
Ralph’s stabilizer code

Quantum error-correcting codes can be written as stabilizer codes. These
codes mirror classical linear codes, can be compactly represented by a set of
generators, and standardize quantum error-correction. Here, we focus on CSS
(Calderbank, Shor, and Steane) codes.These codes are capable of correcting
multiple bit flips and phase flips (for sufficiently large codes). We illustrate CSS
codes for the quantum analog to classical Hamming codes.

A classical Hamming code for correcting a single error has generator matrix

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


and parity check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


CSS codewords

CSS codes involve two code words for the quantum Hamming code. Let C1

be the generator matrix for the Hamming code above and C2 = C⊥1 , its dual
code, so that C2 ⊂ C1. C1 is a [n = 7, k1 = 4] code, while C2 is a [n = 7, k2 = 3]
code. The dimension of all possible encodings is N = 2k1−k2 . We choose code
words x0 + x1 /∈ C2 which implies 〈x0 + C2|x1 + C2〉 = 0. It is instructive to
enumerate all linear combinations of C2 mod 2 for identifying two code words
for this code. This set is

{0000000, 0001111, 0110011, 1010101, 0111100, 1011010, 1100110, 1101001}

and leads to the quantum state or logical code (in normal form after swapping
qubits one and four, then three and four, and finally swapping qubits six and
seven)

|0L〉 =
1√
8
{|0000000〉+ |0011110〉+ |0101011〉+ |0110101〉

+ |1000111〉+ |1011001〉+ |1101100〉+ |1110010〉}
Our other code word is orthogonal to |0L〉 so a simple choice is begin with
|1111111〉 and add the elements of C2 mod 2 (again, after swapping positions)
or, equivalently, bit flip each qubit in |0L〉. This produces

|1L〉 =
1√
8
{|1111111〉+ |1100001〉+ |1010100〉+ |1001010〉
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+ |0111000〉+ |0100110〉+ |0010011〉+ |0001101〉}

The idea of stabilizers is succinctly demonstrated by reference to an entan-
gled state |β00〉 = 1√

2
[|00〉+ |11〉] and its stabilizersX1X2 and Z1Z2. Not only is

the state unchanged by these operators but this is the unique state (up to phase)
for which these operators are the stabilizers. Two properties are evident from
these stabilizers: they commute (by matrix multiplication) and −I is not part of
the set. These are the properties of generators for the CSS code where the gener-
ators are a subset of the Pauli operators, ±I,±X,±Z,±Y,±iI,±iX,±iZ,±iY .

Generators

The following generators form the set for the quantum analog to the [7, 4] Ham-
ming code.

g1 = XIIIXXX = X1X5X6X7

g2 = IXIXIXX = X2X4X6X7

g3 = IIXXXXI = X3X4X5X6

g4 = ZIZZIIZ = Z1Z3Z4Z7

g5 = IZZIZIZ = Z2Z3Z5Z7

g6 = ZZZIIZI = Z1Z2Z3Z6

The first three generators, g1, g2, g3, allow detection and correction of any single
phase flip and the last three generators, g4, g5, g6, allow detection and correction
of any single bit flip that might creep into the encoding. Further, analogous to
the classical code the location of the error is identified by meaurement results
(eigenvalues) equal to ±1 (these are unitary operators) where +1 corresponds
to I and −1 corresponds to Z. Hence, for example, 〈ψ| g4 |ψ〉 = −1, 〈ψ| g5 |ψ〉 =
1, 〈ψ| g6 |ψ〉 = −1 implies the first qubit is bit flipped where |ψ〉 is the encoding
and is easily remedied by applying X1 to the state. Since single qubit bit
flip and/or phase flip errors involve eigenstates that reside in one of the two
orthogonal subspaces, projections to reveal the syndrome do not change the
state and can be performed sequentially.1 Errors in other qubits are addressed
in analogous fashion.

Quantum circuits and syndrome measurement

Quantum circuits are quick and flexible representations of quantum codes. Be-
low are two pairs of useful circuits. The first equivalent pair employs observable
X (measurement basis |+〉, |−〉) while the second equivalent pair employs ob-
servable Z (measurement basis |0〉 , |1〉).

1If the bit flip and phase flip occur in the same qubit, with probability one-half the sign of
the eigenstate is the negative of the original eigenstate.

2



Figure 1. X observable equivalent quantum circuits

Figure 2. Z observable equivalent quantum circuits

CSS codes are reversible, now we address how this corresponds to measure-
ment which changes the state. CSS codes employ ancilla for measurement (and
implicit measurement of the code). Ancilla are constructed by tensoring suf-
ficient |0〉 s to the state or quantum code and then applying controlled-NOT
and/or controlled-Z unitary operators. We present two equivalent quantum
circuits to illustrate the encoding and syndrome measurement.

Figure 3. CSS quantum circuit

For the above quantum circuit, the top six qubits are the six-qubit ancilla
all set to |0〉. A Hadamard operator is applied to each of these. this creates the
eigenstate 1

8 [|1〉+ |2〉+ · · ·+ |64〉] where |1〉 = |000000〉 or a vector with one
followed by 63 zeroes, |2〉 = |000001〉 or a vector 0,1 followed by 62 zeroes, and
so on with |64〉 = |111111〉 or a vector of 63 zeroes followed by one. The next
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step in the circuit is controlled-NOT where the ancilla qubits are the control and
the eigenstate is the target (notice, this entangles the ancilla and target code).
The first three ancilla employ controlled-NOT as indicated by the generators
and the last three apply controlled-Z, again, as indicated by the generators.
Finally, another set of Hadamard operators are applied to the ancilla followed by
measurement of the ancilla (utilizing observable Z) to produce the syndrome. If
all six measurement results are +1 then no adjustments of the code are needed;
otherwise, utilize the syndrome as identifed by the generators to correct the
code.

Syndrome measurement may be more readily visualized by the alternative
(but equivalent) quantum circuit.

Figure 4. equivalent CSS quantum circuit

This circuit involves only controlled-NOT following the Hadamard operators
where the control qubit is from the eigenstate or quantum code word and the
target is the ancilla. Bit flip measurement of the ancilla involves qubits four
through six producing +1 or -1 for each qubit.2 If the first qubit, for instance,
yields measurement results -1,+1,-1 then the first qubit is bit flipped and X1 is
applied to the eigenstate and the ancilla disposed. Then, Hadamard operators
are applied to the “bit-flip corrected” eigenstate and the circuit is exercised again
(with new ancilla if not in state |o〉⊗6). If the syndrome is +1,-1,-1 then the
second qubit is phase flipped and X2 is applied followed by Hadamard operators
applied to each qubit of the eigenstate. This produces a legal (corrected) code
word and the ancilla is dismissed again.

2Analogously, phase filp measurement involves qubits one through three.
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Suggested:

1. Show the X (Z) observable pairs of quantum circuits in figure 1 (figure
2) are equivalent. Explore X (Z) observable measurement for figure 1 (figure
2).

2. Create a code word, say, |0L〉 (or alternatively, use the first CSS quantum

circuit in figure 3 to create |0L〉 from |0〉⊗7) and verify the quantum circuit and
syndrome.

3. Suppose a bit flip error occurs in the first qubit and a phase flip error
occurs in the second qubit of the code word |0L〉, use the generators to check
for single phase and bit flip errors. Correct any detected errors.
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