
Elliptic curve cryptography

Elliptic curve cryptography is based on the finite field congruence of elliptic
curves such as

x3 + ax+ b ≡ y2 (mod p)

where (mod p) is modulo prime p and ≡ is read "is congruent to". An elliptic
curve is pictured below.

Elliptic curve

Once a base solution is found, say G = {x0, y0}, congruence (modulo p) is
maintained for all integer powers up to n ≤ p− 1.(

x30 + ax0 + b
)j ≡ (y20)j (mod p) , for j = 1, 2, . . . , n

This produces a cloud such as depicted below. As is the case, for the cardinal

1



elliptic curve, the cloud has an axis of symmetry.

Elliptic curve cloud

Security is driven by the computational complexity of the discrete logarithm
problem (though mathematically unproven). That is, it is easy to compute K
from Gd ≡ K (mod p) but very diffi cult to determine d from K and G.
First, we describe an encryption scheme then we present an example.

1 Encryption scheme

1. The parties select a common encoding scheme and common knowledge para-
meters: a, b, k, n, p.
2. Find a base solution or generator to the elliptic curve G = {x0, y0} such

that
x3 + ax+ b ≡ y2 (mod p)

3. The receiver randomly generates a private key d < n, then distributes a
public key Gd ≡ K (mod p).
4. The sender randomly generates a private key r < n , encodes the message

m as em = m ∗ k + j, where j = 1, 2, . . . such that y is found that fits on the
elliptic curve, and encrypts two quantities: That is, try j = 1, if y is found then
stop, otherwise try j = 2, and so on. This step is the most time-intensive and the
sender finds the smallest value j and shares it with the receiver. Alternatively,
the sender chooses k such that j = 1 and this is understood by the receiver.
The sender’s encoding is Gr ≡ C1 (mod p) and Kr + em ≡ C2 (mod p). The

probability of failure to find a square for y is approximately
(
1
2

)k
.

2



5. The receiver decrypts the message by Gdr+em−Gdr ≡ C2−Cd1 (mod p) to
recover em. If the em doesn’t reside on the elliptic curve the receiver requests the
character be resent. Otherwise, the receiver recovers the message as (emx − j)×(
k−1

)
≡ m (mod p) where emx refers to the x coordinate of em.

6. The receiver decodes the message.

2 Example

1. Suppose the encoding scheme adopted is ”a” = 11, ”b” = 12, . . . , ”z” = 36, . . .
(might include upper case and punctuation, etc.). Common parameters are
a = −1, b = 188, k = 20, n = 727, p = 751.

2. Then, a generator is G = {45, 97}.
3. The receiver’s (Bob) private (randomly generated) key is d = 258. Then,

the receiver’s public key is

Gd ≡ K (mod p) = {189, 745}

4. Suppose the message is "b" andm = 12 is encoded as em = {12 ∗ 20 + 1, y} =
{241, 230}. The sender (Alice) randomly generates private key r = 483 and en-
crypts the message

Gr ≡ C1 (mod p) = {490, 271}
Kr + em ≡ C2 (mod p) = {487, 162}

5. The receiver (Bob) decrypts the message by C2 − Cd1 ≡ em (mod p)

= {241, 230}

(241− 1)×
(
20−1

)
≡ m (mod p) = 12

6. The receiver (Bob) checks the consistency of the decrypted message as
a point on the elliptic curve and, if coherent, decodes the message "b". If the
decrypted message is not coherent, new private keys, d and r, are randomly
generated and possibly new common parameters a, b, k, n, p, and G then Alice
sends the message again.
The example is a bit misleading as an eavesdropper (Eve) could easily employ

a brute force search and recover the private keys thus breaking the encryption
in this simple example. However, if n and p (n ≤ p− 1) are chosen to be large,
say, 1050 or 10100. Searching for the private keys, d and/or r, randomly drawn
from [1, . . . , n] is akin to searching for the proverbial needle in a haystack and
likely requires an extraordinary amount of computing time.

3


