
Ralph’s channel

Ralph is interested in relating entropy to communication. In particular,
what is the best data compression (shortest average code word or entropy) and
what is the fastest transmission rate (the channel capacity C)?

Data compression. Suppose the code is binary (0, 1). Then, a bit (0 or
1) is log2 21 = 1, two bits (00, 01, 10, or 11) is log2 22 = 2, and so on. If we’re
dealing with 32 uniformly distributed codewords then the average codeword
is log2 25 = 5 bits or H2 = −

∑32
i=1

1
32 log2

1
32 = log2 32 = 5 or entropy (H2

refers to entropy with base 2 logarithms). Alternatively, suppose we’re dealing
with eight codewords distributed as (1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64 ). If we make each

codeword equal length this requires an average codeword of 3 bits (23 = 8).
However, if we assign shorter codewords to more likely words then we can gain
better data compression.
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= log2 4 = 2 bits

The codewords associated with this scheme might be (in order of probabilities):
0, 10, 110, 1110, 111100, 111101, 111110, 111111. Again, the answer is entropy.

Channel capacity asks what is the maximum rate we can effectively trans-
mit input X to output Y with arbitrarily small error. Cover and Thomas (p.
183) describe channel capacity as “the maximum number of distinguishable sig-
nals for n uses of a communication channel. This number grows exponentially
with n, and the exponent is known as the channel capacity.” Naturally, this
relates to mutual information I (X;Y ) (see the introduction to questions 5 and
6 for more details) and is given by C bits per transmission or use of the channel
where

C =
max
p (x)

I (X;Y )

Consider three examples.
Noiseless binary channel. Suppose input X = 0 is received as output

Y = 0 and X = 1 is received as Y = 1.
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The maximum transmission rate is achieved when X is assigned a uniform
distribution. As the channel is noiseless, this results in the following joint dis-
tribution.

Y = 0 Y = 1
X = 0 1

2 0

X = 1 0 1
2

and a transmission rate equal to

I (X;Y ) = H (X) + H (Y )−H (X,Y ) = log2 2 = 1 bit per transmission

Noisy four-symbol channel. Suppose we have an error prone channel
with the following joint distribution.

Y = 1 Y = 2 Y = 3 Y = 4
X = 1 1

8
1
8 0 0

X = 2 0 1
8

1
8 0

X = 3 0 0 1
8

1
8

X = 4 1
8 0 0 1

8

The transmission rate is

I (X;Y ) = log2 4 + log2 4− log2 8 = 2 + 2− 3 = 1 bit per transmission

but the error rate is likely unacceptably high. This can be remedied by restrict-
ing input to two codewords, say, X = 1, 3 (we’ve assigned zero probability to
X = 2, 4). Now, there is no ambiguity about the input when Y is received. The
joint distribution is

Y = 1, 2 Y = 3, 4
X = 1 1

2 0

X = 3 0 1
2
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and we’ve replicated an error-free transmission rate of one bit per transmission
like the noiseless binary channel above. This conveys the intuition for Shannon’s
noisy channel theorem. The idea is that for sufficiently large block lengths, every
channel has a subset of inputs that produce disjoint sequences as the output.

Binary symmetric channel. Suppose we have a noisy binary symmetric
channel as depicted below.

The channel capacity is

C = 1 + p log2 p + (1− p) log2 (1− p) bits per transmission

This follows from assigning a uniform distribution to input X, by symmetry
output Y also is uniformly distributed and the joint distribution is

Y = 0 Y = 1

X = 0 1−p
2

p
2

X = 1 p
2

1−p
2

Mutual information is

I (X;Y ) = log2 2 + log2 2 + (1− p) log2

1− p

2
+ p log2

p

2

= 1 + p log2 p + (1− p) log2 (1− p)

For p > 0, the zero-error capacity for this channel is zero. However, repeated
transmissions at rate R < C can achieve an arbitrarily low average error rate
by the law of large numbers.

Suggested:

1. Suppose we have a code with four words distributed as 1
2 ,

1
4 ,

1
8 ,

1
8 . If we

assign equal length to each codeword, what is the level of data compression
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(how many bits are required, on average)? Can we improve data compression?
If so, suggest a code and determine the average number of bits required.

2. Verify the transmission rate for the noiseless binary channel.

3. Verify the transmission rate for the noisy four-symbol channel.

4. Verify the transmission rate for the binary symmetric channel.

Shannon’s noisy channel coding theorem employs typical sequences (of a
large number of transmissions) to produce arbitrarily small error rates. If a
sequence of transmissions is not a typical sequence then there is an error. Typical
sequences are defined by sequences for which the negative average logarithmic
frequency almost surely converges by the law of large numbers (of transmissions)
to the negative expected logarithmic probability (or entropy). For the binary
symmetric channel, the probability distribution associated with a transmission
has a Bernoulli distribution with entropy

H2 (p) = −p log2 p− (1− p) log2 (1− p)

and the (negative) sample average frequency of a sequence of n transmissions
with s errors is

T2 (p) = − 1

n
log2 p

s (1− p)
n−s

= − 1

n
{s log2 p + (n− s) log2 (1− p)}

lim
n→∞ T2 (p)→ H2 (p)

Applying the above to Xn, Y n and (Xn, Y n) defines jointly typical sequences.
Near error-free decoding involves creating disjoint or distinct encodings of

the n input sequence such that decoding produces the input message. Decoding
treats any jointly typical sequence as the transmitted code word. For each input
n-sequence, there are approximately 2nH(Y |X) possible equally likely typical Y
sequences. Ralph wishes to ensure no two X sequences produce the same Y
output sequence. The number of typical Y sequences is about 2nH(Y ). This set
is divided into typical sequences, that is, sets of size 2nH(Y |X) corresponding to
the different input X sequences. The total number of disjoint sets is less than
or equal to 2nH(Y )−nH(Y |X) = 2nI(X;Y ). Hence, Ralph knows the upper bound
on distinguishable length-n legal codewords is approximately 2nI(X;Y ) and the
probability of any other (than the encoded message) jointly typical sequence is
no greater than 2−nI(X;Y ) which can be made arbitrarily small for large n.

5. For the binary symmetric channel with p = 0.1 and n = 10, how many
typical sequences are there for equi-probable input Xn? (hint: 2nH(X))

— number of typical output sequences Y n? (hint: 2nH(Y ))
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— number of typical sequences Y n for each input Xn = xn? (hint: 2nH(Y |X))

— number of typical joint sequences (Xn, Y n)? (hint: 2nH(X,Y ))

— and number of distinguishable codewords? (hint: 2nI(X;Y ))

(the inverse of the total is the probability associated with a particular sequence)

6. Repeat 5 for p = 0 and n = 10.

7. Repeat 5 for p = 0.5 and n = 10.
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