
9
error correcting codes

A main idea of this sequence of notes is that accounting is a legitimate field of
academic study independent of its vocational implications and its obvious impor-
tance in the economic environment. For example, the study of accounting pro-
motes careful and disciplined thinking important to any intellectual pursuit. Also,
studying how accounting works illuminates other fields, both academic and ap-
plied. In this chapter we begin to connect the study of accounting with the study
of codes. Coding theory, while theoretically rich, is also important in its applica-
tions, especially with the pervasiveness of computerized information transfer and
storage. Information integrity is inherently of interest to accountants, so exploring
coding can be justified for both academic and applied reasons.

9.1 kinds of codes

We will study three kinds of codes: error detecting, error correcting, and secret
codes. The first two increase the reliability of message transmission. The third,
secret codes, are designed to ensure that messages are available only to authorized
users, and can’t be read by the bad guys. The sequence of events for all three
types of codes is as follows.

1. determine the message to transmit. For our purposes, we will treat messages
as vectors.

2. The message is encoded. The result is termed a codeword, or cyphertext,
also a vector.

180 9. error correcting codes

3. The codeword is transmitted through a channel. The channel might inject
noise into the codeword, or it might be vulnerable to eavesdropping.

4. The received vector is decoded. If the received vector is no longer the trans-
mitted codeword, the decoding process may detect, or even correct, the er-
ror.

Setting aside secret codes until chapter 10, this chapter will concentrate
on error detecting and correcting codes. Applications of these types of codes

are numerous. In a business environment codes are used to design account num-
bers, inventory part numbers, and all sorts of identification numbers. Codes en-
able efficient transmission of television pictures as well as pictures sent from the
farthest parts of the solar system. The cause of noise in a codeword may be as
mundane as a typing mistake, or as cosmic as interference from sunspots.
We will study a popular class of error detecting and correcting codes called

linear codes. Linear codes employ the same techniques we have used for under-
standing the linear transformations in accounting. Both encoding and decoding
are accomplished by matrix multiplication. Furthermore, decoding is a direct ap-
plication of the concept of a nullspace.
Consider decoding. Every linear code can be specified by a matrix called a

parity check matrix, denoted H . Decoding is accomplished by multiplying the
received vector by H . If the received vector is in the nullspace of H , then the
received vector is a legal codeword. Notice the connection with accounting. H is
"like" the accounting transformation matrixA. The legal codewords are "like" the
set of looping transactions which leave the account balances unchanged. Similar
to the accounting applications, the received vector, denoted y, is in the nullspace
of H if H times y is a vector of zeros.

Definition 9.1 The matrix product Hy is termed the syndrome.

If the syndrome contains a non-zero element, an error has been detected. If we
are clever in our analysis of the syndrome, we may be able to infer the position
and amount of the error, thereby allowing error correction.
Before moving to examples of codes, we need to acquire another tool; the notion

of a finite field.

9.2 modular arithmetic
We will restrict ourselves to a finite set of messages which will, in turn, imply a
finite number of errors. This allows for efficient error detection and correction.
The mechanism to accomplish this is modular arithmetic. The main idea is pretty
simple, and the notation for it (devised by Gauss) is straightforward. An excellent
introduction to modular arithmetic and number theory is in Ore, 1948.

9.2 modular arithmetic 181

Definition 9.2 Modular arithmetic reduces the set of integers under consideration
to a finite number.

a = b+ cm() a ≡ b(mod m) where a, b, c, andm are integers.

The second equivalence is read "a is congruent to b modulo (or simply ’mod’) m."

Any integer has a corresponding element in a finite set. Simply divide by m
and report the remainder. There will only bem integers in the reduced set.
A convenient example is "binary." The arithmetic is done modulo 2; all integers

are equivalent (congruent) to either 0 or 1. For example,

2 ≡ 4 ≡ 6 ≡ 0(mod 2)
1 ≡ 3 ≡ −1 ≡ 1(mod 2)

Multiplication and addition work pretty much the way we are used to. The key
is the answer is always a member of the original set. For binary the answer is
either 1 or 2. For example,

1 + 1 ≡ 0 (mod 2)

Matrix multiplication also works in modular arithmetic.

2

4
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

3

5

2

666666664

1
1
1
1
1
1
1

3

777777775

=

2

4
4
4
4

3

5 ≡

2

4
0
0
0

3

5 (mod 2)

In preparation for the first error detecting example consider arithmetic modulo
11, in which every number is divided by 11, and the remainder reported.

7 + 6 = 13 ≡ 2 (mod 11)
7× 6 = 42 ≡ −2 ≡ 9 (mod 11)

182 9. error correcting codes

Here’s the entire multiplication table modulo 11.

1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 1 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
5 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8 8 5 2 10 7 4 1 9 6 3
9 9 7 5 3 1 10 8 6 4 2
10 10 9 8 7 6 5 4 3 2 1

There are two important things to notice about the multiplication table.

1. There are no zeros. When two non-zero numbers are multiplied, the result
is non-zero. This property does not hold for all moduli. For example,

6× 6 ≡ 0 (mod 9)

2. There are no "repeats." Each row (and column) consists of all the possible
10 numbers.

The two properties have important applications in coding, and they follow di-
rectly from the concept of a prime number and what is known as the fundamental
theorem of arithmetic.

Definition 9.3 A prime number is divisible (evenly, that is, leaving no remainder)
only by 1 and the number itself.

Theorem 9.1 Any integer can be factored into a product of prime numbers. Fur-
thermore, the factorization is unique.

Consider property 1 for some prime modulus, p. A zero entry in the multipli-
cation table means

rs ≡ 0 (mod p)() rs = pn

where r and s are integers less than p and n is some integer. The equality on
the right implies two different factorizations of rs, violating unique factorization.
Hence, the fundamental theorem implies property 1 is true for all p.
Property 2 follows from similar logic. "Repeats" imply the first two equations

below which, in turn, imply the third.

rs = pn+ k

rt = pm+ k

r (s− t) = p (n−m)

And the third equation is not allowed by the fundamental theorem.
With these preliminaries we are ready for an example code.

9.3 isbn - an error detecting code 183

9.3 isbn - an error detecting code

ISBN stands for "international standard book number." Virtually every book pub-
lished in the world is assigned an ISBN. The numbers are assigned in a way so
that some typographical errors which might occur in typing or transcribing an or-
der can be detected. The probability that the wrong book is delivered is thereby
reduced.
In 2007 the design of the ISBN was altered slightly. A visible manifestation

is that the length of the number (codeword) increased from 10 to 13. We’ll start
with ISBN 10 as it supplies a nicer illustration of the two properties in the previous
section, and catch up with ISBN 13 later.

9.3.1 isbn 10
The ISBN is a linear code in the sense that it is completely specified by its parity
check matrix. For ISBN 10 the parity check matrix has one row and 10 columns.

H =
'
1 2 3 4 5 6 7 8 9 10

(

All ISBN codewords reside in the nullspace of H where arithmetic is conducted
modulo 11. That is, for an ISBN y vector,

Hy ≡ 0 (mod 11)

If y does not satisfy the above equation, an error has been made.

Example 9.1 The ISBN for The Norton History of Mathematics (published prior
to 2007) is 0-393-04650-8.

The ISBN is divided into 4 parts, possibly of various lengths across countries
and companies. The first number is the official language of the country in which
the book is published: zero is English. The second set of numbers is the number
assigned to the publisher: W. W. Norton Publishing is 393. The next set is an
internal inventory number chosen by the publisher. The last number is a check
digit which ensures the ISBN resides in the nullspace of H .
Do the arithmetic.

184 9. error correcting codes

Hy =
'
1 2 3 4 5 6 7 8 9 10

(

2

666666666666664

0
3
9
3
0
4
6
5
0
8

3

777777777777775

= 231 = 11× 21 ≡ 0 (mod 11)

The ISBN code is designed to detect any single error and any transposition
error, not necessarily of adjacent digits. Check to see that any such error for
Norton results in a non-zero syndrome. More generally, the two error types are
always caught because of the two noted properties of the multiplication table.
Consider a single error. Let the received ISBN vector be the sum of the correct

ISBN and an error vector with a non-zero entry in position i.

y = yISBN + e = yISBN +

2

6666666666664

0
.
.
.
ei
.
.
.
0

3

7777777777775

The syndrome is calculated.

Hy = H (yISBN + e) = HyISBN +He = 0 +He

He is ei times the ith element ofH . As both numbers are non-zero, the syndrome
is non-zero by property 1, and the error is detected.
Consider a transposition error, not necessarily of adjacent digits. Suppose in the

received y that elements yj and yk are transposed. The received y vector appears
as follows.

9.3 isbn - an error detecting code 185

y = yISBN +

2

666666666666666666664

0
.
.
.

yk − yj
.
.
.

yj − yk
.
.
.
0

3

777777777777777777775

= yISBN +

2

666666666666666666664

0
.
.
.

yk − yj
.
.
.

− (yk − yj)
.
.
.
0

3

777777777777777777775

For the syndromeHe to be zero, two distinct elements ofH ,Hj andHk, must
yield the same answer when multiplied by the same number:

yk − yj

But that is impossible by property 2, so the transposition error is detected.
One more note before moving on to ISBN 13. Sometimes to ensure the ISBN

resides in the nullspace ofH , the check digit, the 10th element of yISBN , must be
the number 10. Rather than writing the two digit number, the ISBN assigns the
Roman numeral X. From watching the super bowl, we know X stands for 10.

9.3.2 isbn 13
ISBN 13 is similar to the universal product code used for all kinds of inventory
items. It has a different looking parity check matrix.

H =
'
1 3 1 3 1 3 1 3 1 3 1 3 1

(

186 9. error correcting codes

Furthermore, the arithmetic is done modulo 10, the multiplication table for which
follows.

1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 4 6 8 0 2 4 6 8
3 3 6 9 2 5 8 1 4 7
4 4 8 2 6 0 4 8 2 6
5 5 0 5 0 5 0 5 0 5
6 6 2 8 4 0 6 2 8 4
7 7 4 1 8 5 2 9 6 3
8 8 6 4 2 0 8 6 4 2
9 9 8 7 6 5 4 3 2 1

It is noticed right away that the two properties of no zeros and no repeats do
not hold, in general. They do hold, however, for the rows and columns associated
with 1 and 3, among others. And, since those are the only numbers used in H ,
a single error remains detectable by the syndrome. Further, some transposition
errors are detectable, as well. For example, transposition of adjacent digits will
usually yield a non-zero syndrome, as the same number multiplied by a 1 and a 3
usually gives a different answer. The exception is 5. So a transposition error of
adjacent digits which differ by 5 will not be caught.

3 (yj − yk) + 1 (yk − yj) ≡ 0 (mod 10)

when yj − yk ≡ 5 (mod 10)

Furthermore, transposition of digits removed by two places will not be caught; the
syndrome will still be calculated as zero. Presumably, the designers of the code
are less worried about this particular error type occurring often.

Example 9.2 The ISBN for Managerial Uses of Accounting Information by Joel
Demski (published post 2007) is 978-0-387-77450-3.

Do the arithmetic.

Hy =
'
1 3 1 3 1 3 1 3 1 3 1 3 1

(

2

666666666666666666664

9
7
8
0
3
8
7
7
7
4
5
0
3

3

777777777777777777775

= 120 ≡ 0 (mod 10)

9.4 an error correcting code 187

The universal product code (UPC) is a ubiquitous variation on ISBN 13. The
UPC is particularly visible at supermarkets where the checkout scanners read the
bar codes on the inventory items. Typically, a UPC code has 12 digits, and the
parity check matrix is

H =
'
3 1 3 1 3 1 3 1 3 1 3 1

(
(mod 10)

9.4 an error correcting code

So far we have been able to discern when an error exists in the codeword. We
have not, however, been able to fix the error, at least not with the information in
the syndrome alone. It is possible, by expanding the parity check matrix, to not
only detect, but also correct errors in the codeword. The following example, along
with other linear codes can be found in Hill, 1986.

Example 9.3 Define the parity check matrix as follows with modulus 2.

H =

2

4
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

3

5

Now the syndrome, Hy, has 3 elements, and the extra information can be used
for error correction. The logic is not complicated. An error means the element
yi is a one instead of a zero, or vice-versa. For no errors, the syndrome is all
zeros, that is, in the nullspace of H. If yi is one instead of zero, then by the rules
of matrix multiplication, the syndrome will be the ith column of H . And, since
−1 ≡ 1 (mod 2), if yi is a zero instead of a one, the syndrome will likewise be the
ith column of H . Check with an example.

Example 9.4 Suppose the received codeword is y=
'
0 0 0 0 1 1 1

(T .
Syndrome decoding yields

Hy =

2

4
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

3

5

2

666666664

0
0
0
0
1
1
1

3

777777775

=

2

4
1
1
1

3

5 ≡

2

4
1
1
1

3

5 (mod 2)

188 9. error correcting codes

As the syndrome is the 4th column of H , it indicates y4 should be corrected to
a 1 from 0. The corrected y

y =

2

666666664

0
0
0
1
1
1
1

3

777777775

And calculation of the syndrome verifies the new y is now a legal codeword.

Hy =

2

4
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

3

5

2

666666664

0
0
0
1
1
1
1

3

777777775

=

2

4
2
2
2

3

5 ≡

2

4
0
0
0

3

5 (mod 2)

It would be convenient to generate legal codewords directly, rather than pick a
random vector and correct it using syndrome decoding as above. There must be a
simpler way, and, indeed, there is: use of the generator matrix.

9.4.1 generator matrix
In the example under consideration, the original vector (inventory number, em-
ployee id, etc.) is 4 elements long. Call it x. The matrix which multiplies the
original message, x, in order to generate the codeword is called the generator ma-
trix, G.

Gx = y

In this case, the generator matrix adds three redundant elements to x, enabling
syndrome decoding to correct any single error.
It turns out to be fairly easy to construct G given H . Write H in the following

block matrix format.

H =
'
B I3

(
, where

B =

2

4
0 1 1 1
1 0 1 1
1 1 0 1

3

5 and

I3 =

2

4
1 0 0
0 1 0
0 0 1

3

5

9.4 an error correcting code 189

ForG to be a legitimate generator matrix, the matrix productGxmust yield the
zero vector when multiplied by H .

HGx = Hy =

2

4
0
0
0

3

5 for all possible x’s

This implies G is 7× 4 such that

HG =

2

664

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775

Here’s the one that does the trick.

G =

)
I4
−B

*

HG =
'
B I3

() I4
−B

*
= BI4 − I3B

= B −B =

2

4
0 0 0 0
0 0 0 0
0 0 0 0

3

5

Substituting for B, and recalling that -1 ≡ 1 (mod 2), the generator matrix is
as follows.

G =

2

666666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

3

777777775

Example 9.5 Let the original message be x =
'
1 0 1 0

(T .

Calculate the codeword by multiplying by the generator matrix, G.

Gx =

2

666666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

3

777777775

2

664

1
0
1
0

3

775 =

2

666666664

1
0
1
0
1
2
1

3

777777775

≡

2

666666664

1
0
1
0
1
0
1

3

777777775

(mod 2) = y

190 9. error correcting codes

Notice that G keeps the original message, x, intact and adds three redundant ele-
ments. Decoding verifies that y is a legal codeword (no noise has been injected).

Hy =

2

4
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

3

5

2

666666664

1
0
1
0
1
0
1

3

777777775

=

2

4
2
2
2

3

5 ≡

2

4
0
0
0

3

5 (mod 2)

9.4.2 perfect codes
The example code has another property which is convenient, on occasion.1

Definition 9.4 A perfect single error correcting code is one in which the number
of possible received vectors is equal to the number of legal codewords plus the
number of vectors which can be changed into a legal codeword with exactly one
correction.

For a perfect code, in other words, there are no wasted vectors. Every vector is
either a legal codeword, or just one element removed from a legal codeword.
To demonstrate the example code satisfies the definition for perfect requires two

steps. First, it is verified there is no vector which can simultaneously be corrected
to two legal codewords. That is, no vector is one change from two different legal
codewords. But that can’t happen. Inspection of the parity check matrix verifies
there is no ambiguity about which element should be corrected: the columns ofH
are distinct. Whichever column is equal to the syndrome specifies the element of
the received vector to correct.
Now it is a matter of counting the number of vectors in each of the categories.

• the total number of possible received vectors: 27 = 128.

• the total number of legal codewords: 24 = 16.

• the total number of ways a received vector can be one off from a legal
codeword: 16 (7) = 112.

The last calculation is the number of legal codewords times the number of
positions available for an error to occur. Perfectness is verified by the sum:
112 + 16 = 128.

1It is particularly easy, for example, to construct examination questions.

9.5 another set of examples 191

9.5 another set of examples

The example code of the previous section, while illustrating some nice properties,
is not a very large code. That is, if the codewords is meant to characterize different
inventory items, for example, the size of the inventory is limited to 16 units. It is
relatively straightforward, however, to increase the size of the code by increasing
the modulus. As usual, the way to specify the code is to write down the parity
check matrix. For the next example, arithmetic is done modulo 5.

H =

)
1 1 1 1 1 0
1 2 3 4 0 1

*
(mod 5)

With modulo 5 there are 5 possible values for each element. The syndrome,
then, must supply information, not only about the position of an error, but the
amount of the error, as well. When there is a zero in the syndrome, the error is
easily positioned as in element 5 or 6.

Example 9.6 Let the received vector be y =
'
2 1 2 1 3 1

(T . Perform
syndrome decoding.

Hy =

)
1 1 1 1 1 0
1 2 3 4 0 1

*

2

6666664

2
1
2
1
3
1

3

7777775
=

)
9
15

*

≡
)
4
0

*
(mod 5)

The syndrome can be fixed by subtracting 4 times the 5th column of H . And
that can be accomplished by subtracting 4 from the 5th element of y. Since−4 ≡
1 (mod 5), the correction is to add 1 to the 5th element.

corrected yc =
'
2 1 2 1 4 1

(T

Hyc =

)
1 1 1 1 1 0
1 2 3 4 0 1

*

2

6666664

2
1
2
1
4
1

3

7777775
=

)
10
15

*

≡
)
0
0

*
(mod 5)

And the codeword is corrected.
When there is no zero in the syndrome, the error resides in one of the first 4

elements.

192 9. error correcting codes

Example 9.7 Let the received vector be y =
'
3 2 4 1 2 3

(T . Perform
syndrome decoding.

Hy =

)
1 1 1 1 1 0
1 2 3 4 0 1

*

2

6666664

3
2
4
1
2
3

3

7777775
=

)
12
26

*

≡
)
2
1

*
(mod 5)

As the first row ofH is all 1’s, the first element of the syndrome is the amount of
the error. The syndrome can be fixed by finding the column ofH , when multiplied
by 2, yields the syndrome. Because of the "no zeros - no repeats" properties of a
prime modulus, only one column of H will satisfy the condition. There is, then,
no ambiguity about the position and amount of the correction.
Searching the columns reveals the syndrome is 2 times the 3rd column of H .

2

)
1
3

*
=

)
2
6

*
≡
)
2
1

*
(mod 5)

The correction is to subtract 2 from the 3rd element of y.

corrected yc =
'
3 2 2 1 2 3

(T

Hyc =

)
1 1 1 1 1 0
1 2 3 4 0 1

*

2

6666664

3
2
2
1
2
3

3

7777775
=

)
10
20

*

≡
)
0
0

*
(mod 5)

And the correction results in the appropriate syndrome.
A generator matrix can be constructed using the methods of the previous sec-

tion.

G =

)
I4
−B

*
=

2

6666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
4 4 4 4
4 3 2 1

3

7777775

9.5 another set of examples 193

Example 9.8 Consistent with the prior example, let the original message x ='
3 2 2 1

(
. Calculate the redundant digits.

Gx =

2

6666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
4 4 4 4
4 3 2 1

3

7777775

2

664

3
2
2
1

3

775 =

2

6666664

3
2
2
1
32
23

3

7777775

≡

2

6666664

3
2
2
1
2
3

3

7777775
(mod 5)

And the appropriate redundant digits are added, as consistent with the syndrome
analysis of the problem.

The final thing to do with this example is to verify the perfectness of the code.
We already resolved there is no ambiguity in the correction, so just count the
vectors in the categories.

• the total number of possible received vectors: 56 = 15, 625.

• the total number of legal codewords: 54 = 625.

• the total number of ways a received vector can be one off from a legal
codeword: 625 (6) (4) = 15, 000.

The last calculation is the number of legal codewords times the number of po-
sitions available for an error to occur times the number of possible error amounts.
Perfectness is verified by the sum: 15, 000 + 625 = 15, 625.
One more example demonstrates the code can become as large as desired.

Example 9.9 Perform arithmetic modulo 11, and let the parity check matrix be

H =

)
1 1 1 1 1 1 1 1 1 1 1 0
1 2 3 4 5 6 7 8 9 10 0 1

*
(mod 11)

The code has 1110 = 25, 937, 424, 601 legal codewords. This coding system
could handle, for example, 12 digit phone numbers. If an individual dialed the
number with one mistake, the system can correct the error, and the call can still go
through to the intended party. There are no wasted phone numbers, as the code
is a perfect one. The number of "one off" phone numbers is 1110 (12) (10) =
1110 (120), the number of legal phone numbers times the number of positions
available for an error times the number of possible error amounts. The total of 12
digit phone numbers is 1112 = 1110 (1 + 120) = 1110

/
112
0
.

194 9. error correcting codes

9.6 double error correction

To do single error correction the idea is to solve two linear equations for the two
unknowns: the amount and position of the error. For double error correction there
are four unknowns: two error amounts and their respective positions in the re-
ceived vector. That requires four independent equations which, in turn, implies a
parity check matrix with four rows. This double error correcting code is also in
Hill, 1986.
Here is a 4 row parity check matrix which defines a linear code in what is called

the BCH class.2

H =

2

664

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 22 32 42 52 62 72 82 92 102

1 23 33 43 53 63 73 83 93 103

3

775

The arithmetic is done modulo 11.
Suppose vector y is sent, but the received vector is y+ e where the error vector,

e, has 2 errors, a and b, in positions i and j.

eT =
'
0 ... 0 a 0 ... 0 b 0 ... 0

(

The syndromeHy ≡ s looks like the following, where si is the ith element in the
syndrome vector, s.

s1 ≡ a+ b

s2 ≡ ai+ bj

s3 ≡ ai2 + bj2

s4 ≡ ai3 + bj3

That’s the set of equations we have to deal with.
Before embarking on the 4 equation 4 unknown problem, notice that no errors

and a single error are fairly simple to deal with. For an error free transmission
Hy ≡ 0 (i. e., s1 ≡ s2 ≡ s3 ≡ s4 ≡ 0). Then a ≡ b ≡ i ≡ j ≡ 0 solves the four
equations.
If there is only one error, then b = 0, and the equations are

s1 ≡ a

s2 ≡ ai

s3 ≡ ai2

s4 ≡ ai3

The first two equations can be easily solved for a and i which will then satisfy the
other equations.

2See, for example, Hill, A First Course in Coding Theory, chapter 11.

9.6 double error correction 195

For the general 2 error case return to the 4 non-trivial equations.

s1 ≡ a+ b

s2 ≡ ai+ bj

s3 ≡ ai2 + bj2

s4 ≡ ai3 + bj3

The first step is to eliminate one unknown, a, by multiplying the first equation
by i and subtract the second equation. Similarly, multiply the second by i and
subtract the third; finally, multiply the third and subtract the fourth. We now have
3 equations in3 unknowns, numbered (1), (2), and (3).

is1 − s2 = b (i− j) (1)
is2 − s3 = bj (i− j) (2)
is3 − s4 = bj2 (i− j) (3)

Now convert 3 equations into one quadratic equation. To do this, multiply (1)
times (3), and, also, (2) times itself.
(1) times (3):

b2j2 (i− j)2 ≡ (is1 − s2) (is3 − s4)
≡ i2s1s3 − i (s1s4 + s2s3) + s2s4

(2) times (2):

b2j2 (i− j)2 ≡ (is2 − s3)
2

≡ i2s22 − 2is2s3 + s
2
3

Combining:

i2
/
s22 − s1s3

0
+ i (s1s4 − s2s3) +

/
s23 − s2s4

0
≡ 0 (mod 11)

We have a quadratic equation modulo 11 which, with a few adjustments for mod-
ular arithmetic, we can solve for position i of one of the errors. Actually, as the
quadratic equation has two roots, we will get both error positions. To simplify the
notation let

p = s22 − s1s3
q = s1s4 − s2s3
r = s23 − s2s4

And we can specify the two roots as

i, j ≡
−q ±

p
q2 − 4pr
2p

(mod 11)

196 9. error correcting codes

We notice at this point that square root and division are not defined in modular
arithmetic, but we can handle that as we shall see in the numerical example. Once
i and j are known, use equation (1) to get b:

b ≡
is1 − s2
i− j

And use the first syndrome equation to get a:

a ≡ b− s1

Example 9.10 Suppose eT ≡
'
0 2 0 3 0 0 0 0 0 0

(
. Do syn-

drome to find a, b, i, and j. Looking ahead we should find

i ≡ 2

j ≡ 4

a ≡ 2

b ≡ 3

First compute Hy ≡ s (mod 11).

s1 = 2 + 3 = 5

s2 = 2 (2) + 3 (4) = 16 ≡ 5
s3 = 2 (4) + 3 (16) ≡ 8 + 15 ≡ 1
s4 = 2 (8) + 3 (64) ≡ 5 + 3 (−2) ≡ −1 ≡ 10

Plugging into the expressions for p, q, and r:

p = s22 − s1s3 = 25− 5 ≡ 9
q = s1s4 − s2s3 = 50− 5 ≡ 1
r = s23 − s2s4 = 1− 50 ≡ −5 ≡ 6

So the solution to the quadratic equation is

i, j ≡
−q ±

p
q2 − 4pr
2p

=
−1±

p
1− 4 (9 (6))
2 (9)

≡
−1±

p
1− 3 (6)
7

≡
−1±

p
5

7

Now we have the two issues of how to divide , and how to extract a square root
in modular arithmetic. For division by 7, solve

7x ≡ 1 (mod 11)

9.7 generator matrix and the fundamental theorem of linear algebra 197

Then we can multiply times the multiplicative inverse, x, instead of dividing by
7. The modular equation has has a unique solution by the no zeros, no repeats
property of a prime modulus. Here

7x ≡ 1 (mod 11) =) x = 8

So instead of dividing by 7, multiply times 8.3
Similarly for the square root, we can solve

x2 ≡ 5 (mod 11)

for which there are two solutions: x = 4 and x = 7. But either solution will
produce the same positions i and j, just relabeled.
For x = 4:

i = (−1 + 4) 8 ≡ 2
j = (−1− 4) 8 = −40 ≡ 4

For x = 7

i = (−1 + 7) 8 = 48 ≡ 4
j = (−1− 7) 8 = −64 ≡ 2

Use either pair to get the error amounts a and b.

b =
is1 − s2
i− j

=
2 (5)− 5
2− 4

≡
5

9

Once again to divide by 9 use

9x ≡ 1 =) x = 5

So
b = 5 (5) = 25 ≡ 3

And finally
a = s1 − b = 5− 3 = 2

The solution is as we predicted: an error of 2 in position 2, and error of 3 in
position 4.

9.7 generator matrix and the fundamental theorem of
linear algebra

As it is a little bit more difficult to construct than in the earlier examples, the
generator matrix for the double error correcting code has yet to appear in the dis-
cussion. Some consideration of orthogonality and vector subspaces may ease the

3Here the equation for the multiplicative inverse can easily be solved by inspection. For larger
moduli, Euclid’s algorithm, as presented in chapter 10, will yield a solution.

198 9. error correcting codes

analysis. The generator matrix is composed of the null space to the parity check
matrix. The fundamental theorem of linear algebra, then, is useful for describing
the construction of the two matrices.
Reconsider the single error correcting code specified by the parity check matrix,

H .

H =

2

4
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

3

5 (mod 2)

H consists of 3 linearly independent y element vectors. According to the funda-
mental theorem the null space will have 4 independent 7 element vectors. That
is, the dimension of the nullspace (here, 4) plus the dimension of the row space
(3) will equal the 7 dimensions of the vectors. G, as constructed earlier in the
chapter, has that form.

G =

2

666666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

3

777777775

(mod 2)

Orthogonality of the two spaces is assured by the parity-generator relationship.

HG ≡ 0

(For the syndromeHy ≡ 0, we must haveHGx ≡ 0 for all possible messages, x.
Therefore, HG ≡ 0 must hold.)
As a tangential observation, there is a difference between orthogonal vectors

in Euclidean spaces and spaces defined by modular arithmetic. A vector in the
latter space can be orthogonal to itself; that is, the vector product can be zero. For
example, all 3 vectors in H have this property. Hence, they belong to both the
row space and the nullspace.
One implication of this perhaps seemingly odd state of affairs is that there are

not a total of 7 independent vectors in the combination of the rows of H and the
columns of G; the rows of H , for example, are not independent of the columns
of G. In other words, the space of 7 element vectors is not spanned by the H ,G
combination, and not all vectors in the 7 element space can be formed by linear
combinations of the row and null vectors.
Spanning is not an issue that arises in the coding problem. But it is central for

the understanding of other topics we have considered: decomposition of journal
entries, uniqueness of arbitrage free prices, and the mutual information theorem,
for example. So it doesn’t hurt to confront the concept of spanning on occasion.

9.7 generator matrix and the fundamental theorem of linear algebra 199

Return to the double error correction example with

H =

2

664

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 22 32 42 52 62 72 82 92 102

1 23 33 43 53 63 73 83 93 103

3

775 (mod 11)

A generator matrix composed of the appropriate number of orthogonal vectors (6
by the fundamental theorem) is

G =

2

666666666666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
4 10 9 2 1 7
7 8 7 1 9 6
9 1 7 8 7 7
1 2 9 10 4 1

3

777777777777775

(mod 11)

The vectors in G can be found using standard linear techniques. After the 6 × 6
identity matrix component of G, each vector has 4 unknown elements, for a total
of 24 unknowns. Each vector, in turn, must satisfy 4 orthogonality conditions
with the rows of H , for a total of 24 equations. 24 independent linear equations
with 24 unknowns is a little bit tedious, but once the answer is reduced to modulo
11, the above G appears.

Example 9.11 Let the message be xt =
'
5 3 0 6 8 0

(
. Use the G

matrix to append 4 redundant digits rendering the message amenable to double
error correction.

y = Gx =

2

666666666666664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
4 10 9 2 1 7
7 8 7 1 9 6
9 1 7 8 7 7
1 2 9 10 4 1

3

777777777777775

2

6666664

5
3
0
6
8
0

3

7777775
=

2

666666666666664

5
3
0
6
8
0
70
137
152
103

3

777777777777775

≡

2

666666666666664

5
3
0
6
8
0
4
5
9
4

3

777777777777775

(mod 11)

It can be verified that the syndrome Hy ≡ 0.

200 9. error correcting codes

9.8 error correction and mutual information

The noisy channel theorem is typically characterized as Shannon’s most important
result. It laid the foundation for the technical devices of the information age,
including smart phones, the internet, and on and on. The theorem is the reason
Shannon, himself, if often referred to as the father of the information age.
For the plethora of electronic devices which communicate with each other, the

communication channel is inherently error prone; disturbances in the message are
common, even typical. Sending the message again doesn’t appear to help, as
errors occur in the repeated message, as well. And other redundant schemes are
subject to the same problem: more symbols in a message means more errors.
Given this state of affairs, it didn’t seem like a good idea to even try for er-

ror free communication through a noisy channel. But Shannon’s noisy channel
theorem changed everything. First, he proved error free transmission was pos-
sible through a noisy channel. He showed redundancy could work to bring the
error rate arbitrarily close to zero. And he also proved how much redundancy was
necessary to eliminate the errors.
His proof, however, was abstract and not constructive. that is, it didn’t specify

how to construct an error free code; it just said some must exist. But that was
enough to get coding theorists to explore the field, and several efficient codes have
been developed. Since Shannon had shown the minimum redundancy needed,
actual codes are compared to the Shannon bound, and many, indeed, approach the
bound.
We won’t go through the theorem here, but we will show how error correcting

codes like we have studied can significantly reduce error rates. Mutual informa-
tion is the relevant measure of error rates. In particular, we know

0 ≤ I (X;Y) = H (Y)−H (Y |X) ≤ H (Y)

Dividing both sides by H (Y) we have

0 ≤
I (X;Y)

H (Y)
≤ 1

The closer the ratio to one, the closer the communication is to error free. While
Shannon showed a ratio of one is (virtually) possible, we will be content with
illustrating how redundant codes can move the ratio closer to one.

Example 9.12 Consider three possible messages, x, say 0, 1, or 2, with a 10%
error rate. That is, if x=1 is sent, the received message, y, will be 1 (correct) with
probability .9; 0 or 2 will be received each with probability .05. Messages of 0 or
2 will behave the same way. Compute the mutual information ratio

I (X;Y)

H (Y)

9.8 error correction and mutual information 201

if one symbol at a time is sent. Then compute the ratio sending 4 symbols at a
time using the linear code with parity check matrix

H =

)
1 1 1 0
1 2 0 1

*
mod3

(Looking ahead, the ratio for one symbol at a time is about 64%. For the 4 symbol
block code the ratio increases to 84%.)

First one symbol at a time. The conditional probabilities are as follows where
x is the message sent, and y the message received.

y
p (y|x) 0 1 2

x 0 .9 .05 .05
1 .05 .9 .05
2 .05 .05 .9

The joint probabilities are used for the entropy computations; and to access the
joints, the marginal probabilities, p(x), are used. But the marginals are a decision
variable in the code design problem. That is, the code designer can choose the
states of the world which generate the message xi, effectively choosing the prob-
abilities p(x). The objective here, then, is to choose the marginal probabilities
which yield the largest mutual information ratio I(X;Y)/H(Y).
The example has a symmetric conditional probability matrix, and, for that case,

it is particularly simple to specify the optimizing marginal distribution p(x). The
answer is to choose p(x) to be uniform over the possible messages. For the exam-
ple, p(xi) = 1/3 for all i.

Theorem 9.2 For a symmetric channel, that is, one where the conditional prob-
ability matrix p(y|x) is symmetr4ic, the maximum information ratio is achieved
with a uniform distribution on the messages, x.

A version of the theorem is in Cover and Thomas on page 190 (theorem 8.2.1).
Its application in numerical examples can easily be illustrated using a spreadsheet
optimizer: when asked to maximize the information ratio, the optimizer returns a
uniform marginal distribution. It is also instructive to query the optimizer when
the channel conditional probabilities are not symmetric. Then, in general, unifor-
mity is not optimal.4
Converting to joint probabilities using uniform marginals:

y
p (x, y) 0 1 2

x 0 .3 .05
3

.05
3

1 .05
3 .3 .05

3
2 .05

3
.05
3 .3

4It is tempting to refer to the theorem as the "dog theorem," as it is illuminated by a semi famous
Far Side cartoon by Gary Larson in which all dog barks are decoded as "hey." The dogs could be more
informative if they "spread out" their messages.

202 9. error correcting codes

Using the joint probabilities, p (x, y), mutual information I (X;Y) is computed
the usual way.

H (X) = H (Y) = ln 3

H (X,Y) = −
)
.9 ln

3

10
+ .1 ln

1

60

*

= .9 ln 2 + .9 ln 5− .9 ln 3 + .2 ln 2 + .1 ln 5 + .1 ln 3
= 1.1 ln 2− .8 ln 3 + ln 5

I (X;Y) = H (X) +H (Y)−H (X,Y)
= 2 ln 3− 1.1 ln 2 + .8 ln 3− ln 5
= 2.8 ln 3− 1.1 ln 2− ln 5

The mutual information ratio is

I (X;Y)

H (Y)
=
2.8 ln 3− 1.1 ln 2− ln 5

ln 3
' .641

Approximately 64% of the uncertainty in the sent message, y, is reduced by the
receipt of the signal, x.
Before proceeding to using an error correcting code in the noisy channel, let’s

simplify the information ratio expression for the symmetric channel case. The
general conditional probability matrix is

p (1− p)/(n− 1) · · ·
(1− p)/(n− 1) p

...
. . .

where p is the error free rate of transmission, and n is the number of possible
messages. Invoking uniform marginals, the general joint probability matrix is

p/n (1− p)/n(n− 1) · · ·
(1− p)/n(n− 1) p/n

...
. . .

By symmetry
H (X) = H (Y) = lnn

And the joint entropy:

H (X,Y) = −
)
p ln

p

n
+ (1− p) ln

1− p
n (n− 1)

*

= lnn+H (p) + (1− p) ln (n− 1)

where H (p) = − [p ln p+ (1− p) ln (1− p)]

9.8 error correction and mutual information 203

Therefore,

I (X;Y)

H (Y)
=

H (X) +H (Y)−H (X,Y)
H (Y)

=
lnn−H (p)− (1− p) ln (n− 1)

lnn

For the example so far we have n = 3 and p = .9. Plugging into the expressions
yield

H (p) = H (.9) ' .325

and
I (X;Y)

H (Y)
=
ln 3− .325− .1 ln 2

ln 3
' .641

as before.
The next step is to use the error correcting code, and see if the amount of in-

formation passing through the noisy channel increases. Instead of one symbol at
a time, the linear code will send blocks of 4 symbols: 2 symbols in the original
message and 2 redundant. The generator matrix for the code is

G =

2

664

1 0
0 1
2 2
2 1

3

775mod3

So, for example, if the original message is

y =

)
1
2

*

the 4 symbol block sent is

x = Gy =

2

664

1
2
0
1

3

775mod3

The error correcting code will correct any single error, so the probability the
message gets through the channel unchanged is the sum of the probability of no
errors plus the probability of one error.

Prob(no error) = .94 = .6561

Prob(one error) = .93.11 (4) = .2916

The general expression for t errors is

Prob(t errors) = .94−t.1t
1
4

t

2

204 9. error correcting codes

where the third term in the expression is the number of ways the error can occur
in the 4 symbol block.
The nine by nine conditional probability matrix can be constructed. On the

diagonal is the probability of error free transmission

p = .6561 + .2916 = .9477

And, continuing with the symmetry frame, assume there is no information about
y if more than one error occurs. Then the off-diagonal consists of

1− .9477
8

= .0065375

The entropy computations can be made from the symmetric probability matri-
ces, or the more general relationships can be used for

p = .9477 and n = 9

H (p) = H (.9477) ' .205

and
I (X;Y)

H (Y)
=
ln 9− .205− .0523 ln 8

ln 9
' .857

As predicted in the statement of the example, the fraction of information getting
through the channel increased from 64% to approximately 86% by using the single
error correcting code. The redundancy rate was 50% since each 4 element block
has 2 redundant symbols.
Example 9.12 began with a symbol error rate of 10% or, equivalently an error

free transmission rate of p = .9. For different error free transmission rates, an im-
provement in the mutual information ratio also occurs. Below are tabulated some
symbol error free rates along with information ratios for single symbol transmis-
sion and block transmission using the single error correcting of the example.

symbol error free rate p .99 .975 .95 .9 .8
I(X;Y)
H(Y) single transmission .943 .878 .788 .641 .418
I(X;Y)
H(Y) block transmission .997 .986 .953 .857 .614

Shannon’s powerful theorem states there exists a block code which achieves an
error rate arbitrarily close to zero, but does not supply the code. For our purposes
we will be satisfied with illustrating error correction and documenting improve-
ments in information transmission rates.

9.9 summary
This chapter is the first to deal with the issue of how to preserve data integrity.
The error detecting and correcting codes presented herein rely on two primary

9.9 summary 205

academic tools. One is orthogonality and the concept of the nullspace, a tool used
extensively in prior chapters. The other tool is number theory which will prove
quite useful in subsequent chapters. In this chapter we got our first exposure to
prime numbers and the fundamental theorem of arithmetic. We also presented a
numerical example which improved the information transfer in a noisy channel,
though not as much as Shannon’s noisy channel theorem states is possible.

206 9. error correcting codes

9.10 references
Cover, Thomas M., and Joy A. Thomas, Elements of Information Theory. John
Wiley and Sons, 1991.
Hill, Raymond, A First Course in Coding Theory. Oxford University Press,

1986.
Ore, Oystein, Number Theory and Its History. McGraw-Hill Book Company,

1948.

9.11 exercises
Exercise 9.1 Here are some ISBN’s - possibly in error. Check for accuracy.

1. Probability Theory by E. T. Jaynes. 978-0-521-59271-0

2. Essays in Accounting Theory in Honour of Joel S. Demski. 0-387-30397-9
and 978-0387-30397-0

3. Number Theory and Its History by Oystein Ore. 0-486-65620-9

Exercise 9.2 Fill in the missing digits in the following UPC numbers.

0 7 0 5 5 4 0 0 ? 2 3 6
0 2 8 4 0 0 0 9 ? 9 0 1

Exercise 9.3 Consider a "perfect" single error correcting code with parity check
matrix

H =

)
1 1 1 1 1 1 1 0
1 2 3 4 5 6 0 1

*
(mod 7)

For the following received codewords, detect and correct a single error, if neces-
sary.

1 5 3 6 1 3 1 6
3 2 2 0 0 3 1 2

Exercise 9.4 For the same modulo 7 code as in the previous problem, append the
appropriate redundant digits.

1 2 4 3 6 6
5 6 1 1 2 1

Exercise 9.5 Using the same modulo 7 code in the previous exercises, verify the
"perfectness" of the same code by computing the number of possible received
codewords, the number of legal codewords, and the number of codewords within
one change of a legal codeword.

9.11 exercises 207

Exercise 9.6 Consider Matthew 5:37. "Let your communication be Yea, yea;
Nay, nay: for whatsoever is more than these cometh from evil." The communi-
cation is an implied binary code. What is the implied parity check matrix, and the
generator matrix? Is the code error correcting? What about error detection?

Exercise 9.7 Consider a noisy symmetric channel which transmits one bit at a
time, either a zero or a one. The error rate is 10%, or, alternatively, the error free
transmission rate is 90%. What is the mutual information ratio for the channel?
Now use the single error correcting with parity check matrix

H =

2

4
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

3

5mod2

What is the mutual information ratio for the 7 element block?

Exercise 9.8 Consider the double error correcting code in the chapter with parity
check matrix

H =

2

664

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 22 32 42 52 62 72 82 92 102

1 23 33 43 53 63 73 83 93 103

3

775 (mod 11)

Suppose the syndrome is Hy = s ≡
'
3 3 3 3

(T . What are the error(s)
and position(s) thereof? Suppose Hy = s ≡

'
10 1 2 8

(T
.

Exercise 9.9 Redo example 9.12 with symbol error rate of .025. That is, with
probability .0125 one of the incorrect symbols is received, and the same probabil-
ity for the other incorrect symbols.

Exercise 9.10 Consider a double error correcting code with the following parity
check matrix.

H =

2

664

1 1 1 1 1 1
1 2 3 4 5 6
1 22 32 42 52 62

1 23 33 43 53 63

3

775 (mod 7)

Suppose the syndrome is Hy = s ≡
'
4 0 2 1

(T . What are the error(s)
and position(s) thereof?

