 modN , if true r = 4.3 If not then try multiples of 4,
for instance, a8 ≡ 1 modN .4 If multiples fail then start over by drawing a new
random integer a.

5. Return to step 7 above, calculate GCD
(
ar/2 − 1, N

)
and GCD

(
ar/2 + 1, N

)
at least one is a factor of N . Task complete.

Suggested:

1. For N = 15, a = 7, and Q = 28 = 256, verify the classical factoring
algorithm. (Hint: find the period r by brute-force using f (x) = f (x + r) in
step 4.)

2. For N = 15, a = 7, and Q = 28 = 256, verify the quantum factoring
algorithm.

3Euler’s generalization of Fermat’s theorem states aϕ(N) ≡ 1 modN for a and N relatively
prime where ϕ (N) is Euler’s phi or totient. ϕ (15) = 8 rather than 4 but all multiples of 4
satisfy the congruence with modulus 15. Recall from discussions of public key encryption,
if Euler’s phi can be discovered then finding the decoder (and breaking the encryption) is
straightforward by Euclid’s algorithm.

4If we draw |128〉, N = 15, and a = 7, then the convergent is 1/2 and a2 ≡ 4 mod 15 so we
try r = 4 which satisfies the period-finding criterion a4 ≡ 1 mod 15.
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