
Ralph’s EPR QKD

Quantum key distribution is provably secure (unlike RSA or elliptical curve
cryptography). EPR QKD (entangled quantum key distribution) is one protocol
demonstrating QKD security. The protocol is as follows:

1. Ralph (the sender) creates 2n EPR pairs in the state |β00〉 = 1√
2

(|00〉+ |11〉)
or |β00〉⊗2n = |β00〉 ⊗ · · · ⊗ |β00〉.

2. Ralph selects a random 2n-bit string b and performs a Hadamard trans-
formation on the second half of each EPR pair for which b = 1.

3. Ralph sends the second half of each EPR pair to Alice (the receiver).

4. Alice announces receipt of the qubits.

5. Ralph selects n of the 2n encoded pairs to serve as check bits to test for
Eve’s interference (indistinguishable from noise in the channel).

6. Ralph announces b and which n EPR pairs serve as check bits.

7. Alice performs Hadamard transforms on the qubits where b = 1.

8. Ralph and Alice each measure their halves of the n EPR pairs in the
|0〉 , |1〉 basis (that is, using observable Z) and share their results. If too many
of these ±1 measurements disagree, they abort the protocol and start over.

9. Ralph and Alice measure their remaining n qubits according to the check
matrix for a pre-determined [n,m] quantum code (correcting up to t errors).
They share their results, compute the syndromes for the errors, and then correct
their state obtaining m (nearly perfect) EPR pairs.1

10. Ralph and Alice measure the m EPR pairs in the |0〉 , |1〉 basis to obtain
a shared (randomly generated) secret key k.

Suppose Alice and Ralph agree to use a quantum Hamming [n = 7,m = 4]
code (capable of correcting one bit flip and/or one phase flip error). The check
matrix, measured one row at a time, is

X1X5X6X7

X2X4X6X7

X3X4X5X6

Z1Z3Z4Z7

Z2Z3Z5Z7

Z1Z2Z3Z6


where, for instance, X1X5X6X7 = X ⊗ I ⊗ I ⊗ I ⊗ X ⊗ X ⊗ X. X measures
in the |+〉, |−〉 or H |0〉 , H |1〉 basis while Z measures in the |0〉 , |1〉 basis with
eigenvalues (measurement results) ±1 (eigenvalue = +1 corresponds to eigen-
state |+〉 or |0〉 and binary 0 while eigenvalue = −1 corresponds to eigenstate

1See Nielsen and Chuang exercise 12.34.
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|−〉 or |1〉 and binary 1). Alice only cares about bit flips to generate a shared
key, therefore only the last three rows of the check matrix are needed.

Suggested:

1. Suppose their is no interference. Apply the protocol to the n = 7 EPR
pairs (ignore the check qubits) and generate an m = 4 random shared private
key.

2. Suppose the second qubit (the first qubit delivered to Alice) in the first
EPR pair is bit flipped (this transforms |β00〉 to |β01〉 = 1√

2
(|01〉+ |10〉)). Ap-

ply the protocol to the n = 7 EPR pairs (ignore the check qubits) including
correcting any errors indicated by syndrome, and generate an m = 4 random
shared private key.
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